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Abstract. One of the main tasks when creating and maintaining knowl-
edge bases is to validate facts and provide sources for them in order to
ensure correctness and traceability of the provided knowledge. So far, this
task is often addressed by human curators in a three-step process: issuing
appropriate keyword queries for the statement to check using standard
search engines, retrieving potentially relevant documents and screening
those documents for relevant content. The drawbacks of this process are
manifold. Most importantly, it is very time-consuming as the experts
have to carry out several search processes and must often read several
documents. In this article, we present DeFacto (Deep Fact Validation) –
an algorithm for validating facts by finding trustworthy sources for it on
the Web. DeFacto aims to provide an effective way of validating facts by
supplying the user with relevant excerpts of webpages as well as useful
additional information including a score for the confidence DeFacto has
in the correctness of the input fact.

1 Introduction

The past decades, in particular due to the rise of the World Wide Web, have
marked a change from an industrial society to an information and knowledge
society. Creating and managing knowledge successfully has been a key to success
in various communities worldwide. Therefore, the quality of knowledge is of high
importance. One aspect of knowledge quality is provenance. In particular, the
sources for facts should be well documented, since this provides several benefits
such as a better detection of errors, decisions based on the trustworthiness of
sources etc. While provenance is an important aspect of data quality [8], to date
only few knowledge bases actually provide provenance information. For instance,
less than 3% of the more than 607.7 million RDF documents indexed by Sindice1
contain metadata such such as creator, created, source, modified, contributor,
or provenance.2 This lack of provenance information makes the validation of the
facts in such knowledge bases utterly tedious. In addition, it hinders the adoption
of such data in business applications as the data is not trusted [8]. The main
1 http://www.sindice.com
2 Data retrieved on June 6, 2012.



contribution of this paper is the provision of a fact validation approach and tool
which can make use of one of the largest sources of information: the Web.

More specifically, our system DeFacto (Deep Fact Validation) implements
algorithms for validating statements, specifically RDF triples, by finding con-
firming sources for it on the web. It takes a statement as input (e.g., that shown
in listing 1) and then tries to find evidence for the validity of that statement
by searching for textual information in the web. In contrast to typical search
engines, it does not just search for textual occurrences of parts of the statement,
but tries to find webpages which contain the actual statement phrased in natural
language. It presents the user with a confidence score for the input statement as
well as a set of excerpts of relevant webpages, which allows the user to manually
judge the presented evidence.

DeFacto has two major use cases: (1) Given an existing true statement, it
can be used to find provenance information for it. For instance, the WikiData
project3 aims to create a collection of facts, in which sources should be pro-
vided for each fact. DeFacto could be used to achieve this task. (2) It can check
whether a statement is likely to be true, provide the user with a confidence score
in whether the statement is true and evidence for the score assigned to the state-
ment. Our main contributions are thus as follows: (1) An approach that allows
checking whether a webpage confirms a fact, i.e., an RDF triple, (2) an adap-
tation of existing approaches for determining indicators for trustworthiness of a
webpage, (3) an automated approach to enhancing knowledge bases with RDF
provenance data at triple level as well as (4) a running prototype of DeFacto,
the first system able to provide useful confidence values for an input RDF triple
given the Web as background text corpus.

The rest of this paper is structured as follows: Section 2 describes our gen-
eral approach and the system infrastructure. The next section describes how
we extended the BOA framework to enable it to detect facts contained in tex-
tual descriptions on webpages. In Section 4, we describe how we include the
trustworthiness of webpages into the DeFacto analysis. Section 5 combines the
previous chapters and describes the mathematical features we use to compute
the confidence for a particular input fact. We use those features to train different
classifiers in Section 6 and describe our evaluation results. Section 7 summarizes
related work. Finally, we conclude in Section 8 and give pointers to future work.

2 Approach

Input and Output: The DeFacto system consists of the components depicted in
Figure 1. The system takes an RDF triple as input and returns a confidence value
for this triple as well as possible evidence for the fact. The evidence consists of a
set of webpages, textual excerpts from those pages and meta-information on the
pages. The text excerpts and the associated meta information allow the user to
quickly get an overview over possible credible sources for the input statement: In-
stead of having to use search engines, browsing several webpages and looking for
3 http://meta.wikimedia.org/wiki/Wikidata
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Fig. 1. Overview of Deep Fact Validation.

relevant pieces of information, the user can more efficiently review the presented
information. Moreover, the system uses techniques which are adapted specifically
for fact validation instead of only having to rely on generic information retrieval
techniques of search engines.

Retrieving Webpages: The first task of the DeFacto system is to retrieve web-
pages which are relevant for the given task. The retrieval is carried out by is-
suing several queries to a regular search engine. These queries are computed
by verbalizing the RDF triple using natural-language patterns extracted by the
BOA framework4 [5, 4]. Section 3.2 describes how the search engine queries are
constructed. As a next step, the highest ranked webpages for each query are
retrieved. Those webpages are candidates for being sources for the input fact.
Both the search engine queries as well as the retrieval of webpages are executed
in parallel to keep the response time for users within a reasonable limit. Note
that usually this does not put a high load on particular web servers as webpages
are usually derived from several domains.

Evaluating Webpages: Once all webpages have been retrieved, they undergo sev-
eral further processing steps. First, plain text is extracted from each webpage
by removing most HTML markup. We can then apply our fact confirmation ap-
proach on this text, which is described in detail in Section 3. In essence, the algo-
rithm decides whether the web page contains a natural language formulation of
the input fact. This step distinguishes DeFacto from information retrieval meth-
ods. If no webpage confirms a fact according to DeFacto, then the system falls
back on light-weight NLP techniques and computes whether the webpage does at
least provide useful evidence. In addition to fact confirmation, the system com-
putes different indicators for the trustworthiness of a webpage (see Section 4).
These indicators are of central importance because a single trustworthy webpage
confirming a fact may be a more useful source than several webpages with low

4 http://boa.aksw.org



trustworthiness. The fact confirmation and the trustworthiness indicators of the
most relevant webpages are presented to the user.

Confidence Measurement: In addition to finding and displaying useful sources,
DeFacto also outputs a general confidence value for the input fact. This confi-
dence value ranges between 0% and 100% and serves as an indicator for the user:
Higher values indicate that the found sources appear to confirm the fact and can
be trusted. Low values mean that not much evidence for the fact could be found
on the Web and that the websites that do confirm the fact (if such exist) only
display low trustworthiness. The confidence measurement is based on Machine
Learning techniques and explained in detail in Sections 5 and 6. Naturally, De-
Facto is a (semi-)automatic approach: We do assume that users will not blindly
trust the system, but additionally analyze the provided evidence.

Using the LOD Cloud as Background Knowledge: As described above, DeFacto
relies primarily on natural language from several webpages as input. However,
in some cases, confirming facts for an input statement can be found in openly
available knowledge bases. Due to the fast growth of the LOD cloud, we expect
this source to become increasingly important in the future. In order to use this
additional evidence, DeFacto provides a component which searches for similar
statements in the LOD cloud. To achieve this, the system first finds similar re-
sources to the subject and object of the input triple, which is currently done via
the http://sameas.org service. In a second step, it retrieves all triples which
use the detected similar subject and object resources by dereferencing the corre-
sponding Linked Data URIs. Finally, the labels of subject, predicate and object
of all triples are retrieved. Those are then compared via string similarity tech-
niques to the input triple. Currently, the average trigram similarity of subject,
predicate and object of the triple is used. In this article, we focus on re-using
textual evidence and plan to carry out a more detailed evaluation of the LOD
as background knowledge in future work.

1 dbpedia -res:Jamaica_Inn_ %28 film %29 dbpedia -owl:director
2 dbpedia -res:Alfred_Hitchcock .

Listing 1. Input data for Defacto.

A prototype implementing the above steps is available at http://defacto.
aksw.org. It shows relevant webpages, text excerpts and five different rank-
ings per page. In the case, many possible sources for the statement were found,
which is why DeFacto displays a high confidence. The generated provenance out-
put can also be saved directly as RDF. For representing the provenance output,
we use the W3C provenance group5 vocabularies. The source code of both, the
DeFacto algorithms and user interface, are openly available6.

It should be noted that we decided not to check for negative evidence of facts
in DeFacto, since a) we considered this to be too error-prone and b) negative

5 http://www.w3.org/2011/prov/
6 https://github.com/AKSW/DeFacto



statements are much less frequent on the web. It is also noteworthy that DeFacto
is a self training system on two levels: For each fact, the user can confirm after
reviewing the possible sources whether he believes it is true. This is then added
to the training set and helps to improve the performance of DeFacto. The same
can be done for text excerpts of web pages: Users can confirm or reject whether
a given text excerpt actually does confirm a fact. Both machine learning parts
are explained in Sections 3 and 6.

3 BOA

The idea behind BOA is two-fold: first, it aims to be a framework that al-
lows extracting structured data from the Human Web by using Linked Data
as background knowledge. In addition, it provides a library of natural-language
patterns that allows to bridge the gap between structured and unstructured
data. The input for the BOA framework consists of a set of knowledge bases,
a text corpus (mostly extracted from the Web) and (optionally) a Wikipedia
dump7. When provided by a Wikipedia dump, the framework begins by gen-
erating surface forms for all entities in the source knowledge base. The surface
forms used by BOA are generated by using an extension of the method proposed
in [12]. For each predicate p found in the input knowledge sources, BOA carries
out a sentence-level statistical analysis of the co-occurrence of pairs of labels of
resources that are linked via p. BOA then uses a supervised machine-learning
approach to compute a score and rank patterns for each combination of cor-
pus and knowledge bases. These patterns allow generating a natural language
representation of the RDF triple that is to be checked.

3.1 Training BOA for DeFacto

In order to provide a high quality fact confirmation component, we trained BOA
specifically for this task. We began by selecting the top 60 most frequently
used object properties from the DBpedia [13, 10] ontology using the DBpedia
Live endpoint8. This query retrieves 7.750.362 triples and covers 78% of the
9.993.333 triples in DBpedia with owl:ObjectPropertys from the DBpedia names-
pace.9 Currently, we focus on object properties. Adequate support of datatype
properties requires an extension of the presented methods, which is planned in
future work. For each of those properties, we selected the top 10 BOA patterns
(if available) sorted according to the number of triples this pattern has been
learned from. This resulted in a list of 488 patterns which were evaluated by
all four authors. During this process, each pattern was labeled by two persons
independently. We judged a pattern as positive if it was not generic (e.g., “?D? ‘s
" ?R?” ) or specific enough (e.g., “?D? in the Italian region ?R?” ) and could be
7 http://dumps.wikimedia.org/
8 http://live.dbpedia.org/sparql
9 Properties like wikiPageExternalLink, wikiPageRedirects, wikiPageDisambiguates
and thumbnail have been excluded.



used to express the relation in natural text. The first group achieved a moderate
Cohen’s-Kappa value of 0.477 and the second group scored a good value of 0.626.
Every conflict was resolved by having the annotators agree on a single annota-
tion. The resulting annotations were use for a 10-fold cross-validation training
of BOA’s neural network. We achieved the maximum F-score of 0.732 with an
error threshold of 0.01 and a hidden layer size of 51 neurons.

3.2 Automatic Generation of Search Queries

The found BOA patterns are used for issuing queries to the search engine (see
Figure 1). Each search query contains the quoted label of the subject of the input
triple, a quoted and cleaned BOA pattern (we remove punctuation characters
which are not indexed be the search engine) and the quoted label of the object
of the input triple. We use a fixed number of the best scored BOA patterns
whose score was beyond a score threshold and retrieve the first n websites from
a web search engine. For our example from Listing 1, such a query is “Jamaican
Inn” AND “written and directed by” AND “Alfred Hitchcock”. Then, we crawl
each website and try to extract possible proofs for the input triple in parallel. A
possible proof for an input triple in our sense is an excerpt of a webpage, which
may confirm it. In the sequel, we just write proof instead of possible proof.

3.3 BOA and NLP Techniques for Fact Confirmation

To find proofs for a given input triple we make use of the surface forms introduced
in [12]. We select all surface forms for the subject and object of the input triple
and search for all occurrences of each combination of those labels in a website
w. If we find an occurrence with a token distance d(l(s), l(o)) (where l(x) is the
label of x) smaller then a given threshold we call this occurrence a proof for the
input triple. To remove noise from the found proofs we apply normalization by
regular expression filters which for example remove characters between brackets
and non alpha-numeric characters. Note that this normalization facilitates the
grouping of proofs by their occurrence. After extracting all proofs pi ∈ P(w) of
a website w we score each proof using a linear regression classifier. We trained a
classifier with the following input features for scoring a proof:

BOA Pattern: This is a Boolean features which is 1 if a BOA pattern is con-
tained in the normalized proof phrase.

BOA Score: If BOA patterns are found in the normalized proof phrase, then
the score of the highest score across the set of found patterns is written in
this feature. Else, this feature is set to 0.

Token Distance: This is the distance d(l(s), l(o)) between the two entity labels
which found the proof. We limit this distance to a maximum of 20 tokens.

Wordnet Expansion: We expand both the tokens of the normalized proof
phrase as well as all of the tokens of the BOA pattern with synsets from
Wordnet. Subsequently we apply the Jaccard-Similarity on the generated
expansions. This is basically a fuzzy match between the BOA pattern and
the proof phrase.



Table 1. Performance measures for several classifiers on the fact confirmation task
(AUC = area under the ROC curve, RMSE = root mean squared error).

P R F1 AUC RMSE

Logistic Regression 0.769 0.769 0.769 0.811 0.4653
Naïve Bayes 0.655 0.624 0.564 0.763 0.5665
SVM 0.824 0.822 0.822 0.823 0.4223
RBFNetwork 0.735 0.717 0.718 0.718 0.485

Total Occurrence: This feature contains the total number of occurrences of
each normalized proof phrase over the set of all normalized proof phrases.

Page Title: We apply the maximum of the trigram similarity measure between
the page title and the subject and object labels. This feature is useful,
because the title indicates the topic of the entire web page. When a title
matches, then higher token distances may still indicate a high probability
that a fact is confirmed.

End of Sentence: A boolean value if the potential proof contains a “.”, “!” or
a “?”. When subject and object are in different sentences, their relation is
more likely to be weaker.

Phrase the words between the subject and object, which are encoded as binary
values, i.e. a feature is created for each word and its value is set to 1 if the
word occurs and 0 otherwise.

Property the property as a word vector.

To train our classifiers, we randomly sampled 527 proofs and annotated them
manually. Those proofs were extracted with DeFacto from applying it on the
training set described in Section 6.1. The results are shown in Table 1. We
ran popular classifiers, which are able to work with numeric data and create
confidence values. The ability to generate confidence values for proofs is useful
as feedback for users and it also serves as input for the core classifiers described
in Section 6. Based on the obtained results, we selected support vector machines
as classifier. We also performed preliminary work on fine-tuning the parameters
of the above algorithms, which, however, did not lead to significantly different
results. The reported measurements were, therefore, done with default values of
the mentioned algorithms in the Weka machine learning toolkit10 version 3.6.6.

4 Trustworthiness Analysis of Webpages

To determine the trustworthiness of a website we first need to determine its
similarity to the input triple. This is determined by how many topics belonging
to the query are contained in a search result retrieved by the web search. We
extended the approach introduced in [14] by querying Wikipedia with the subject
and object label of the triple in question separately to find the topic terms for
10 http://www.cs.waikato.ac.nz/ml/weka/



the triple. A frequency analysis is applied on all returned documents and all
terms above a certain threshold that are not contained in a self-compiled stop
word list are considered to be topic terms for a triple. Let s and o be the URIs
for the subject and object of the triple in question and t be a potential topic
term extracted from a Wikipedia page. In addition, let X = (s, p, o).We compare
the values of the following two formulas:

p(t|X) =
|topic(t, d(X))|
|d(X)|

,

p(t|intitle(d(X), s ∨ o)) = |topic(t, intitle(d(X), s) ∪ intitle(d(X), o))|
|intitle(d(X), s) ∪ intitle(d(X), o)|

.

where d(X) is the set all web documents retrieved for X (see Section 3.2),
intitle(d(X), x) the set of web documents which have the label of the URI
x in their page title. topic(t, d(X)) is the set of documents which contain t
in the page body. We consider t to be a topic term for the input triple if
p(t|t(d(X), s) ∨ t(d(X), o)) > p(t|X). Let TX = {t1, t2, . . . , tn} be the set of
all topic terms extracted for a input triple. Defacto then calculates the trustwor-
thiness of a webpage as follows:

Topic Majority in the Web represents the number of webpages that have similar
topics to the webpage in question. Let P be the set of topic terms appearing on
the current webpage. The Topic Majority in the Web for a webpage w is then
calculated as:

tmweb(w) =

∣∣∣∣∣
n⋃

i=1

topic(ti, d(X))

∣∣∣∣∣− 1

where t1 is the most occurring topic term in the webpage w. Note that we
subtract 1 to prevent counting w.

Topic Majority in Search Results calculates the similarity of a given webpage
for all webpages found for a given triple. Let wk be the webpage to be evaluated,
v(wk) be the feature vector of webpage wk where v(wk)i is 1 if ti is a topic
term of webpage wk and 0 otherwise, ‖v‖ be the norm of v and θ a similarity
threshold. We calculate the Topic Majority for the search results as follows:

tmsearch(w) =

∣∣∣∣{wi|wi ∈ d(X),
v(wk)× v(wi)

‖v(wk)‖ ‖v(wi)‖
> θ

}∣∣∣∣
Topic Coverage measures the ratio between all topic terms for X and all topic
terms occurring in w:

tc(w) =
|TX ∩ P|
|TX |



Pagerank: The Pagerank11 of a webpage is a measure for the relative impor-
tance of a webpage compared to all others, i.e. higher pageranks means that a
webpage is more popular. There is a positive correlation between popularity of
a webpage and its trustworthiness as those pages are more likely to be reviewed
by more people or may have gone under stricter quality assurance before their
publication.While a high pagerank alone is certainly not a sufficient indicator
for trustworthiness, we use it in combination with the above criteria in DeFacto.

5 Features for Deep Fact Validation

In order to obtain an estimate of the confidence that there is sufficient evidence
to consider the input triple to be true, we decided to train a supervised machine
learning algorithm. Similar to the above presented classifier for fact confirmation,
this classifier also requires computing a set of relevant features for the given task.
In the following, we describe those features and why we selected them.

First, we extend the score of single proofs to a score of web pages as follows:
When interpreting the score of a proof as the probability that a proof actually
confirms the input fact, then we can compute the probability that at least one
of the proofs confirms the fact. This leads to the following stochastic formula12,
which allows us to obtain an overall score for proofs scw on a webpage w:

scw(w) = 1−
∏

pr∈prw(w)

(1− fc(pr))

In this formula, fc (fact confirmation) is the classifier trained in Section 3.3,
which takes a proof pr as input and returns a value between 0 and 1. prw is a
function taking a webpage as input and returning all possible proofs contained
in it.

Combination of Trustworthiness and Textual Evidence In general, the trust-
worthiness of a webpage and the textual evidence we find in it, are orthogonal
features. Naturally, webpages with high trustworthiness and a high score for its
proofs should increase our confidence in the input fact. Therefore, it makes sense
to combine trustworthiness and textual evidence as features for the underlying
machine learning algorithm. We do this by multiplying both criteria and then
using their sum and maximum as two different features:

Ffsum(t) =
∑

w∈s(t)

(f(w) · scw(w)) Ffmax(t) = max
w∈s(t)

(f(w) · scw(w))

In this formula f can be instantiated by all four trustworthiness measures: topic
majority on the the web (tmweb), topic majority in search results (tmsearch),

11 http://en.wikipedia.org/wiki/Pagerank
12 To be exact, it is the complementary even to the case that none of the proofs does

actually confirm a fact.



topic coverage (tc) and pagerank (pr). s is a function taking a triple t as argu-
ment, executing the search queries explained in Section 3.2 and returning a set
of webpages. Using the formula, we obtain 8 different features for our classifier,
which combine textual evidence and different trustworthiness measures.

Other Features In addition to the above described combinations of trustworthi-
ness and fact confirmation, we also defined other features:

1. The total number of proofs found.
2. The total number of proofs found above a relevance threshold of 0.5. In some

cases, a high number of proofs with low scores is generated, so the number
of high scoring proofs may be a relevant feature for learning algorithms.

3. The total evidence score: This is the probability that at least one of the
proofs is correct, which is defined analogously to scw above:

1−
∏

pr∈prt(t)

(1− sc(pr))

4. The total evidence score above a relevance threshold of 0.5. This is an adap-
tion of the above formula, which considers only proofs with a confidence
higher than 0.5.

5. Total hit count: Search engines usually estimate the number of search results
for an input query. The total hit count is the sum of the estimated number
of search results for each query send by DeFacto for a given input triple.

6. A domain and range verification: If the subject of the input triple is not
an instance of the domain of the property of the input triple, this violates
the underlying schema, which should result in a lower confidence in the
correctness of the triple. This feature is 0 if both domain and range are
violated, 0.5 if exactly one of them is violated and 1 if there is no domain or
range violation.

6 Evaluation

Our main objective in the evaluation was to find out whether DeFacto can effec-
tively distinguish between true and false input facts. In the following, we describe
how we trained DeFacto using DBpedia, which experiments we used and then
discuss the results of those experiments.

6.1 Training DeFacto

As mentioned in Section 3, we focus our tests on the top 60 most frequently
used properties in DBpedia. The system can easily be extended to cover more
properties by extending the training set of BOA to those properties. Note that
DeFacto itself is also not limited to DBpedia, i.e. while all of its components
are trained on DBpedia, the algorithms can be applied to arbitrary URIs. A
performance evaluation on other knowledge bases is subject to future work, but



it should be noted that most parts of DeFacto – except the LOD background
feature described in Section 2 and the schema checking feature in Section 3.3 –
work only with the retrieved labels of URIs and, therefore, do not depend on
DBpedia.

For training a supervised machine learning approach, positive and negative
examples are required. Those were generated as follows:

Positive Examples: In general, we use facts contained in DBpedia as positive
examples. For each of the properties we consider (see Section 3), we generate
positive examples by randomly selecting triples containing the property. Techni-
cally, this is done by counting the frequency of the property and sending a cor-
responding SPARQL query with random offset to the DBpedia Live endpoint.
We obtain 150 statements this way and verified them. For each statement, we
manually evaluated whether it was indeed a true fact. It turned out that some
of the obtained triples were incorrectly modeled, e.g. obviously violated domain
and range restrictions, or could not be confirmed by an intensive search on the
web within ten minutes. Overall, 122 out of 150 checked triples were facts, which
we subsequently used as positive examples.

Negative Examples: The generation of negative examples is more involved than
the generation of positive examples. In order to effectively train DeFacto, we con-
sidered it essential that many of the negative examples are similar to true state-
ments. In particular, most statements should be meaningful subject-predicate-
object phrases. For this reason, we derive the negative examples from positive
examples by modifying them, but following domain and range restrictions. As-
sume the input triple (s, p, o) in a knowledge base K is given and let dom and
ran be functions returning the domain and range of a property.13 We used the
following methods to generate negative examples:

1. A triple (s′, p, o) is generated where s′ is an instance of dom(p), the triple
(s′, p, o) is not contained in K and s′ is randomly selected from all resources
which satisfy the previous requirements.

2. A triple (s, p, o′) is generated analogously by taking ran(p) into account.
3. A triple (s′, p, o′) is generated analogously by taking both dom(p) and ran(p)

into account.
4. A triple (s, p′, o) is generated in which p′ is randomly selected from our

previously defined list of 60 properties and (s, p′, o) is not contained in K.
5. A triple (s′, p′, o′) is generated where s′ and o′ are randomly selected re-

sources, p′ is a randomly selected property from our defined list of 60 prop-
erties and (s′, p′, o′) is not contained in K.

Note that all parts of the example generation procedure can also take implicit
knowledge into account. Since we used SPARQL as query language for imple-
menting the procedure, this is straightforward by using SPARQL 1.1 entail-
13 Technically, we used the most specific class, which was explicitly stated to be domain

and range of a property, respectively.



ment14. In case of DBpedia Live we did not do this for performance reasons and
because it would not alter the results in that specific case.

Obviously, it is possible that our procedure of generating negative examples
may also generate true statements, which just happen not to be contained in DB-
pedia. Similar to the analysis of the positive examples, we also checked whether
the negative examples are indeed false statements. Overall, we obtained an au-
tomatically created and manually cleaned training set, which we made publicly
available15.

6.2 Experimental Setup

In a first step, we computed all feature vectors, described in Section 5 for the
training set. DeFacto heavily relies on web requests, which are not deterministic,
i.e. the same search engine query does not always return the same result. To
achieve deterministic behavior and to increase performance and reduce load on
the server, all web requests are cached. The DeFacto runtime for an input triple
was on average slightly below 5 seconds per input triple16 when using caches.

We stored the features in the arff file format and employed the Weka machine
learning toolkit17 for training different classifiers. In particular, we are interested
in classifiers, which can handle numeric values and output confidence values.
Naturally, confidence values for facts such as, e.g. 95%, are more useful for end
users than just a binary response on whether DeFacto considers the input triple
to be true, since they allow a more fine-grained assessment. Again, we selected
popular machine learning algorithms satisfying those requirements.

We performed 10 fold cross validations for our experiments. In each experi-
ment, we used our created positive examples, but varied the negative example
sets described above to see how changes influence the overall behavior of De-
Facto. Finally, we performed a run using a mixture of all 5 negative examples
sets by randomly selecting 20% of their instances.

Table 2. Classification results for trainings sets domain and range.

Domain Range
P R F1 AUC RSME P R F1 AUC RMSE

Logistic Regression 0.821 0.787 0.781 0.789 0.3965 0.846 0.799 0.792 0.762 0.3948
Naïve Bayes 0.63 0.582 0.54 0.599 0.6427 0.775 0.635 0.582 0.68 0.6039
SVM 0.818 0.758 0.746 0.758 0.4917 0.824 0.758 0.745 0.758 0.4917
RBFNetwork 0.675 0.586 0.526 0.625 0.4548 0.711 0.627 0.586 0.654 0.4622

14 http://www.w3.org/TR/sparql11-entailment/
15 http://aksw.org/projects/DeFacto
16 The performance is roughly equal on server machines and notebooks, since the web

requests dominate.
17 http://www.cs.waikato.ac.nz/ml/weka/



Table 3. Classification results for trainings sets domain-range and property.

Domain-Range Property
P R F1 AUC RSME P R F1 AUC RMSE

Logistic Regression 0.833 0.775 0.764 0.783 0.4045 0.775 0.766 0.765 0.768 0.4317
Naïve Bayes 0.782 0.652 0.606 0.688 0.5902 0.454 0.48 0.395 0.707 0.7181
SVM 0.822 0.754 0.74 0.754 0.4959 0.793 0.787 0.786 0.785 0.4111
RBFNetwork 0.763 0.656 0.617 0.688 0.4589 0.62 0.615 0.61 0.686 0.4722

Table 4. Classification results for trainings sets random and random-20%mix.

Combined Negative Examples Random 20% Mix
P R F1 AUC RMSE P R F1 AUC RMSE

Logistic Regression 0.711 0.701 0.697 0.742 0.4593 0.894 0.893 0.893 0.925 0.2967
Naïve Bayes 0.641 0.557 0.48 0.599 0.6525 0.667 0.635 0.617 0.757 0.5709
SVM 0.638 0.619 0.605 0.724 0.4657 0.891 0.889 0.889 0.889 0.3326
RBFNetwork 0.602 0.578 0.552 0.652 0.4878 0.812 0.799 0.797 0.852 0.3823

6.3 Results and Discussion

The results of our experiments are shown in Tables 2-4. Two algorithms – lo-
gistic regression and support vector machines – show promising results. Given
the challenging tasks, F-measures up to 70% for the combined negative example
set appear to be very positive indicators that DeFacto can be used to effectively
distinguish between true and false statements, which was our primary evaluation
objective. In general, DeFacto also appears to be quite stable against the vari-
ous negative example sets: The algorithms with overall positive results also seem
less affected by the different variations. As expected, the easiest task is to distin-
guish random statements and true statements, whereas all other replacements
are similarly difficult.

When observing single runs of DeFacto manually, it turned out that our
method of generating positive examples is particularly challenging for DeFacto:
For many of the facts in DBpedia only few sources exist in the Web. While it
is widely acknowledged that the amount of unstructured textual information in
the Web by far superseeds the available structured data, we found out that a
significant amount of statements in DBpedia is difficult to track back to reliable
external sources on the Web even with an exhaustive manual search. There
are many reasons for this, for instance many facts are particular relevant for a
specific country, such as “Person x studied at University y.”, where x is a son of a
local politician and y is a country with only limited internet access compared to
first world countries. For this reason, only in some cases, BOA patterns could be
found: In 29 of the 527 proofs of positive examples, BOA patterns could directly
be found. This number increased to 195 out of 527 when employing the WordNet
expansion described in Section 3.3. In general, DeFacto performs better when
the subject and object of the input triple are popular on the web, i.e. there are



several webpages describing them. In this aspect, we believe our training set is
indeed challenging upon manual observation.

7 Related Work

While we are not aware of existing work in which sources for RDF statements
were detected automatically from the Web, there are three main areas related
to DeFacto research: The representation of provenance information in the Web
of Data as well as work on trustworthiness and relation extraction. The problem
of data provenance is a crucial issue in the Web of Data. While data extracted
by the means of tools such as Hazy18 and KnowItAll19 can be easily mapped
to primary provenance information, most knowledge sources were extracted by
non-textual source and are more difficult to link with provenance information.
In the work described in [9], Olaf Hartig and Jun Zhao developed a framework
for provenance tracking. This framework provides the vocabulary required for
representing and accessing provenance information on the web. It keeps track of
who created a web entity, e.g. a webpage, when it was last modified etc. Recently,
a W3C working group has been formed and released a set of specifications on
sharing and representing provenance information20. Dividino et al. [3] introduced
an approach for managing several provenance dimensions, e.g. source, and times-
tamp. In their approach, they described an extension to the RDF called RDF+,
which can efficiently work with provenance data. They provided a method to ex-
tend SPARQL query processing in a manner such that a specific SPARQL query
can request meta knowledge without modifying the query itself. Theoharis et
al. [18] argued how the implicit provenance data contained in a SPARQL query
results can be used to acquire annotations for several dimensions of data quality.
They detailed the abstract provenance models and how they are used in rela-
tional data, and how they can be used in semantic data as well. Their model
requires the existence of provenance data in the underlying semantic data source.
DeFacto uses the W3C provenance group standard for representing provenance
information. Yet, unlike previous work, it directly tries to find provenance infor-
mation by searching for confirming facts in trustworthy webpages.

The second related research area is trustworthiness. Nakamura et al. [14]
developed an efficient prototype for enhancing the search results provided by a
search engine based on trustworthiness analysis for those results. They conducted
a survey in order to determine the frequency at which the users accesses search
engines and how much they trust the content and ranking of search results. They
defined several criteria for trustworthiness calculation of search results returned
by the search engine, such as topic majority. We adapted their approach for De-
Facto and included it as one of the features for our machine learning techniques.
[16, 17] present an approach for computing the trustworthiness of web pages. To
achieve this goal, the authors rely on a model based on hubs and authorities.
18 http://hazy.cs.wisc.edu/hazy/
19 http://www.cs.washington.edu/research/knowitall/
20 http://www.w3.org/2011/prov/wiki/



This model allows to compute the trustworthiness of facts and websites by gen-
erating a k-partite network of pages and facts and propagating trustworthiness
information across it. The approach returns a score for the trustworthiness of
each fact. An older yet similar approach is that presented in [20]. Here, the idea
is to create a 3-partite network of webpages, facts and objects and apply a prop-
agation algorithm to compute weights for facts as well as webpages. The use of
trustworthiness and uncertainty information on RDF data has been the subject
of recent research (see e.g., [7, 11]). Our approach differs from these approaches
as it does not aim to evaluate the trustworthiness of facts expressed in natural
language. In addition, it can deal with the broad spectrum of relations found on
the Data Web.

Our approach is also related to relation extraction. Most tools that address
this task rely on pattern-based approaches. Some early work on pattern extrac-
tion relied on supervised machine learning [6]. Yet, such approaches demanded
large amounts of training data, making them difficult to adapt to new relations.
The subsequent generation of approaches to RE aimed at bootstrapping pat-
terns based on a small number of input patterns and instances. For example, [2]
presents the Dual Iterative Pattern Relation Expansion (DIPRE) and applies it
to the detection of relations between authors and titles of books. This approach
relies on a small set of seed patterns to maximize the precision of the patterns for
a given relation while minimizing their error rate of the same patterns. Snow-
ball [1] extends DIPRE by a new approach to the generation of seed tuples.
Newer approaches aim to either collect redundancy information (see e.g., [19]
in an unsupervised manner or to use linguistic analysis [15] to harvest generic
patterns for relations.

8 Conclusion and Future Work

In this paper, we presented DeFacto, an approach for checking the validity of
RDF triples using the Web as corpus. We showed that our approach achieves an
F1 measure around 0.8 on DBpedia. Our approach can be extended in manifold
ways. First, BOA is able to detect natural-language representations of predicates
in several languages. Thus, we could have the user choose the languages he
understands and provide facts in several languages, therewith also increasing the
portion of the Web that we search through. Furthermore, we could extend our
approach to support data type properties. In addition to extending our approach
by these two means, we will also focus on searching for negative evidence for
facts, therewith allowing users to have an unbiased view of the data on the
Web through DeFacto. On a grander scale, we aim to provide even lay users
of knowledge bases with the means to check the quality of their data by using
natural language input. This would support the transition from the Document
Web to the Semantic Web by providing a further means to connect data and
documents.
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