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Abstract—Breakthroughs from the field of deep learning are
radically changing how sensor data are interpreted to extract
the high-level information needed by mobile apps. It is critical
that the gains in inference accuracy that deep models afford
become embedded in future generations of mobile apps. In this
work, we present the design and implementation of DeepX, a
software accelerator for deep learning execution. DeepX signif-
icantly lowers the device resources (viz. memory, computation,
energy) required by deep learning that currently act as a severe
bottleneck to mobile adoption. The foundation of DeepX is a
pair of resource control algorithms, designed for the inference
stage of deep learning, that: (1) decompose monolithic deep
model network architectures into unit-blocks of various types,
that are then more efficiently executed by heterogeneous local
device processors (e.g., GPUs, CPUs); and (2), perform principled
resource scaling that adjusts the architecture of deep models
to shape the overhead each unit-blocks introduces. Experiments
show, DeepX can allow even large-scale deep learning models to
execute efficiently on modern mobile processors and significantly
outperform existing solutions, such as cloud-based offloading.

I. INTRODUCTION

Today the most accurate and robust statistical models for

inferring many common user behaviors and context are built

on algorithms from deep learning [1] – an innovative area of

machine learning that is rapidly changing how noisy complex

data from the real world is modeled. The range of inference

tasks impacted by deep learning includes the recognition of:

faces [2], emotions [3], objects [4] and words [5]. However

surprisingly, even though such inferences are critical to many

mobile apps (e.g., assistants like Siri, or mHealth apps [42])

– very few of them have adopted deep learning techniques.

Mainstream mobile usage of deep learning is primarily

isolated to only to a few global-scale software companies (such

as Google and Microsoft), that have the resources to build

proprietary, and largely cloud powered systems (with limited

mobile computation), for specific high-value scenarios like

speech recognition [6]. One of the key reasons for this situation

is the shear complexity and associated heavy computation,

memory and energy demands of the deep learning models

themselves. For example, Deep Neural Networks [7] (DNNs)

and Convolutional Neural Networks [8] (CNNs) routinely

use networks containing thousands of interconnected units,

and total millions of parameters [2], [4]. As a result, the

majority of mobile sensor-based apps, both commercially and

academically, rely on classifiers with lower resource overhead

(such as Decision Trees and Gaussian Mixture Models [9]);

even when they are well known to be inferior to deep learning

techniques.

Existing approaches for mobile deep learning have con-

siderable drawbacks. Offloading inference execution to the

cloud is a natural solution, but is impractical for prolonged

periods (such as, augmented reality or cognitive assistance)

due wireless energy overhead. Furthermore, when network

conditions are poor cloud offloading, and therefore the app

itself, will be unavailable. Operating on local device CPUs

are feasible for some scenarios through handcrafted small

footprint DNNs [11], [12], [43]; but not only does this demand

a high degree of effort and skill, it is also infeasible for the

majority of existing deep learning models [2], [5], [4]. More

importantly, it is these complex models where we see the

transformative leaps in inference accuracy and robustness that

mobile apps desperately need.

The GPUs found in most mobile devices present an attrac-

tive potential solution, especially because they are well suited

to the type of computation common within deep models [13].

However, GPUs can consume mobile battery reserves at an

alarming rate (similar to the cost of the GPS, a notoriously

power hungry sensor). As a result, GPU-only solutions (just

like cloud offloading) are not suitable for apps that either

frequently use inference or continuously require it for long

periods.

In this paper, we take important strides towards removing

the barriers preventing deep learning from being broadly

adopted by mobile and wearable devices. Our central con-

tribution is DeepX – a software accelerator for deep learning

models run on mobile hardware. This accelerator dramatically

lowers resource overhead by leveraging a mix of heteroge-

neous processors (e.g., GPUs, LPUs) present, but seldom

utilized for sensor processing, in mobile SoCs. Each com-

putational unit provides distinct resource efficiencies when

executing different inference phases of deep models. DeepX

allows non-expert developers to exploit these benefits by

simply specifying a deep model to run. But beyond just using

various local processors, DeepX amplifies the advantages they

offer through two inference-time resource control algorithms,

namely: (1) Runtime Layer Compression (RLC) and (2) Deep

Architecture Decomposition (DAD). Through these runtime

algorithms, DeepX can automatically decompose a deep model

across available processors to maximize energy-efficiency and

execution time, within fluctuating mobile resource constraints

such as computation and memory. When necessary, resource



overhead is scaled through the novel application of SVD-

based layer compression methods to remove (primarily) any

redundancy from the decomposed model blocks. Importantly,

this enables low-power processors to execute even larger

fractions of the deep model due to the reduction in complexity.

As a result, DeepX enables otherwise impossible combinations

of low-power and high-power (such as GPUs) processors

to service complex deep learning models with acceptable

resource consumption levels. The contributions of this research

include:

∙ The first software-based deep learning accelerator that

makes such models practical on mobile class hardware,

without manual model-specific tuning.

∙ Two novel algorithms – namely, DAD and RLC – that offer

brand new forms of resource control and optimization for

deep learning on mobile platforms.

∙ A proof-of-concept prototype that validates our design. This

prototype also enables a broad evaluation, including com-

parisons to existing solutions using popular deep models.

II. BACKGROUND

We begin with a primer on deep learning methods, before

describing their relationship to mobile apps and highlighting

the opportunities that mobile SoCs offer.

Deep Neural Networks.

As shown in Figure 1, a series of fully-connected layers col-

lectively form a DNN architecture with each layer comprised

by a collection of units (or nodes). Raw data (e.g., audio,

images) initialize the values of the first layer (the input layer).

The output layer (the last layer) corresponds to inference

classes, with units capturing individual inference categories

(e.g., music or cat). Hidden layers are contained between

input and output layers. Collectively, they are responsible for

transforming the state of the input layer into the inference

classes captured in the last layer. Every unit contains an

activation function that determines how to calculate the units’s

own state based on units from the immediately previous layer.

The degree of influence of units between layers vary on a

pairwise basis determined by a weight value. Naturally, the

output of the unit also helps to determine the unit state in the

next layer.

Inference (i.e., classify a sensor input) is performed with

a DNN using a feed-forward algorithm that operates on each

segment of data (an image or audio frame) separately. The

algorithm begins at the input layer and progressively moves

forward layer by layer. At each layer feed-forward updates the

state of each unit one by one. This process terminates once

all units in the output layer are updated. The inferred class

corresponds to the output layer unit with the largest state.

Convolutional Neural Networks . An alternative formulation

of deep learning are CNNs. Primarily, they are used for

vision and image related tasks where are state-of-the-art [8],

although their usage is expanding. A CNN is often composed

of one or more convolutional layers, pooling or sub-sampling
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Fig. 1: Deep Neural Network

layers, and fully connected layers (with this final layer type

being equivalent to those used in DNNs). The basic idea

in CNN models is to extract simple features from the high

resolution input image (2D data) and then converting them

into more complex features at much coarser resolutions at

the higher layers. This is achieved by first applying various

convolutional filters (with small kernel width) to capture local

data properties. Next follow max/min pooling layers causing

extracted features to be invariant to translations, this also acts

as a form of dimensionality reduction. Often before applying

the pooling, sigmoidal non-linearity and biases are added.

Inference under a CNN proceeds very similarly to that of a

DNN. Again, inference operates only on a single segment of

data at a time. Typically sensor data is first vectorized into two

dimensions (a natural representation for images). Next, these

these data are provided to convolutional layers at the head of

the model architecture. The net effect of convolution layers is

to pre-process the data operating as a series of patches before

arriving at the fully connected feed-forward layers within the

CNN. Inference then proceeds exactly as previously described

for DNNs until ultimately a classification is reached.

Mobile Sensing Apps. Although they come in a variety

of forms and target a wide range of scenarios, the unifying

element between mobile sensing apps is they all involve the

collection and interpretation of sensor data. To accomplish

this they embed machine learning algorithms into their app

designs. DeepX is designed to be used as a black-box by

developers of these mobile apps and provide a replacement

inference execution environment for any deep learning model

they adopt. A key dimension to this problem is the frequency at

which sensor data is collected and processed; sensor apps that

continuously interpret data (e.g., those targeting life-logging or

mHealth) present the most challenging scenario as they may

perform inference multiple times a minute; and therefore per-

inference resource usage must be small if the app is to have

good battery life. Apps that sense less continuously on the

other hand can afford higher per inference costs. However,

deep models need resource optimization before they can even

execute on a mobile platform [43]; many deep models have

memory requirements that are too high for a mobile SoC to

support. Similarly, execution times can easily exceed limits

that are accepted to an app (e.g., 30 seconds), presenting a

problem even if the inference is sporadically activated by the

user throughout the day. One potential solution we propose in

this paper is runtime compression of fully connected deep ar-

chitecture layers to reduce memory requirements and inference

times (see §III-A).

New Processors Emerging on Mobile SoCs. As the SoCs



in mobile devices evolve they are squeezing in an increasingly

wide range of different computational units (GPUs, low-power

CPU cores, multi-core CPUs). Even the Android-based LG G

Watch R [16] includes a Snapdragon 400 [17] that contains a

pairing of DSP and a dual-core CPU. Each processor presents

its own resource profile when performing different types of

computation. This creates different trade-offs for them to

execute portions of a deep model architecture, depending on

layer type or other characteristic. This diversity is relatively

recent for mobile devices and we propose a layer-wise parti-

tioning approach followed by solving an optimization equation

(see §V-A) to decide how this heterogeneity should be best

leveraged under various runtime conditions, e.g., instantaneous

processor loads and memory availabilities. In this work, we

explore this critical question facing the mobile computing

community and explore within it an important aspect, namely:

Can the readily available heterogeneity in mobile SoCs over-

come the daunting resource barriers that currently prevent

deep learning from being adopted in mobile sensing apps? In

the next section, we present our answer.

III. DEEPX DESIGN

Starting in this section, and spanning the three that follow, we

detail DeepX design, algorithms and prototype.

A. Design Principles

We first highlight the key issues underpinning our design.

∙ Runtime Optimization: Various methods for optimizing

deep learning models prior to execution [18], [19], [21]

while useful, are insufficient. Because mobile resources

(especially network connectivity) are unpredictable, even if

a model has been modified to lower resource consumption,

there is always the need for runtime changes. Without

runtime adaption, pre-facto model changes cause resources

under-utilization at times of resource scarcity, and visa

versa.

∙ Do Not Ignore Low-power Processors: Matching the

high computational demands of deep learning inference with

high performance GPUs is a natural solution. It is also a

mistake. Low-power processors (such as LPUs) can be very

efficient at common inference calculations, and because of

their energy efficiency can be better choices than GPUs for

smaller scale DNNs. Moreover, by combining low and high

energy processors, larger models can be executed still within

execution time constraints, but at a reduced energy budget

than high energy processors alone.

∙ Broad Deep Learning Support: The success of deep

learning has resulted in thousands of model designs for

many inference tasks. A natural narrow waist of com-

patibility is to support both CNNs and DNNs, the two

most popular deep learning algorithms today; doing so

is sufficient to run thousands of existing deep models.

However, other deep model varieties, such as RNNs that

include sequential structure, are not currently supported.

∙ Principled Scaling of Model Resources: Adopting mobile

techniques already used to manage the system resources

of shallow models, such as personalization [22] or context

adaption [23] is attractive. But these techniques, not built

for deep learning, run the risk of damaging a deep model.

Instead systems should build upon principled deep learning

specific techniques (e.g., [18], [19], [21]).

B. Algorithms

DeepX aims to radically reduce mobile resource use (viz.

memory, computation and energy), in addition to the execution

time, of performing inference with large-scale deep learning

models by exploiting a mix of network-based computation and

heterogeneous local processors. Towards this goal, we propose

two novel techniques:

∙ Runtime Layer Compression (RLC): A building block

to optimizing mobile resource usage for deep learning is an

ability to shape and control them. But existing approaches,

such as those of model compression, focus on the training

phase of deep learning models, rather than the inference.

RLC provides runtime control of the memory and com-

putation (along with energy as a side-effect) consumed

during the inference phase by extending model compression

principles. To provide error protection, the design seeks

more conservative opportunities in redundant aspects of

model representation, rather than truly simplify the model.

Furthermore, by focusing on the layer level (instead of

whole model), changes to a deep learning model are isolated

to only where they are required. The design of RLC ad-

dresses significant obstacles such as: low overhead operation

suitable for runtime use, the need to retrain, and the need for

local test datasets to assess the impact of model architecture

changes.

∙ Deep Architecture Decomposition (DAD): A typical deep

model is comprised of an architecture of many layers and

thousands of units. DAD efficiently identifies unit-blocks

of this architecture and creates a “decomposition plan”

that allocates blocks to local and remote processors; such

plans maximize resource utilization and seek to satisfy user

performance goals. Existing cloud offloading algorithms can

not identify the best optimization opportunities as they lack

an understanding of deep learning algorithms. Distributed

deep learning frameworks [13] focus on the training of

algorithms and do not mix consideration for remote com-

putation and local processors, that for example, operate

at very distinct time-scales. DAD overcomes challenges

such as a potentially prohibitive search space and inference

and considering hardware heterogeneity and de- and re-

composition overhead.

Through the combination of these two techniques, DeepX per-

forms inference across a standard deep learning model with an

innovative use of resources. Figure 2 provides a representative

example of DeepX inference in action. A deep model that

otherwise is too resource intensive for a mobile device to

support in isolation, is shown to be decomposed into two unit-
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Fig. 2: Representative example of model decomposition and com-
pression in operation under DeepX

blocks. The mobile CPU (or another constrained processor)

supports initial model layers that have been compacted to meet

its memory and computational limits. The remaining majority

of model layers are then completed by GPU computation.

Note, the model is compressed only where needed by resource

constraints, instead of compression being applied across all

layers. Without any compression, the CPU computation at the

mobile would not have been utilized and thus wasted, for

reasons as simple as a lack of local memory. Instead a better

balance of layer compression and energy is reached by less

compression and initial use of the CPU processor.

C. Proof-of-Concept

To demonstrate and evaluate the algorithms of RLC and DAD,

and the end-to-end operation of DeepX, we develop a proof-

of-concept system shown in Figure 3. We now briefly describe

components of this system and how they interact within the

context of a workflow.

Model Interpreter. Any already trained DNN or CNN model

can be provided to DeepX. Model specifications come from

developers who then incorporate the use of DeepX into the

logic of a mobile or wearable app. The specification of the

model describes not only the model (e.g., layer types, weight

matrices, activation functions) but also information needed

for inference to be performed, such as sensor type (e.g.,

microphone) and pre-processing steps that are applied to the

data.

Performance Targets. The default semantics of DeepX are

simple. It attempts to lower resources as much as possible

while respecting two bounding factors. First, a single inference

execution is never longer than 5 seconds, and second: the

reconstruction error of any model compression (described in

§IV-B) corresponds to around a 5% fall in model accuracy.

Developers are free to modify these two parameters, although

we expect in practice only the inference execution limit is

changed. For example, an inference in response to user input

may be set to 250 msec. as the user is waiting. In contrast,

other inferences used for long-term tracking of activity is less

time sensitive and so further resource savings can be sought.

Furthermore, we expect the reconstruction error to be seldom

changed as we have already set this to a very conservative

value to reduce the chance any noticeable accuracy drops

may occur. This behavior, and response to user inputs, is

determined by a threshold described in §V-A.

Inference Interface. Requests to perform an inference using

an earlier provided model are made via an API. A developer

then includes an API call within a mobile app. If an app,

for instance, wants to authenticate a user it can use a face

recognition model like DeepFace [2]. The model reports the

recognition result via the interface.

Execution Planner. Each time an inference is requested

DeepX determines a new plan for execution. This enables the

execution plan to be optimized for the current local device

and network resource conditions. Determining this plan is the

responsibility of DAD that works closely with RLC in this

process. DAD examines candidate decomposition plans of the

inference model and possible allocations of unit-blocks (i.e.,

subsections of the whole model) to all available processors.

RLC allows DAD to consider an even wider set of possible

execution plans by performing model compression to unit-

blocks. Not only does this allow different trade-offs to be

explored as the resources used by different blocks can be

adjusted; but it also expands the possible matching of unit-

blocks to processors, for example, by reducing the required

memory of a unit-blocks to a level a processor can support.

DAD also considers a variety of other factors, not only the

current performance objectives; but also processor migration

overhead and how certain layers are best computed by specific

processor types. Of course, to arrive at a final inference result

decomposed unit-blocks must have their results reassembled

(see §V-B). This is also the responsibility of the Planner.

Resource Availability. Selection of a decomposition plan is

strongly influenced by the current available resources. Via OS

hooks DeepX receives current resource usage levels before

performing an inference. But better decisions can be made

using accurate predictions of resource load, and planing for

predicted levels. Many approaches to resource prediction exist

(e.g., [24], [25]) and could be adopted without changes to the

design.

Resource Consumption. Decisions by DAD consider, of

course, the resource overhead of possible decomposition plans.

Doing this before execution requires estimation; this is done

through the use of a coarse prediction model. Because deep

learning inference is highly structured it is more predictable

than arbitrary code. Even more flexible examples of mobile

workloads have proven to be highly predicable [26]. DeepX

also verifies predictions, and update its prediction model, by

Execution Planner

Applications

Executing Deep Model

Resource Estimator

Resource Monitor

CPU GPU LPU …..

Inference Hosts

Model Interpreter Inference Interface

Fig. 3: DeepX Proof-of-Concept System
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observing actual costs after a plan is selected.

Inference Host. Supporting efficient inference operations

across many processor types force the use of many host

implementations that include platform specific optimizations.

Examples include: implementations conscious of processor ar-

chitecture (decisions over fixed or floating point, awareness of

cache lines) and optimized network communication (attention

to the payload).

IV. RUNTIME LAYER COMPRESSION

Through RLC, DeepX can scale the complexity of individual

model layers and in doing so it controls the memory computa-

tion and energy consumed by a layer during inference. DAD

(see §V) strongly relies on this capability when considering

possible decomposition plans for deep models; especially

when plans include local processors with otherwise insufficient

resources

Overview. There are two key components to RLC. First, a

dimensionality reduction process (§IV-A) used to lower the

computations required as one layer feeds into the next. Second,

an estimator (§IV-B) that regulates the level of dimensionality

reduction to be applied before model accuracy is effected

beyond the intent of the DeepX user. The input to RLC

is: (1) a pair of adjacent layers (� and � + 1) from the

model to be executed (as represented by weight matrices

that describe their interaction); and (2), an error limit used

by the estimator that describes the observed reconstruction

error after dimensionality reduction is applied. Both inputs are

provided by the DAD which also receives the output of RLC;

specifically a replacement for weight matrix between layer �

and �+1 that requires fewer parameters and less computation.

A. Layer Compression

Existing approaches (e.g., [18], [19], [21]) for simplifying a

model require it to be re-trained as part of the process. Re-

training is not practical during RLC because the training of

deep learning models is extremely resource intensive1 and

therefore is not feasible to perform every time the model

performs an inference (in order to optimize its execution

relative to available resource). We adopt the previously used

method of SVD-based layer compression (such as [21]) in our

design of RLC; however, our usage without training data, and

for the purposes of controlling the usage of system resources

is novel.

1 The training of deep architectures is orders of magnitude more resource
intensive than the inference stage DeepX seeks to improve.

As a result, RLC is designed based on layer-oriented model

reduction techniques specific to deep architectures that is

commonly used to speed-up model training, and that impor-

tantly does not require retraining. As illustrated in Figure 4,

RLC adapts this approaches to control resource consumption

at inference time. First the weight matrix ��+1
�×� for two

adjacent layers (� and �+1) with � and � units respectively

undergoes singular value decomposition (SVD). Under SVD

decomposition, the weight matrix can be represented as:

��+1
�×� = ��×� Σ�×� �

�
�×� (1)

Further, the weight matrix can be approximated by keeping �

biggest singular values, i.e.,:

�̂�+1
�×� = ��×� Σ�×� �

�
�×� (2)

�̂�+1
�×� = ��×� 	

�
�×� (3)

Next, the weight matrix ��+1
�×� is replaced by the product

of new matrices ��×� and 	�
�×� , which is achieved by

introducing a new layer �′ with � ≪ �,� units between layer

� and �+1. Because � and �+1 units are fully connected, the

introduction of �′ causes the number of pairwise calculations

and weight parameters to fall dramatically – from �� to

(�+ �)× �, this in turn translates into both a lower memory

requirements and lower computational load. An overview of

the SVD-based compression of a deep architecture layer is

given in Figure 4. Although SVD is often used by other

training-time model compression approaches, our core novelty

is in the use of this technique to: (1) dynamically scale

resources according to availability, and (2) develop a practical

version of this technique that can be applied at runtime (and

not requiring, for instance, training data to be available).

Prior empirical and theoretical results support the RLC de-

sign in two important ways. First, even though the architecture

of the model is changed the impact on downstream layers,

trained assuming the original architecture, does not typically

result in large increases in error. Thus, if the product of ��×�

and 	�
�×� matrices accurately approximates ��×�, then the

functional property of the original model stays similar. Second,

in fact considerable amount of compression are possible, if

carefully applied to certain layers, before significant accuracy

declines are observed (under DeepX the degree of compression

is cautiously applied by the DAD search algorithm detailed

in §V-A). One reason for this is that model representations

produced by training processes do not always produce the most

compact representation.

B. Redundancy Estimation

Conventionally, the degree of compression to be applied is

determined by running a set of off-line experiments using test

data that can measure the impact on the overall accuracy.

DeepX can not use this approach because analysis over

test data would introduce too much overhead and require

a local device to maintain large multi-GB test datasets for

this purpose. RLC approaches this problem by proposing an

estimator, ℰ , designed specifically to recognize redundancy in



a layer representation. The general problem of determining the

relationship of model accuracy to the amount of compression

applied at different layers within a model, in absence of test

data, is very difficult. But by instead focusing on redundancy

that corresponds to small amount of accuracy loss, the problem

is made significantly easier.

The estimator ℰ computes the reconstruction error for

approximating ��+1
�×� with the product ��×� ⋅ 	�

�×� (see

Equation 3). More specifically:

ℰ(��+1
�×�, �̂

�+1
�×�) =

√

∑�

�=1 ∣∣�� − �̂�∣∣22
�

, (4)

where, �� ∈ ��. Additionally, as the compression can be

applied to various fully-connected layers of the deep ar-

chitecture, we compute the overall reconstruction error by

summing all estimated ℰ across modified layers. Without the

test dataset, the overall reconstruction error thus computed,

provides a simple metric for measuring the deviation in model

functionality. Although, overall accumulated reconstruction

error (across multiple layers) follows a non-linear relationship

on the effect of model performance, in our experiments we

will show that small value of the reconstruction error indicates

good recognition performance of the modified model.

However, users of DeepX can specify directly an upper

bound as to an acceptable parameter value, or this can be done

indirectly for them through loose translation of increases in

error into a threshold provided to the estimator. Regulating

the amount of compression applied to a layer in this way

means that RLC is conservative in how much is applied. This

is consistent with the design of DeepX in that the executed

deep model does not deviate significantly in accuracy.

V. DEEP ARCHITECTURE DECOMPOSITION

Large complex deep models are decomposed by DAD into

unit-blocks that are assigned to the available local and remote

processors. This allows DeepX to increase the utilization of

the full range of resources available, leading to significant

improvements in energy efficiency and execution latency at

inference time.

Overview. DAD spans a pair of components: Decomposition

Search (§V-A) and Recomposition Inference (§V-B). The first

component aims to efficiently consider a range of possible

decomposition plans of the deep architecture, each is assessed

in terms of estimated performance (e.g., energy usage, memory

requirements) relative to the provided DeepX user goals. RLC

expands the search space of DAD through compression of

layers within candidate plans. The second component performs

inference, and arrives at a model result (e.g., classification),

by recomposing the decomposed execution of model unit-

blocks that are allocated to separate local- and network-based

computational units. The inputs to DAD include: (1) the deep

model to be executed, (2) a set of performance goals (one or

more metrics from: energy, execution time, model error). The

output from DAD is ultimately the inference from the provided

model.

Algorithm 1 Decomposition Search

1: Input: (i) Model with � layers, (ii) ℰ�� (Allowed level of overall
approximation error), and (iii) �1, �2, . . . , �� (Energy footprint of all
available processors).

2: for all layer� ∈ Model do
3: layerType = getLayerType(layer�) ⊳ Identifying layer type based on

operations
4: if layerType == convolution or pooling then

5: BlockSize = extractFilteringBlocks()
6: else ⊳ Fully connected layers
7: BlockSize = extractFeedForwardBlocks()

8: for � = 1 to � do ⊳ Extracting parameters for all processors
9: 	� , 
� =getProcessorParameters(BlockSize, �� )

10: if layerType == Feed-forward then

11: for k=90,-10,10 do ⊳ Linear searching parameter space

12: ℰ =CompressSVD(�
��	
��
�×
 , �) ⊳ Estimating Reconstruction

Error
13: if ℰ < ℰ�� then
14: Save ��×� and ��

�×

15: else
16: break ⊳ Stop parameter searching

17: updateLayer(������, ��×�, ��
�×
)

18: applyOptimization(BlockSize, {	}��=1
, {
}��=1

) ⊳ using

Equation 5a

19: Assign blocks to processors as identified by the optimizations

A. Decomposition Search and Optimization

Ultimately, the decomposition plan reached by DAD must

reflect the currently available network- and device-based re-

sources, and therefore a new plan is computed each time a

model is executed. But due to the large number of units and

layers that comprise typical deep models, a large variety of

potential decompositions exist. Consequently, the search for

this plan must balance the speed and efficiency it identifies the

plan, along with the need to satisfy user performance goals.

Search. Algorithm 1 details the approach by DAD to cope

with these competing concerns. Three specific techniques are

employed, each narrow the search space by encoding an

understanding of the deep learning algorithms and how they

execute on within the resource limits presented by hardware.

First, the architecture of each deep learning model includes

a series of dependencies based on factors such as layer type,

which determines the units must be computed in series. This

limits groups of layers (Algorithm 1, line 2−7) and units that

can be packed together to maximize desirable properties like

parallel execution. Second, hardware resource limits dictate

if a unit-block of the model is viable or not (line 5 and 7).

For example, a collection of units and layers may require too

much memory than a particular processor can currently (or

is expected to) support; in such cases the candidate partition

and allocation can be ignored. Finally, levels of compression

(denoted by the parameter 
) is estimated by allowing to retain


% variance in the weight matrix by selecting top eigen-

values based on their cumulative distribution function (line

12). The resulting compression may be within the general

viability for DeepX (e.g., a drop in accuracy of 5% – not

considered excessive). Figure 5 illustrates an overview of

the decomposition scheme described above for computational

layers identified within a group.



Deep Architecture
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Fig. 5: Illustration of deep architecture decomposition. Different parts
of the model architecture are assigned to available computational
resources for runtime efficiency.

Optimization. We follow a layer wise partitioning approach

and decompose the overall computations needed to evaluate

the states of the nodes within a layer (e.g., �), given the states

of all the nodes in the previous layer (� − 1), into groups

of smaller computation tasks. This layer-wise decomposition

strategy allows us to consistently update states of nodes within

a deep architecture in a feed-forward fashion and improve

overall inference efficiency. In the following, we describe the

optimization approach in detail.

Unit-Block: Given a layer �, we define a unit-block as the

lowest number of computations needed to update the state

of a single node in that layer. Computations involved in

evaluating the state of a node in layer � is given by: ��
� =

�
(

∑

� �
�−1
� ⋅ ��� + ��

)

, where, ��� is the weight connecting

the �	ℎ node in layer � with the �	ℎ node in layer � − 1, ��
is the bias term and �(⋅) is the non-linear function. The total

number of unique blocks in a layer is the number of nodes 	

present in the layer. The decomposition task can be viewed

as identifying a suitable number of blocks and then assigning

them to an available resource.

Allocation: Formally, let � = {1, 2, ..., �} be the set of

processors available in the system, ��, ∀� ∈ � be the number

of blocks assigned to processor �, and �� be the load limit

of processor �. Further, let �� and �� denote the energy

and the time needed to compute a single block on processor

� respectively. The optimization problem, which minimizes

the overall energy consumption and execution time, can be

formulated as follows:

min. �

�
∑

�=1

���� + �max
�∈	

{����} (5a)

s.t.

�
∑

�=1

�� = 	

�� ≤ ��, ∀� ∈ �,

�� ≥ 0, �� ∈ �, ∀� ∈ �,

where � is the set of integers. Note that �, � ≥ 0 are the

weights that can be tuned to achieve any arbitrary trade-off

between energy and time. The inputs � , �� and �� are platform

specific, and we estimate them by running a large number of

experiments and taking the average.

We can transform (5a) to a Mixed Integer Linear Program

(MILP) by introducing an auxiliary variable �, replacing

max�∈	{����} by �, and adding the constraint ���� ≤ �,
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∀� ∈ � to the formulation, and solve the problem by invoking

any standard MILP solvers, such as CPLEX [27].

B. Recomposition Inference

Although, distributed forms of model training are common, it

is unconventional to attempt to decompose the execution of

inference across local and remote resources. a number of im-

plementation level optimizations are done after the deposition

plan is determined, the necessary model parameters and model

state are copied. For those components that can operate in

parallel are executed in parallel, e.g., convolution tasks. Others

wait until earlier dependencies are completed. To further save

energy, DeepX powers down the state of the processors, if

possible.

VI. IMPLEMENTATION

We conclude our description of DeepX by detailing its imple-

mentation, and highlighting two prototype systems.

A. Prototype Platforms

The software described in §VI-B is implemented as two

prototypes, each targeting Qualcomm and Nvidia SoCs. Before

describing this software, we first provide details of each SoC;

while some components are written differently for each SoC

processor, in all cases components remain logically equivalent.

Qualcomm Snapdragon 800 SoC. As one of the most

popular mobile SoCs, the Snapdragon 800 (Figure 7a) is

already present in many phones (e.g., Nexus 5, Nokia Lumia

1520 and 930). As shown in Figure 6a, this SoC contains

3 programmable processors: a Krait 4-core 2.3 GHz CPU, an

Adreno 330 GPU and the 680 MHz Hexagon DSP. To program

this SoC, we use Qualcomm’s Mobile Development Platform

that offers low-level DSP APIs within the Hexagon SDK.

Nvidia Tegra K1 SoC. Although not as popular as the

Snapdragon, the Tegra K1 (Figure 7b) provides extreme GPU



performance. The heart of this chip, as illustrated in Figure 6b,

is the Kepler 192-core GPU which is coupled with a 2.3Ghz 4-

core Cortex CPU and an extra low-power 5	ℎ core (LPC) (that

is designed for energy efficiency). The K1 SoC is used in the

Nexus 9, Google’s phone prototype within Project Ara [28],

and even high-end cars [29]. It is also used in IoT devices

like the June Oven [30]. Executing code on the LPC requires

the toggling of linux system calls, while access to the GPU is

available from CUDA drivers [10].

B. Prototype Components

We now detail prototype components. Our Tegra version is

written in Lua and C++, in contrast the Snapdragon prototype

replaces Java for Lua. Each prototype spans 7.1k and 4.8k

lines-of-code, respectively.

Model Interpreter. Any CNN or DNN is supported; a

model is described to the interpreter as a JSON encoding of

model architecture and parameters. This input also specifies

details like the input sensor, sampling rates and pre-processing

steps. Model file formats of deep learning toolkits, such as

Torch [31], are also accepted.

Inference APIs. Mobile apps at runtime interact with the

accelerator via a simple API. The two primary API calls are

for: (1) providing new input data (e.g., audio clip); and (2)

collecting inferences (e.g., recognized objects). Optional call

parameters set target execution time and reconstruction error

(recall §IV-B).

OS Interface. Because DeepX reacts to changes in system

resources (e.g., available memory, processor load), the accel-

erator needs to track these closely. This provided by a thin

wrapper inside DeepX that uses Android APIs (in the case

of the Snapdragon port) and exposed file-system bindings (for

the Tegra).

Execution Planner. As suggested by Figure 3, the Execu-

tion Planner is the hub of DeepX operation. It is invoked

when inference is required (either by API call, or due to

a pre-defined sampling rate). Given current system resource

conditions it manages and optimizes the execution of the

specified deep model against raw data from the sensor. As

a result, the implementation of this planner includes both

RLC and DAD, along with estimators for per-plan resource

usage. For RLC and DAD, we adopt well-known high-speed

(and portable) libraries for commonly occurring operations; for

example, SVD operations use SVDPACKC [20] and mixed

integer linear program solving is based on CPLEX [27].

Estimators of resources required by candidate plans based on

spline regressions performed with python libraries. Factors like

memory or computation time are predicted based on large-

grain deep model characteristics (number of layers and units,

type of layers); regressions are updated as models execute

and provide additional data, per processor energy profiling

(an offline step) allow execution time to be mapped to energy

consumption. We find techniques like [26] are relatively easily

adapted for this process.

Type Size Architecture

AlexNet CNN 60.9M c:5�; p:3‡; h:2★; n:{all 4096}†

SVHN CNN 313K c:2�; p:2‡; h:2★; n:{1600,128}†

SpeakerID DNN 1.8M h:2★; n:{all 1000}†

AudioScene DNN 1.7M h:2★; n:{all 1000}†
�convolution layers; ‡pooling layers; ★hidden layers; †hidden nodes

TABLE I: Representative Deep Models

Inference Host. We implement 5 different inference hosts,

2 for the Qualcomm (viz. CPU, DSP) and 3 for the Nvida

(viz. CPU, GPU, LPC). Each host is customized for the

specific processor, given its limitations (such as memory)

and strengths (e.g., instruction set, or architectural aspects

for efficient deep layer/unit calculations). Code also carefully

considers cache/memory block size when deciding how to

chunk data processing operations.

VII. EVALUATION

In this section through a comprehensive set of experiments,

we examine the benefits and design choices of DeepX.

A. Methodology

The following setup is general to all the experiments we per-

form. For those experiments that alter this setup we discuss this

at the point of presenting results. Unless otherwise stated the

energy and latency measurements reported are for performing

a single inference. In other words, recognizing the objects in a

single image, or classifying a single audio clip. Where we refer

to the cloud we use average WiFi performance of 5Mbps and

strong signal strength (unless otherwise stated). No resources

used by the cloud are considered, but all device side data

processing costs are included (such as inference computation,

and network transmission); note, sensor sampling costs are not

reflected in any evaluation.

Representative Workloads. We use in total four deep

learning models, described in Table I. One of these is a

large-scale model having over 60.9M parameters, two models

are moderately large, respectively having 1.8M and 1.7M

parameters. These models were originally conceived to run

on the cloud. We use one CNN and two DNNs of this type.

We also test a relatively small-scale CNN model with 313K

parameters to test performance improvements of models under

DeepX.

AlexNet. Our first large-scale model – AlexNet (CNN) per-

forms object recognition [4] and supports more than 1,000

object classes (e.g., dog, car). It is the most complex model

studied (60.9M parameters). In 2012, it offered state-of-the-art

levels of accuracy for well-known datasets like ImageNet.

SpeakerID. For our first moderately learge-scale model, we

implement a 2-hidden layer (each comprising of 1000 nodes)

DNN and train to identify the speakers among 106 participants

(45 male and 61 female) from text-independent audio signals

as provided in the Automatic Speaker Verification Spoofing

and Countermeasures Challenge Dataset [39]. This speech

recognition model is designed to be run continuously and has

more than 1.8M nodes.



SVHN. Our first smaller scale model [32] is a CNN that is

designed to read images of house numbers captured in natural

settings. SVHN has been used to recognize such numbers from

Google Streetview images.

AudioScene. Our second moderately large-scale model fol-

lows similar architecture as in the speaker identification task

(2-hidden layer DNN) and we train the model to identify

among 19 different ambient audio environments. Examples of

the audio environment includes ‘busy street’, ‘plane’, ‘bus’,

‘cafe’, ‘student hall’ and ‘restaurant’. This dataset is publicly

available [40] and contains over 1500 minutes of audio scenes.

This audio recognition model has over 1.7M nodes.

Baselines. We report comparisons approaches that include

those that are conventional (e.g., use of the CPU only and

use of cloud offloading) and rare (e.g., directly using the

DSP, LPU, GPU on mobile SoCs). When we report results

using the cloud, GPU, LPU, DSP or CPU then these do

not involve any other computational units. For some detailed

results (such as Figure 8, we also report various cloud partition

splits (i.e., a fraction of the computation is done locally on

the CPU, with the remainder on the cloud) to indicate the

possible trade-offs in execution and energy in relation to

those that DeepX enables. Cloud results consider of course

the networking energy and latency of transmitting either raw

sensor data or intermediate model state information (in the

case of inference being partitioned).

In comparison to these baselines, DeepX is free to use any

supported unit, and has constrained use of RLC; specifically

we only set ℰ�� to allow expected accuracy drops of < 5%.

To validate the accuracy drop, we use the original datasets

used to train the respective models and run a large number of

offline experiments with varying parametric settings used for

RLC and DAD (See Algorithm 1). We empirically validate

that this expectation is met, and in no case find a drop greater

than 5%. We note however, that this threshold of 5% that we

use in this paper is somewhat arbitrary and the actual range of

importance will be highly application dependent. Thus it is a

tunable parameter of the system, and within our evaluation

we provide examples of how changing this alters resource

consumption (such as in Figure 9).

B. Energy and Execution Time Benefits

Table II summarizes the improvements to energy efficiency

we observe when using DeepX to execute each deep model.

Each table reports energy efficiency in terms of how many

multiples of additional energy are consumed if executing each

model on any of the available processor within the target

SoCs (Tegra or Snapdragon). For example, when SpeakerID

is running on the Snapdragon it will use a factor of 8.9×
(given within parentheses) more energy if executed using

the cloud than under DeepX. These tables are calculated

assuming no additional background load on any processor, and

with multiple execution time requirements set (viz. 100, 500

and 2000 msec.) – average values are reported. Across all

model and processor combinations, the mean energy benefit

CPU DSP Cloud

(only) (mJ) (only) (mJ) (only) (mJ)

AlexNet 933.5 (2.1×) – 4978.4 (11.2×)

SVHN 230.9 (2.6×) 142.1 (1.6×) 1101.1 (12.4×)

SpeakerID 113.4 (8.1×) 103.6 (7.4×) 124.2 (8.9×)

AudioScene 110.3 (8.0×) 99.3(7.2×) 122.7 (8.9×)

(a) Qualcomm Snapdragon 800 SoC

CPU LPU GPU Cloud

(only) (mJ) (only) (mJ) (only) (mJ) (only) (mJ)

AlexNet 1681.3 (13.2×) – 234.1 (1.8×) 2820 (22.1×)

SVHN 479.6 (4.3×) – 167.3 (1.5×) 1382.9 (12.4×)

SpeakerID 7.1 (7.8×) 109.1 (120.4×) 1.3 (1.4×) 26.9 (29.7×)

AudioScene 6.7 (7.6×) 106.1 (120.3×) 1.2 (1.4×) 26.1 (29.4×)

(b) Nvidia Tegra K1 SoC

TABLE II: DeepX needs only a fraction of the energy required by
methods that do not decompose a model across available processors,
and do not remove redundancy. Latency gains are also present, but
we emphasize here benefits to energy consumption. (Average reported
energy gains assuming maximum execution time set to 100, 500, and
2000 msec.)

of DeepX is 7.12× (Snapdragon) and 26.7× (Tegra) relative

to each baseline. We note that in these tables some individual

processors are unable to execute specific deep models (such

as AlexNet on the DSP of snapdragon), we find this is either

(1) due to a lack of memory on the processor along with the

fact none of the baseline have the ability to the reduce model

size like DeepX; or (2) they are unable to match any execution

time requirement.

Figure 8 provides a more detailed view of the improved

resource trade-offs that DeepX can enable, when 500 msec.

execution time (only) is considered for two models: AlexNet

and SpeakerID. In each case, DeepX provides the lowest

energy and is always under the time requirement (500 msec).

Additionally, we compare against an expanded set of baselines

that include a range of cloud partitioning of the model. While

running the model execution using various processors, often

they are unable to meet the execution time requested, they

only provide best effort. In the case of cloud offloading, a

combination of cloud splits are shown, which further highlight

that the energy/latency trade-offs are much poorer than DeepX.

We do not show these cloud trade-offs in the prior Table II to

keep the comparison clear.

Contrary to running all the computations on a specific

processor, DeepX allows for alleviating high memory require-

ments for deep models by partitioning of layers and then

utilizing unused hardware like the DSP (without requiring any

model compression). For example 93% of the total memory

needed for AlexNet is concentrated only in two fully con-

nected layers [44]. Model partitioning employed by DeepX

allows us to overcome the need for huge memory before

inference can be started. Moreover, given a relatively large

execution time (e.g., 500 m sec) requirement, high energy-

demanding processors, e.g., GPU, can be put to sleep sooner

and one or more low power cores can be utilized to compute

the residual task to minimize the overall power consumption.



(a) AlexNet – Snapdragon (b) AlexNet – Tegra (c) SpeakerID – Snapdragon

Fig. 8: Benefits to both execution time and energy consumption are observed under DeepX against a variety of baseline runtime strategies.
AlexNet is shown running on both platforms and SpeakerID is shown to run on snapdragon with a requested execution time of 500 msec.

Fig. 9: Memory requirement of AlexNet under DeepX

C. Safely Identifying and Leveraging Redundancy

The objective of RLC is to identify redundancy within deep

models to be exploited, allowing system resources to be

managed but without overly impacting accuracy. Table III

shows a key result. Our experimental setup seeks to constrain

accuracy loss to 5% or less (compared to the original model

before any changes are made). Here we show the result of

RLC being applied to each deep model we test. We find that

a large amount of model parameter reduction is possible, on

average > 75%, while no model suffers a drop in accuracy

of more than 4.9% (AlexNet). Importantly, RLC uses an

estimator threshold (ℰ , see §IV-B) for each model to limit

the accuracy drop. Here, e.g., we set ℰ to be 12 (RMSE) for

AlexNet, a value we find through empirical testing. However,

to understand the relationship between overall reconstruction

error and accuracy drop, in Figure 10 we summarize extensive

experimental results from all the four deep models for various

compression amounts. Interestingly, for all the models the

relationship between RMSE and accuracy drop is highly

non-linear. However, smaller RMSE values indicate smaller

accuracy drops for all the models. DeepX exploits this fact

while searching for better resource utilization (see Algorithm

1). Figure 10 also exhibits instances, where a high RMSE

also results in a small accuracy drop. Clearly, further theoret-

ical research is required to fully understand the relationship

between RMSE and accuracy drop. The current heuristic, i.e.,

minimizing RMSE with an empirically determined threshold,

allows developers to operate without requiring time consuming

re-training for models evaluated so far.

Figure 9 provides a detailed view for a single model

(AlexNet) of the same overall results presented in Table III.

We report results here for a single model running on the

Tegra hardware, but the trends we describe are seen in all

other deep models. Here we use RLC to examine how much

redundancy is identified when executing DeepX under varying

operating conditions, such as requests to execute the model

with faster or slower execution times or processor loads. De-

pending on these conditions RLC, in combination with DAD,

attempts to remove different amounts of redundancy. Figure 9

shows AlexNet can be compressed significantly allowing large

amounts of resources to be saved when necessary. Note, these

savings are discovered by DeepX on demand; in theory a

developer could apply ideas from RLC to find similar savings

for a specific set of resources. But a core idea of DeepX, is

for this to be done at runtime, and change a model requested

to be executed as little as possible while operating within the

resources available and the performance targets expressed.

Figure 10 also shows the impact of ℰ . A cluster of redun-

dancy results are shown that cause an accuracy loss greater

than 5%. However, these are only identified by RLC when the

estimator threshold is changed, and a few iterations performed.

All other results shown, that are consistently below the target

threshold, occur with the ℰ threshold set. This is another of

the core innovations of DeepX. Here we show it is possible

to limit the accuracy drop, and reduce the size of the model

significantly without datasets that are impractical to reside on

mobiles simply for performance tuning.

Existing approaches first apply an offline compression of

deep models using SVD, and then use the compressed model

for all inference tasks. This approach, however, does not allow

application developers to control the accuracy and energy

trade-offs. Depending on the application scenarios, developers

can accommodate a small drop in recognition accuracy (e.g.,

5%), when the resource gain is significant. Not only memory

benefits, smaller models also improve the overall execution

time and help to improve overall battery life. DeepX allows

accuracy and energy trade-offs by applying dynamic model

compressions using RLC under various user defined accuracy

requirements. The opportunity of resource trade-offs under

DeepX is also highlighted in Figure 9, which shows that the

requirement on recognition accuracy significantly influences

the memory foot print of the model. For example, in case of the



Relative Accuracy Memory
Loss (%) Reduction (%)

AlexNet 4.9 (77.5 to 72.6) 75.5 (233 MB to 57 MB)
SVHN 0.2 (83.9 to 83.7) 58.8 (16 MB to 7 MB)
SpeakerID 3.2 (93.7 to 90.5) 92.8 (28 MB to 2 MB)
AudioScene 4.3 (79.2 to 74.9) 77.8 (27 MB to 6 MB)

TABLE III: Model size reduction relative to accuracy loss, when
applying the estimator threshold. Large reductions are clearly possible
with only a small impact on accuracy. Note, for all deep models the
accuracy does not drop more than the targeted 5% due to the use of
the redundancy estimator.

Fig. 10: Loss in accuracy under RLC for varying estimator threshold
values for the four models. By altering the threshold, the impact on
accuracy can be limited as needed.

SpeakerID model, an allowance of 5% drop in accuracy runs

5.8 times faster (0.54 ms on Tegra) than the model allowing

only 1% drop (3.16 ms on Tegra). Thus DeepX can adjust

the model size dynamically based on the memory availability

and can be deployed to new hardware platforms with different

memory sizes without requiring system changes.

D. Decomposition and Assignment to Processors

The main objective of the decomposition and the assignment

operation is to divide the computational task into smaller

groups of blocks and assign them to the available processors,

such that the overall energy-consumption and latency remain

low. In the following we summarize the performances of

executing the optimization on both tegra and snapdragon while

running the AlexNet inference. The optimization equation

(Equation 5a) requires platform specific parameters for its

execution, which we compute by running experiments with a

different block size on each processor and then fitting a linear

model for generalizability. For the tegra this is done for: LPU,

CPU, GPU; for snapdragon this is done for DSP, CPU.

On tegra, the average runtime for the optimization solver

is around 14.1 ms per layer and 92.3 ms on snapdragon.

Note that, often the optimization solver does not need to run

repeatedly for each layer of the deep architecture, as often the

block size and processor loads remain similar (after evaluating

the state of all nodes in a layer). Thus the overall runtime of

the optimizer remains much smaller than the inference time

needed to evaluate the entire model architecture.

VIII. LIMITATIONS

Network Layout Optimization. Currently DeepX is appli-

cable to the widespread varieties of deep learning networks,

namely CNNs and DNNs, but not to others such as those cap-

turing temporal information. In addition, the observed perfor-

mance gains will vary depending on the network architecture

since some layer types (e.g., feed-forward vs. convolution)

benefit more than the others. Models that have been already

optimized for embedded scenarios (typically by hand, e.g.,

[11]) are not expected to experience significant gains from

RLC, although DAD is likely to still boost performance.

Changes in Resource Availability. DeepX performs per-

inference optimization across memory, energy and latency, but

we have not shown how it adapts to changes in the availability

of device resources (such as network connectivity or CPU

load) within the execution time frame. This is a limitation

in our evaluation and we plan to address it in future work.

Statically optimized models, as shown in [38], will perform

poorly when the assumptions about resources do not hold.

Novelty of SVD Compression. Although the SVD approach

to compressing layers in itself is not novel [21], we find

novel ways of applying the compression technique at runtime

for resource scaling and without the need for training data.

The latter extension is shown to work well empirically, but

more models and architectures need to be tested and a better

theoretical study is required to understand how much we can

compress before significant accuracy losses begin to emerge.

Resource Need Estimator. We use a simple model to estimate

how the candidate layout configurations will use energy,

memory, etc., and our initial findings suggest the model works

fairly well. However, a more rigorous approach to predicting

resource needs and adaptation to fluctuations is desirable.

Maximizing Hardware Usage. At the moment DeepX use

the GPU and CPU resources naı̈vely, without considering

the underlying hardware architecture. Targeted optimizations

that thoroughly make use of the hardware specifics would

complement our approach with even higher performance gains.

Deep Learning Hardware. Although, DeepX is not tested

on purpose built hardware for deep learning [41], [45], our

software approach to accelerating models in general should

apply in this case. However, the potential gains we see

in software may complement the produced hardware gains

resulting in both approaches amplifying each other’s benefits.

IX. RELATED WORK

Some of the strongest examples of successful deep learning

systems for mobile devices today come from industry. For

example, Google has enabled forms of its deep machine

translation models to run directly on a phone [36]; deep

learning has already transformed commercial mobile speech

recognition [37]. Technical details for these systems are usu-

ally sketchy. But these few examples rely on manual per-model

optimizations, provided by teams of people with high-levels

of expertise in deep learning and mobile devices. In contrast,



DeepX aims to allow any developer to use deep learning

methods and automatically lowers resource usage to levels that

are feasible for mobile devices.

Similarly, researchers have also demonstrated one-off opti-

mizations such as [33] that scaled down DNNs to run directly

on a DSP only, offering energy efficiency. Others also propose

deep models that are much smaller than normal and so can run

on phones [11], [12]. DeepX instead targets full-scale deep

models that otherwise only appear in cloud systems.

Hardware specialization is another promising direction for

deep learning optimization with many studies already un-

derway [41], [45]. However often these prototypes perform

a specific type of deep learning (such as a CNN) or only

certain types of deep model layer types (e.g., a convolution),

with remaining layers executed as normal. Furthermore, we

also expect DeepX will leverage specialist hardware as they

become more available.

Use of more general-purpose low-power processors [46]

have proven especially effective for continuous sensing types

of applications. Systems like SpeakerSense [47] or DSP.Ear

[48] apply application-level optimizations to balance the com-

putational workload between the main CPU and the assisting

co-processor. However, neither of these systems considers the

n-way division by DeepX (viz. CPU, GPU, LPU or DSP).

X. CONCLUSION

In this paper, we have presented the design, implementation

and evaluation of DeepX – a first-of-its-kind software ac-

celerator that offers forms of resource optimization that are

critical when using the best available learning algorithms,

namely deep learning models, that are notably absent from

mobile usage today. We believe our design and results will

promote much needed further research into sensor processing

and mobile machine learning inference. More importantly,

DeepX shows that the bleeding edge of machine learning –

as it currently manifests in deep learning – can actually run

on the latest mobile hardware, all with a reasonable energy

and latency performance.
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