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ABSTRACT This paper proposes a convolutional neural network (CNN)-based encoder model to compress

and code speech signal directly from raw input speech. Although the model can synthesize wideband speech

by implicit bandwidth extension, narrowband is preferred for IP telephony and telecommunications purposes.

The model takes time domain speech samples as inputs and encodes them using a cascade of convolutional

filters in multiple layers, where pooling is applied after some layers to downsample the encoded speech by

half. The final bottleneck layer of the CNN encoder provides an abstract and compact representation of the

speech signal. In this paper, it is demonstrated that this compact representation is sufficient to reconstruct

the original speech signal in high quality using the CNN decoder. This paper also discusses the theoretical

background of why and how CNN may be used for end-to-end speech compression and coding. The

complexity, delay, memory requirements, and bit rate versus quality are discussed in the experimental results.

INDEX TERMS Convolutional neural network, deep learning, source coding, speech codecs.

I. INTRODUCTION

Speech is the most natural way of communication among

humans. Therefore, it is not surprising to see speech coding

applications in communications. The need for removing the

redundancy for efficient compression and coding has been

a challenge for a long time. Although rate distortion theory,

which defines the quality with respect to the bit rate, is at the

focal point of this discussion [1], we will also focus on other

practical issues such as delay (including latency), complexity

andmemory requirements, which are as important parameters

as rate-distortion.

Speech signal has twomajor forms of redundancy. The first

one is called ‘‘short-term’’ or ‘‘sample-to-sample’’ redun-

dancy [2]. It is possible to observe high correlation between

consecutive samples. Linear autoregressive models are an

effective means of exploiting short term correlation by con-

sidering previous P sample values. The second redundancy

stems from pitch, which is actually the fundamental fre-

quency of the almost periodic speech signal. This redun-

dancy, called ‘‘long-term’’ only exists in the voiced segments
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of speech. The rest of the speech is unvoiced and does

not have periodicity resulting from the vibration of the

vocal cords and looks more like random noise with low

energy. Unfortunately, speech is not composed of voiced

and unvoiced segments, transition frames, either from voiced

to unvoiced or unvoiced to voiced segments, are extremely

difficult to model. It is argued in [3] that ‘‘attributes of speech

that identify the speaker and speaking style do not vary

rapidly over time and hence do not change this rough estimate

(true information rate is less than 100 b/s) significantly’’

is not always correct as natural speech not only contains

lexical information but also speaker identity, speech speed

and style and further emotions. Therefore, although speech is

extremely redundant for most of the time, it has a complicated

structure from time to time. Nevertheless, we believe that a

proposed model should be able to handle both ‘‘short-term’’

and ‘‘long-term’’ redundancy.

Linear autoregressive (AR) models, which lead to adaptive

predictive coding of speech signals, date back to half-century

ago [2]. The fundamental idea behind adaptive predictive

coding is simple: Speech signal is assumed to be stationary

for short time intervals and therefore the ak , k = 1, 2, . . .P

coefficients of an adaptive linear predictive coding (LPC)
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filter are calculated by a minimum mean square error algo-

rithm for every 10-32 ms of input speech signal, x[n]. This

duration (where speech signal is assumed to be stationary)

may change but speech synthesis is performed according

to (1), where P is the prediction order.

x[n] =

∑P

k=1
akx [n-k] + e[n] (1)

In adaptive predictive coding, there are two challenges. The

first one is how to represent and transmit the LPC coeffi-

cients for every 10-32 ms. The second challenge is to model

the error signal, e[n], which is actually the prediction error,

as no prediction is perfect and leaves a residual. The former

problem is solved by the line spectral frequencies (LSF) or

line spectral pairs (LSP) representation [4] and quantization.

It turns out that LPC coefficients in time domain represents

the spectral envelope of the signal in the frequency domain.

The second challenge however results in more versatile solu-

tions. The ubiquitous are under the analysis-by-synthesis

family, regular-pulse [5] and code excited linear prediction

(CELP) [6] systems. It is of course possible to represent

speech without adaptive prediction. These methods operate

either on sinusoidal representation [7] or in the frequency

domain [8]. In order to reduce bit rates further, at the expense

of speech quality, phase of the residual signal may also be

modelled via combining predictive coding with frequency

domain solutions on the LPC residual [9].

In recent years, a generative model, i.e. WaveNET, for

waveform synthesis has been also proposed [10]. In this

approach, each waveform sample is conditioned on the sam-

ples at all previous time steps, where the model produces

a probability distribution with a set of discrete values for

the next sample. Although the WaveNET is composed of

causal convolutions [10], themodel operates in a probabilistic

viewpoint.WaveNETmodel was used as a speaker-dependent

speech synthesis vocoder in [11], where acoustic features

are fed into the model as auxiliary features and speech is

generated. This unfortunately results in a speaker dependent

speech synthesis. This idea is further extended in [3], where

WaveNET model is used for both parametric and waveform

speech coders. In case of parametric vocoder, a standard

parametric open source vocoder [12] has been used to obtain

the bit stream that is necessary to drive the WaveNET model

that is used as a decoder, operating at 2.4 kb/s. In other words,

the encoding of speech is done by a standard speech coder,

where this bit stream is passed to a WaveNET model for

decoding purposes. In case of a waveform speech coder, the

authors mention average bit rates, variable bit rate coders

are not suitable for telecommunications purposes due to bit

rate allocation purposes with respect to fix bit rate schemes.

Nevertheless, the bit rate mentioned in [3] is 42 kb/s.

The major contribution of this paper is the use of two

convolutional neural networks (CNN) for compression and

coding of voice in an end-to-end solution for encoding and

decoding purposes. To the best of our knowledge, deep neural

networks (DNNs) are not used for end-to-end speech coding

in the literature so far. The end-to-end solution means that

input speech is in time domain and represented as raw speech

waveform, which does not require any explicit extraction of

parameters, i.e. acoustic features; the output is the recon-

structed speech waveform. The process also does not require

any conversions (such as LSF) or quantization under some

circumstances for the CNN encoder. Speech is synthesized

by the CNN decoder.

In the remainder of this paper, Section 2 describes the novel

DeepVoCoder, which is a DNN based speech compression

and coding method with emphasis on CNN and inception

modules. In Section 3, we discuss the important parameters

of delay, complexity and bit rate versus quality. In section

4, the results of our experiments are presented for a limited

number of selected parameters. There are countless number

of parameters and combinations that can be used for our

DeepVoCoder approach and each choice aims optimization

of a different objective. Finally, Section 5 draws conclusions.

II. THE METHOD

Motivated by the recent successes in the deep convolutional

models in different domains ([13-18]), a CNN based encoder-

decoder type neural network architecture is designed for

speech coding. The Inception model in [13] is considered as

a reference in the design of our encoding and decoding net-

works, where the raw speech waveform is analyzed through

cascades of multiple inceptionmodules (Fig. 1). Eachmodule

encodes the relevant acoustic features of the waveform in

multiple-scales. The encoded features at the output layer

of the encoder network is utilized as the ‘‘source’’ by the

decoder to reconstruct the speech waveform. The details of

the encoder and decoder network configurations are provided

below.

A. ENCODER NETWORK CONFIGURATION

The encoder network is designed to take 32 ms raw speech

samples as the inputs, i.e. a vector of 256 samples (from

8kHz). It is composed of 6 blocks and two additional convo-

lutional layers at the end.We refer to the set of layers between

two max-pooling layers, for downsampling, as a block. The

block diagram in Fig.1 depicts the encoder architecture.

The network starts with three 1 dimensional convolutional

layers of filter sizes 9, 1 and 9, respectively. All these convo-

lutional layers are configured to extract 128 feature vectors.

After the first layer, a non-linear activation function, i.e. leaky

ReLU [19], is applied after batch normalization [20]. The

following two convolutional layers’ responses are kept linear.

The convolution layer of size 1, in the middle, is used to

align the feature planes with a more useful direction after

the non-linearity, which makes the second convolution more

effective. Then a max-pooling layer is applied to the feature

vectors of the third layer with a stride 2 to downsize the

sample count from 256 to 128. The extracted features are

then fed to an inception block that is very similar to the

architecture that is utilized for a vision network developed

for image classification [13]; we adapted this network for
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one dimensional speech processing, with minor changes in

the activation functions.

In each block, only one inception module is included

and following an inception module, resultant concatenated

multi-scale features are normalized using batch normaliza-

tion and passed further to leaky ReLU activation before max-

pooling. The feature vectors that are computed by the last

convolutional layer of the first block are passed through

5 inception modules. After the fifth inception module, two

cascaded convolutions are applied to the resultant features.

At this level, i.e. before the cascaded convolutions, the num-

ber of samples in each feature vector is reduced to 4 and a

total of 512 feature vectors are generated to represent the

original speech samples. In order to obtain a condensed repre-

sentation, first convolutional layer projects the feature planes,

using size 1 convolutions, to 20 vectors. Following that,

without applying any non-linearities, a second convolution

layer, using 20 filters with a filter size of 3, is applied to

generate the final activations for another 20 feature vectors.

The resultant activations are passed through sigmoid function

to get the encoded speech. As a result, the encoded speech is

represented using 80 coefficients in the range (0-1) in order

to quantize them easily and more effectively.

Inception Modules: The Inception modules are initially

designed for a visual recognition challenge (ILSVRC14)

with a vision network called GoogLeNet [13]. The mod-

ules are used in a cascaded way to generate deeper and the

wider networks; hence called as inception modules to imply

a networks-in-networks architecture. The essential compo-

nents of the design of inception modules are parallel con-

volutional layers that analyze the same features in multiple

scales, using different filter sizes, simultaneously. However,

this is costly when the depth of a network is increased. The

design of the module efficiently avoids parameter increase

by using 1 × 1 convolutions to reduce the depth before

applying convolutions of 3 × 3 and 5 × 5 (in images). These

1 × 1 convolutions project the incoming features to a lower

dimensional space that allows increasing the depth without

creating computational bottlenecks.

In speech domain, we want to encode both short-term and

long-term correlations in the speech samples, hence inception

modules are very suitable for our purpose. Pooling of sparse

features at the end of inception modules, provide features

in varying scales to the upcoming inception modules for

further analysis using multiple aperture sizes. Especially in

the higher layers, the ones that are close to the output after

multiple pooling operations, the receptive fields of the con-

volutions, i.e. of sizes 3 and 5, become wide enough to learn

long-term correlations in a frame effectively using only a few

parameters.

To the best of our knowledge, deep neural net-

works (DNNs) are not used for end-to-end speech coding

in the literature so far. Moreover, the inception modules

are included in the speech coding research for the first

time. Different combinations of inception modules can be

designed and evaluated for speech coding purposes; as a

baseline, we selected to use exactly the same configurations

for the convolutional layers, i.e. the number of filters and

filter sizes, with the original image recognition network,

yet one-dimensional versions are utilized. Inception mod-

ules and the activation functions are also configured as

they are in [13], i.e. ReLU. Then we optimized that base-

line performance experimentally by using different linear

and non-linear activations and improved the quality of the

decoded speech. Fig.1 depicts the final design of our encoder

network architecture that we obtained our ‘‘best’’ results after

many experiments. The number of filters in each inception

block are given in Table 1 and they are exactly the same as

the decoder.

TABLE 1. Decoder network configuration parameters. MP: Max pooling,
BN: Batch normalization, LR: Leaky ReLU.

B. DECODER NETWORK CONFIGURATION

The decoder network architecture design is very similar to the

encoder architecture. We keep the inception modules exactly

the same with respect to the filter sizes and number of filters

applied in each block, as in our encoder network; only the
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FIGURE 1. A) Encoder CNN architecture. CONV1D: One dimensional convolutional layer, BacthNorm/LRelu: Batch
normalization layer and then Leaky ReLU layer applied in this order, LRelu: Leaky ReLU activation layer, MaxPool: Max
pooling layer. B) Details of the inception block.

pooling layers are replaced with upsampling layers. Upsam-

pling layers are implemented using bilinear interpolation to

double the size of the input features and then convolution

is applied using a transposed filter. The initial and final

convolutional layers are slightly different. The parameters of

the decoder network are provided in Table 1.
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The input to the decoder network is a two-dimensional

tensor of size 4 × 20, i.e. 4 samples for 20 feature vectors.

This is the output tensor size of the encoder network. The

input is processed by two cascaded convolutions with filter

sizes 1 and 3, using 20 filters in each layer. After the second

convolution, the resultant features are passed through leaky

ReLU activation function. The features are then upsampled

to their double sizes, i.e. each feature vector then contains

8 samples. Following upsampling, the resultant features are

processed with a sequence of 5 inception blocks, the details of

which are summarized in Table 1. The configuration of each

inception block is kept similar to the corresponding block in

the encoder network. For instance, InceptionBlock1 contains

4 parallel convolutional blocks; the first block has only one

convolutional layer with 64 filters of size 1, the second block

has a convolutional layer with 96 filters of size 1, followed by

a leaky ReLU activation function, and another convolutional

layer with 128 filters of size 3. In Table 1, the individual layers

in each block are provided in different rows; the number

of filters in parallel branches of the inception blocks are

provided on the left half of the table as separate columns, and

corresponding cells on the right half provides the filter sizes

corresponding to the parallel layers on the left half.

At the end of the inception blocks, after the last upsam-

pling, the number of features in each feature vectors becomes

256, i.e. the original sample window size of our speech

signal. At this layer, two cascaded convolutions are applied

to the features using 128 filters in each layer with filter

sizes of 1 and 5, respectively. After batch normalization,

the activations are passed through leaky ReLU function. The

resultant feature vectors are then convolved with a filter of

size 1 to generate a projection to a window of 256 samples.

The resultant samples are passed through hyperbolic tangent

function, i.e. tanh, to generate samples in (−1, 1) range.

C. MODEL TRAINING

We trained the proposed encoder-decoder network model

end-to-end from scratch using a publicly available, multilin-

gual, multi-speaker database [21], in an unsupervisedmanner.

As the objective of the CNN is to obtain an identity function,

the input of the CNN encoder and the output of the CNN

decoder are exactly the same for model training. We used

8 hours of speech data, in total, which are sampled at 8 kHz.

The data is split into multiple non-overlapping 32 ms raw

speech frames, i.e. a total of 900000 frames. The samples in

the frames are first normalized into (−1, +1), then quantized

into logarithmic scale using 256 level µ-law companded [22]

with 8 bits. The µ-law coded frames are then shuffled to gen-

erate random batches for training, the batch size is configured

as 256. Before training, we set aside a random 15% of the

training frames for model validations.

We use Keras framework [23] with Tensorflow backend

for training the model and testing. The loss function for

error backpropagation is computed using the mean square

error (MSE) between the resultant frame samples and the

input speech samples. We use Adam optimizer [24] with a

learning rate 0.001, beta_1 0.9 and beta_2 0.999 with early

stopping, i.e. the training is terminated when MSE stops

improving for the validation frames for at least 5 epochs.

We configured training for 256 epochs, yet, the model usu-

ally stops improving the MSE score, i.e. converges, between

180-220 epochs.

D. QUANTIZATION

The parameters obtained as the output of the encoder need

to be quantized for telecommunication purposes, in order to

be transmitted to the decoder input. In general, the output

of the encoder has 20 filters and feature vector is either

reduced to dimension of 4 (for 32 ms frames) or 2 (for 16 ms

frames). Fig. 2 gives the probability density function of these

coefficients. The final activation layer of the encoder was

chosen to be sigmoid in order to get the source as narrow

as possible, for an efficient quantization. Although these

vectors (output coefficients of each filter in vector format of

either 2 or 4) can be easily and effectively quantized with a

matrix quantizer (for the filter bank of 20), we preferred an

optimum vector quantizer of LBG implementation [25] for

almost transparent quantization. In this approach, we did not

exploit the possible intracorrelation in between the vectors

of different filters. Our fundamental motivation is to keep

the quantization distortion at the minimum, in order not to

accumulate additional distortion on top of CNN modeling.

FIGURE 2. PDF of source, output of CNN encoder.

III. DISCUSSION

The parameters that are important for the design of Deep-

VoCoder can be described from both CNN topology and

speech compression and coding perspective. Themost impor-

tant parameters for a voice coder are delay, complexity, mem-

ory requirement, bit rate and quality. The parameters of a

CNN are total number of layers, number of convolutions in

each layer and size of filters in each convolution. The other

important parameter is of course the activation functions.

We will consider each parameter from speech coder perspec-

tive and explore its effect on the CNN topology.

A. DELAY

Delay is extremely important for a speech coder as unac-

ceptable delay durations cause echo which needs to be can-

celed [26]. Delay introduced by DeepVoCoder is merely the
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frame size, which is actually the input dimension. Processing

time required for encoding and decoding should also be

added in order to calculate the overall latency. Therefore,

although the input dimension should be as small as possible

(for minimum delay) it should be considered as large as

possible because of bit rate. If the frame size is too small,

source needs to be updated more often, leading to an increase

in bit rate. We decided on 32 ms, leading to 256 samples

for narrowband (sampled at 8 kHz) speech. The decision

comes from the fact that speech is assumed to be stationary

in between 20-32 ms. This parameter not only defines delay

and bit rate but also it defines better quality if analysis is

done for longer frames and synthesis quality degrades for

larger frames, for the same source. Although delay is not

the only parameter during design of a DNN topology, our

experiments showed that 32 ms is more favorable than 10,

16 and 20 ms. 16 ms is also important as it is equivalent to

128 samples, which is a power of 2 and therefore pooling can

be done until 1 sample is reached at the end of the encoder,

i.e. bottleneck.

B. COMPLEXITY

It is well known that CNN training takes significantly long

time and requires computational resources. However, training

complexity is not an issue as it is done offline only once. CNN

encoder and CNN decoder complexity are however important

as they determine the applicability of real-time implemen-

tation. DeepVoCoder also differs from conventional speech

coders in this sense because in conventional speech coders,

encoder complexity is alwaysmuch higher than decoder com-

plexity. In DeepVoCoder topology however, the complexity

of the encoder and decoder are similar. The complexity is

determined by i) total number of layers, each grouped into

blocks and separated by pooling (for the encoder), or by up

sampling (for the decoder), ii) number of convolutions per

layer, iii) number of filters and filter sizes for each convolu-

tion. DeepVoCoder has around 1.2M learnt parameters in the

encoder and 1.3M parameters in the decoder networks.

C. BIT RATE

Overall bit rate is determined by quantization of source only.

In case where the final dimension of the bottleneck is 1,

there is only a single parameter to be quantized by an opti-

mum scalar quantizer. As a consequence of the activation

function, source is always within a predetermined interval

and easy to quantize. Moreover, we round the source to

two-digit decimal points and observed that output speech

quality is not significantly affected. Therefore, a uniform

quantizer performs as good as an optimum scalar quantizer.

Nevertheless, dimension of one for the source is too small

even with many filters at the bottleneck and therefore we

preferred dimensions of 2 or 4, where source is quantized

with an optimum vector quantizer [25]. Overall bit rate in

b/s is calculated by multiplication of ‘‘total number of fil-

ters at the bottleneck’’ times, ‘‘dimension of source’’ times,

‘‘number of bits per sample for the source’’ times ‘‘update

rate necessary per second’’. In order to reduce the bit rate

necessary to transmit speech over DeepVoCoder, one can

reduce the number of filters at the bottleneck, increase the

number of poolings in order to reduce the dimension of the

source or spent less bits during quantization per sample for

the source. The product is updated every 32 ms, which means

it is multiplied by 31.25 (8000/256), in order to get the overall

bit rate in bits/s. Reducing any of these parameters will also

result with a reduced speech quality.

D. QUALITY

Quality is rather the result than a parameter. Input frame

size, CNN encoder and decoder topology determines the

quality of the synthesized speech signal. Major issue is at

the bottleneck, i.e. the last convolutional layer of the encoder

network. Total number of filters at the bottleneck and the

number of layers in order to reach to the bottleneck are

extremely important. It is also important to measure the qual-

ity in objective terms. Perception of voice by humans is still

an ongoing discussion and active research field [27]. CNN

decoder output, i.e. synthesized speech, is configured to be

exactly the same with the CNN encoder input, i.e. original

waveform. Hence, DeepVoCoder in its proposed form acts

as a waveform coder and therefore PESQ [28] (perceptual

evaluation of speech quality) to mimic MOS (mean opinion

score) is an acceptable metric in order to present the quality.

IV. RESULTS OF THE EXPERIMENTS

In order to evaluate the performance of the proposed CNN

encoder, we conducted some experiments mainly with two

different settings. In all experiments we use the same set of

test speech frames, which is selected randomly from Vox

Forge dataset that are not included in the training process,

to assess the quality of the encoding.

In our experiments, we fixed the inception model, i.e. the

topology of the CNNs. Two different settings were deter-

mined by the input frame sizes of 256 and 128 samples,

i.e. 32 and 16ms, respectively. In the initial phase, parameters

are not quantized in order to measure the figure of merit

of the model itself. Since the topology and therefore the

number of layers is exactly the same, the output of the CNN

encoder are 4 and 2 samples for 32 and 16 ms, respectively.

Of course, in the latter case they need to be updated twice

more frequently, that is 62.5 times/s, instead of 31.25 times/s.

Table 2 provides some common parameters for the

proposed DeepVocoder versus well knowns codecs for

TABLE 2. Codec parameters.
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TABLE 3. Run time comparison.

performance comparison. It is possible to observe that Deep-

Vocoder model, before quantization, has the potential to pro-

vide comparable speech quality with Speex at 4.8 kb/s and

can run at comparable delays as low as G.729. Regarding the

complexity, it is difficult to give execution times as Deep-

Vocoder runs on GPU. Traditional speech coding algorithms

however, run on CPU. Therefore, we limit Keras library to

use single CPU for a fair comparison in a non-optimized

manner. In addition, we include other possible setups in

our results to provide a broader picture of the performance.

Table 3 gives an overview of run time for best performing

DeepVocoder_32 ms and freely available Speex vocoder.

These values are obtained with a mean and standard devia-

tion, after 1,000 runs, for full duplex operation, i.e. the exe-

cution times involve both encoding and decoding. It should

be also noted that measurement overhead becomes unreli-

able for values below 1 ms. It is however, evident from

Table 3 that the proposed DeepVocoder runs in real-time,

even under constraints, if encoding and decoding are allowed

on different CPUs (or GPU). Moreover, if DeepVocoder runs

on 1,875 frames, that consists of a series of bulk 60 seconds

of speech, slight advantages are observed in Table 3.

If the environment however is suitable, DeepVocoder can

be massively parallelized, i.e tensor operations on convolu-

tional neural networks can run much faster on GPU. This

leads to vast gains in computing performance measured as

707±7.15 ms (more than 80 times faster than single CPU,

60 seconds). These values are obtained from the computer

equipped with:

• CPU AMD Ryzen 7 2700X (8C/16T) @ 3.7 GHz,

• GPU nVidia Geforce RTX 2080 Ti @ 1.755 GHz.

Table 4 provides the bit rates of the model after quanti-

zation. Quantization is done with an optimum vector quan-

tizer [25]. It is possible to observe that 32 ms frames provide

better quality at the same bit rate due to two reasons. The

first reason stems from the model that it is possible to remove

redundancy more efficiently over longer frames. The second

reason stems from quantization efficiency as larger dimen-

sions of a vector with correlated values are easier to quantize.

We have employed MIT’s former Media Lab’s Music, Mind

and Machine group’s SQAM (Sound Quality Assessment

Material) database [29] as our test files. These files include

native male and female speakers of English, French and Ger-

man. There are four sets of files provided as supplementary

material. The first set of files are original, clean speech for

all samples of male and female speakers for three languages.

SQAM database is stereo and CD quality. Therefore, all files

TABLE 4. Bit allocation table for the DeepVocoder parameters.

are first converted to mono and then converted to narrow

band speech. For the second set of files, samples are modeled

with DeepVocoder with 20 filters, where each filter has four

dimensional coefficients for the bottleneck. Themodel output

is then quantized at 6.25 kb/s (2.5 bits/coefficient) as shown

in Table 4 for the third set of files. The final speech sample

set is the output of the Speex vocoder operating at 4.8 kb/s

for subjective comparison. Speex is a VBR (variable bit rate)

codec where 4.8 kb/s stands for the average bit rate, whereas

DeepVocoder is CBR (constant bit rate) and therefore bit rate

is always exactly 200 bits/32 ms frame.

V. CONCLUSION & FUTURE WORK

The major contribution of this paper is the use of two convo-

lutional neural networks (CNN) for compression and coding

of voice for the first time in literature. We propose an end-

to-end solution which means input speech is in time domain

and represented as raw speech waveform. The encoding does

not require any explicit extraction of parameters, i.e. acoustic

features; the output is the reconstructed speech waveform.

The process also does not require any conversions such as

LSF. In last several decades, many improvements have been

made on traditional speech codecs by many research groups.

Over the course of time, they become so complex that opti-

mization and fine tuning becomes increasinglymore difficult.

Bit allocation table given for the DeepVocoder in Table 4,

however is extremely simple, straightforward and flexible.

It is possible to change the number of filters at the bottleneck

and/or assign a different number of bits during quantization

in order to define the overall bit rate. Speech is synthesized

by the CNN decoder. The decoded speech is always stable

and quality increases in a graceful manner by increasing

the frame size (delay), complexity (number of parameters

for the CNN) and bit rate (number of samples used at the

encoder bottleneck and/or number of bits used to quantize

these samples) in an extremely well behaving and flexible

manner. Although trained with limited number of speech

data, without applying any manual preprocessing of the input

samples or post processing of the output samples, the pro-

posed networks encode raw speech samples in comparable

performances with the existing, well known codecs. This

experimental work depicts the potential of promising, flexible

deep learning-based architectures in signal coding domain
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with different input and/or DNN topologies to improve our

novel proposal.

REFERENCES

[1] T. Berger, Rate Distortion Theory: A Mathematical Basis for Data Com-

pression. Englewood Cliffs, NJ, USA: Prentice-Hall, 1971.

[2] B. S. Atal and M. R. Schroeder, ‘‘Adaptive predictive coding of speech

signals,’’ Bell Syst. Tech. J., vol. 49, no. 8, pp. 1973–1986, Oct. 1970.

[3] W. B. Kleijn, F. S. C. Lim, A. Luebs, J. Skoglund, F. Stimberg, Q. Wang,

and T. C. Walters, ‘‘Wavenet based low rate speech coding,’’ Dec. 2017,

arXiv:1712.01120. [Online]. Available: https://arxiv.org/abs/1712.01120

[4] F. Itakura, ‘‘Line spectrum representation of linear predictor coefficients

of speech signals,’’ J. Acoust. Soc. Amer., vol. 57, p. 535, Apr. 1975.

[5] P. Kroon, E. Deprettere, and R. Sluyter, ‘‘Regular-pulse excitation—A

novel approach to effective and efficient multipulse coding of speech,’’

IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP-34, no. 5,

pp. 1054–1063, Oct. 1986.

[6] M. Schroeder and B. Atal, ‘‘Code-excited linear prediction(CELP): High-

quality speech at very low bit rates,’’ in Proc. IEEE Int. Conf. Acoust.,

Speech, Signal Process., Tampa, FL, USA, Apr. 1985, pp. 937–940.

[7] R. McAulay and T. Quatieri, ‘‘Speech analysis/Synthesis based on a

sinusoidal representation,’’ IEEE Trans. Acoust., Speech, Signal Process.,

vol. ASSP-34, no. 4, pp. 744–754, Aug. 1986.

[8] D. W. Griffin and J. S. Lim, ‘‘Multiband excitation vocoder,’’ IEEE Trans.

Acoust., Speech, Signal Process., vol. ASSP-36, no. 8, pp. 1223–1235,

Aug. 1988.

[9] A. McCree, K. Truong, E. B. George, T. P. Barnwell, and V. Viswanathan,

‘‘A 2.4 kbit/s MELP coder candidate for the new U.S. Federal Standard,’’

in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. Conf., Atlanta,

GA, USA, vol. 1, 1996, pp. 200–203.

[10] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals,

A. Graves, N. Kalchbrenner, A. Senior, andK.Kavukcuoglu, ‘‘WaveNet: A

generative model for raw audio,’’ Sep. 2016, arXiv:1609.03499. [Online].

Available: https://arxiv.org/abs/1609.03499

[11] A. Tamamori, T. Hayashi, K. Kobayashi, K. Takeda, and T. Toda,

‘‘Speaker-dependent WaveNet vocoder,’’ in Proc. Interspeech, Aug. 2017,

pp. 1118–1122.

[12] D. Rowe. (2011).Codec 2- Open Source Speech Coding at 2400 Bits/S and

Below. [Online]. Available: http://www.tapr.org/pdf/DCC2011-Codec2-

VK5DGR.pdf

[13] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,

V. Vanhoucke, and A. Rabinovich, ‘‘Going deeper with convolutions,’’

in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015,

pp. 1–9.

[14] A. Karpathy and L. Fei-Fei, ‘‘Deep visual-semantic alignments for gen-

erating image descriptions,’’ in Proc. IEEE Conf. Comput. Vis. Pattern

Recognit., Jun. 2015, pp. 3128–3137.

[15] L. A. Lim and H. Y. Keles, ‘‘Foreground segmentation using convolutional

neural networks for multiscale feature encoding,’’ Pattern Recognit. Lett.,

v., vol. 112, pp. 256–262, Sep. 2018.

[16] O. Ronneberger, P. Fischer, and T. Brox, ‘‘U-net: Convolutional networks

for biomedical image segmentation,’’ in Proc. Int. Conf. Med. Image

Comput. Comput.-Assist. Intervent., 2015, pp. 234–241.

[17] R. Girshick, J. Donahue, T. Darrell, and J. Malik, ‘‘Rich feature hierarchies

for accurate object detection and semantic segmentation,’’ in Proc. CVPR,

Jun. 2014, pp. 580–587.

[18] N. Wang, S. Li, A. Gupta, and D.-Y. Yeung, ‘‘Transferring rich feature

hierarchies for robust visual tracking,’’ 2015, arXiv:1501.04587. [Online].

Available: https://arxiv.org/abs/1501.04587

[19] A. L. Maas, A. Y. Hannun, and A. Y. Ng, ‘‘Rectifier nonlinearities improve

neural network acoustic models,’’ in Proc. ICML, vol. 30, 2013, pp. 1–6.

[20] S. Ioffe and C. Szegedy, ‘‘Batch normalization: Accelerating deep network

training by reducing internal covariate shift,’’ 2015, arXiv:1502.03167.

[Online]. Available: https://arxiv.org/abs/1502.03167

[21] Vox Forge Open Source Speech Corpus. Accessed:May 10, 2019. [Online].

Available: http://www.voxforge.org

[22] Pulse Code Modulation of Voice Frequencies, document ITU-T G.711,

ITU, 1988.

[23] F. Chollet. (2015). Keras. [Online]. Available: https://keras.io

[24] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimiza-

tion,’’ Jan. 2017, arXiv:1412.6980. [Online]. Available: https://arxiv.

org/abs/1412.6980

[25] Y. Linde, A. Buzo, and R. Gray, ‘‘An algorithm for vector quantizer

design,’’ IEEE Trans. Commun., vol. COMM-28, no. 1, pp. 84–95,

Jan. 1980.

[26] Transmission Systems and Media, Digital Systems and Networks, docu-

ment ITU G 168, ITU, 2015.

[27] P. Pocta and J. Holub, ‘‘Predicting the quality of synthesized and natural

speech impaired by packet loss and coding using PESQ and P.563models,’’

Acta Acustica United Acustica, vol. 97, no. 5, pp. 852–868, Sep./Oct. 2011.

[28] Perceptual Evaluation of Speech Quality (PESQ): An Objective Method

for End-to-End Speech Quality Assessment of Narrow-Band Telephone

Networks and Speech Codecs, document ITU-T 862, 2001.

[29] MIT Former Media Lab, Music Mind and Machine Group, SQAM

(Sound Quality Assessment Material) Database. Accessed: May 10, 2019.

[Online]. Available: https://sound.media.mit.edu/resources/mpeg4/audio/

sqam/

HACER YALIM KELES was born in Ankara,

Turkey, in 1979. She received the B.S., M.S.,

and Ph.D. degrees in computer engineering from

Middle East Technical University, Turkey, in 2002,

2005, and 2010, respectively. Her Ph.D. The-

sis received the Thesis of the Year Award from

Prof. Dr. Mustafa Parlar Education and Research

Foundation, Middle East Technical University,

in 2010. From 2000 to 2007, she was a Researcher

with The Scientific and Technological Research

Council of Turkey (TUBITAK). During the years at TUBITAK, she primarily

involved in different pattern recognition problems using multimedia data

including audio and video. In 2010, she has received the Research and

Development Grant from the Ministry of Industry and Trade of Turkey, and

she has established a Research and Development Company. Her follow-up

Project SOYA was supported by TUBITAK, in 2011, and later received as

one of the ten best venture projects and it is selected to be sent to Silicon

Valley for investment opportunities. She is the first woman who took this

grant in Turkey. She has been an Assistant Professor with the Department of

Computer Engineering, AnkaraUniversity, since 2013. Her research interests

include predominantly in the areas of computer vision and machine learning,

particularly in deep learning. She is also interested in the optimization of

computational problems using GPUs.

JAN ROZHON was born in Ostrava, Czech

Republic, in 1986. He received the B.S., M.S.,

and Ph.D. degrees in telecommunications from the

VSB–Technical University of Ostrava, in 2008,

2010, and 2016, respectively, where he has been

an Assistant and an Assistant Professor with the

Department of Telecommunications, since 2014.

He has authored or coauthored over 50 research

papers indexed in Scopus database with all of them

focused on the field of telecommunications. His

research interests include the performance evaluation of telecommunication

infrastructure, speech and video quality measurement and evaluation, arti-

ficial intelligence applications in telecommunications, speech coding, and

software-defined networking.

75088 VOLUME 7, 2019



H. Y. Keles et al.: DeepVoCoder: CNN Model for Compression and Coding of Narrow Band Speech

H. GOKHAN ILK (M’00) was born in Ankara,

Turkey, in 1971. He received the B.Sc. degree from

Ankara University, Ankara, in 1993, the M.Sc.

degree in instrument design and applications from

the Institute of Science and Technology, Univer-

sity of Manchester, in 1994, and the Ph.D. degree

from the University of Manchester, Manchester,

U.K, in 1997. He is currently a Professor with

the Electrical and Electronics Engineering Depart-

ment, Ankara University, where he is currently on

sabbatical leave with IT4I VSB, Technical University of Ostrava (TUO).

His publications are in optical communications, digital speech processing

and coding, and hyperspectral image signal processing. His current research

interests include digital signal processing in networking, speech, image, and

video processing. He has a book in Turkish on Applied Signal Processing.

He is the Founder of the Ankara University Speech Processing Group and

shared Turkcell’s (biggest GSM operator in Turkey) Best Academic Study

Award, in 2007.

MIROSLAV VOZNAK (M’10–SM’16) received

the Ph.D. degree in telecommunications from

the Faculty of Electrical Engineering and Com-

puter Science, VSB–Technical University of

Ostrava, in 2002, and the Habilitation degree from

VSB–Technical University of Ostrava, in 2009.

He was an appointed Full Professor in electronics

and communication technologies, in 2017. He is

a member of numerous IEEE conference com-

mittees, and he has served as a Member of the

Editorial Board for several journals such as the Journal of Communications

or a Guest Editor of Wireless Personal Communications. His research

interests generally include on information and communications technology,

particularly on the quality of service and experience, network security,

wireless networks, and in the last couple years big data analytics in mobile

cellular networks.

VOLUME 7, 2019 75089


	INTRODUCTION
	THE METHOD
	ENCODER NETWORK CONFIGURATION
	DECODER NETWORK CONFIGURATION
	MODEL TRAINING
	QUANTIZATION

	DISCUSSION
	DELAY
	COMPLEXITY
	BIT RATE
	QUALITY

	RESULTS OF THE EXPERIMENTS
	CONCLUSION & FUTURE WORK
	REFERENCES
	Biographies
	HACER YALIM KELES
	JAN ROZHON
	H. GOKHAN ILK
	MIROSLAV VOZNAK


