
Under review as a conference paper at ICLR 2019

DEFactor: Differentiable Edge
Factorization-based Probabilistic Graph
Generation

Anonymous authors
Paper under double-blind review

Abstract
Generating novel molecules with optimal properties is a crucial step in many
industries such as drug discovery. Recently, deep generative models have
shown a promising way of performing de-novo molecular design. Although
graph generative models are currently available they either have a graph
size dependency in their number of parameters, limiting their use to only
small graphs or are formulated as a sequence of discrete actions needed to
construct a graph, making the output graph non-differentiable w.r.t the
model parameters, therefore preventing them to be used in scenarios such
as conditional graph generation. In this work we propose a model for condi-
tional graph generation that directly optimises properties of the graph, and
generates a probabilistic graph, making the decoding process differentiable.
We demonstrate favourable performance of our model on prototype-based
molecular graph conditional generation task.

1 Introduction

In this paper we address the problem of learning probabilistic generative graph models
for tasks such as the conditional generation of molecules with optimal properties. More
precisely we focus on generating realistic molecular graphs, similar to a target molecule (the
prototype).

The main challenge stems from the discrete nature of molecules. This particularly prevents
us from using global discriminators that assess generated samples and back-propagate their
gradients to guide the optimisation of the generator. This becomes very important in cases
where we want to either optimise the property of a graph or explore the vicinity of an
input graph (prototype) for conditional optimal generations, an approach that has proven
successful in controlled image generation [Chen et al. (2016); Odena et al. (2016)].

A number of recent approaches aim to address this limitation by performing indirect opti-
misation (You et al., 2018a; Li et al., 2018a). You et al. You et al. (2018a) formulate the
molecular graph optimisation task in a reinforcement learning setting, and optimise the loss
with policy gradient Yu et al. (2016). However policy gradient tends to suffer from high
variance during training. Kang and Cho Kang & Cho (2018) suggest a reconstruction-based
formulation which is directly applicable to discrete structures and does not require gradient
estimation. However, it is limited by the number of samples available. Moreover, there is
always a risk that the generator simply ignores the part of the latent code containing the
property that we want to optimise. Finally, Jin et al, Jin et al. (2018) utilise Bayesian
optimisation to optimise a proxy (the latent code) of the molecular graph, rather than the
graph itself.

In contrast, Simonovsky and Komodakis Simonovsky & Komodakis (2018) and De Cao and
Kipf Cao & Kipf (2018) have proposed decoding schemes that output graphs (adjacencies
and node/edge features tensors) in a single step, and so are able to perform direct optimi-
sation on the probabilistic continuous approximation of a graph. However, both decoding
schemes make use of fixed size MLP layers which restricts their use to very small graphs of
a predefined maximum size.

1

Under review as a conference paper at ICLR 2019

In this work, we address these issues directly by:

• Proposing a novel probabilistic graph decoding scheme that is computationally ef-
ficient and capable of generating arbitrary sized graphs (Section 3).

• Evaluating the generator’s capacity to modify molecular graph attributes in the
context of prototype-based molecular graph generation (Section 4).

Our approach (DEFactor) depicted in Figure 2 aims to directly address these issues with
a probabilistic graph decoding scheme that is end-to-end differentiable, computationally
efficient w.r.t the number of parameters in the model and capable of generating arbitrary
sized graphs. We evaluate DEFactor on the task of constrained molecule property optimi-
sation Jin et al. (2018); You et al. (2018a) and demonstrate that our results are competitive
with recent results.

2 Related work

Lead-based Molecule Optimisation. The aim here is to obtain molecules that satisfy
a target set of objectives, for example activity against a biological target while not being
toxic or maintaining certain properties, such as solubility. Currently a popular strategy is to
fine-tune an pretrained generative model to produce/select molecules that satisfy a desired
set of properties Segler et al. (2017).

Bayesian optimisation is proposed to explore the learnt latent spaces for molecules in
GÃşmez-Bombarelli et al. (2016), and is shown to be effective at exploiting feature rich
latent representations Kusner et al. (2017); Dai et al. (2018); Jin et al. (2018). In Li et al.
(2018b;a) sequential graph decoding schemes whereby conditioning properties can be added
to the input are proposed. However these approaches are unable to perform direct optimi-
sation for objectives. Finally You et al. (2018a) reformulates the problem in a reinforce-
ment learning setting, and objective optimisation is performed while keeping an efficient
sequential-like generative scheme You et al. (2018b).

Graph Generation Models. Current work on graph generation can be divided into
two type of graph decoding schemes. Sequential methods to graph generation [You et al.
(2018b); Li et al. (2018a); You et al. (2018a); Li et al. (2018b)] aim to construct a graph by
predicting a sequence of addition/edition actions of nodes/edges. Starting from a sub-graph
(normally empty), at each time step a discrete transition is predicted and the sub-graph is
updated. Although sequential approaches enable us to decouple the number of parameters
in models from the the maximum size of the graph processed, due to the discretisation of the
final outputs, the graph is still non-differentiable w.r.t. to the decoder’s parameters. This
again prevents us from directly optimising for the objectives we are interested in.

In contrast to the sequential process Cao & Kipf (2018); Simonovsky & Komodakis (2018)
reconstruct probabilistic graphs. These methods however make use of fixed size MLP layers
when decoding to predict the graph adjacency and node tensors. This however limits their
use to very small graphs of a pre-chosen maximum size. They therefore restrict study and
application to small molecular graphs; a maximum number of 9 heavy atoms, compared to
approximately 40 in sequential models.

We propose to tackle these drawbacks by designing a graph decoding scheme that is:

• Efficient: so that the number of parameters of the decoder does not depend on a
fixed maximum graph size.

• Differentiable: in particular we would like the final graph to be differentiable
w.r.t the decoder’s parameters, so that we are able to directly optimise the graph
for target objectives.

Edge-factorization. The idea of using tensor factorization methods to decode edges is
not new and has been extensively used in relational inference tasks (Nickel & Tresp (2013)).
Kipf & Welling (2016a) recently proposed an graph autoencoder for rich node embeddings

2

Under review as a conference paper at ICLR 2019

learning and link prediction. However their formulation suppose a fixed size graph in which
we want to predict existing and potential novel links between its nodes. Such assumption
is not applicable to the case of molecular graph optimization where given a property we
want to be able to generate a graph of a priori unknown size. To that extent we suggest
a novel autoregressive model for nodes embeddings generation which, when combined with
edge-factorization graph decoding constitute our full graph decoder. We describe the model
more extensively in the next section.

Figure 1: (a) is the full autoencoder (step 1 to 4) , (b) is expanding the steps (3 for the LSTM
and 4 for the factorization and node decoding) of the generator G of the autoencoder and (c)
is the conditional setting a discriminator D that assesses the outputs and gives its feedback
to the generator G. Lrec (resp. Lcond) refers to the reconstruction (resp. condtional) loss
described in section 3.3.

3 DEFactor

Molecules can be represented as graphs G = (V,E) where atoms and bonds correspond
to the nodes and edges respectively. Each node in V is labeled with its atom type which
can be considered as part of its features. Equally, a molecular graph can be defined by its
adjacency tensor E ∈ {0, 1}n×n×e where n is the number of nodes (atoms) in the graph
and e is the number of edge (bond) types that we can have between two atoms and the
node types are represented by a node feature tensor N ∈ {0, 1}n×d which is composed of
several one-hot-encoded properties. In the following sections we will describe our proposed
DEFactor model applied to molecular graphs.

3.1 Graph Construction Process

Given a molecular graph defined as G = (N,E) we propose to leverage the edge-specific
information propagation framework described in Simonovsky & Komodakis (2017) to learn
a set of informative embeddings from which we can directly infer a graph. More specifically,
our graph construction process is composed of two parts:

• An Encoder that in
– step 1 performs several spatial graph convolutions on the input graph, and in
– step 2 aggregates those embeddings into a single graph latent representation.

3

Under review as a conference paper at ICLR 2019

• A Decoder that in

– step 3 autoregressively generates a set of continuous node embeddings condi-
tioned on the learnt latent representation, and in

– step 4 reconstruct the whole graph in an edge-factorization fashion.

Figure 2 (a) and (b) provides a summary of those 4 steps.

Steps 1 and 2: Graph Representation Learning. We propose an encoder that makes
an efficient use of the information contained in the bonds by having a separate information
propagation channel for each bond type. The information is propagated in the graph using
a Graph Convolutional Network (GCN) update rule (Kipf & Welling, 2016b) so that each
node embedding can be written as a weighted sum of the edge-conditioned information of
its neighbors in the graph. Namely for each l-th layer of the encoder, the representation is
given by:

H l = σ(
∑
e

[D−
1
2

e EeD
− 1

2
e H l−1W l

e] +D−1H l−1W l
s), (1)

where Ee is the e-th frontal slice of the adjacency tensor, De the corresponding degree tensor
and W l

e and W l
s are learned parameters of the layer.

Once we have those node embeddings we further aggregate them to obtain a fixed-length
latent representation of the graph. We propose to parametrize this aggregation step by an
LSTM and we compute the graph latent representation by a simple linear transformation
of the last hidden state of this Aggregator:

z = gagg(feLSTM ({HK})). (2)

Even though the use of an LSTM makes the aggregation non permutation-invariant, sim-
ilar to GraphSAGE Hamilton et al. (2017), we adapt the LSTM aggregator to work on a
randomly permuted set of embeddings and noticed that it did not affect the performance of
the model.

In the subsequent steps we are interested in designing a graph decoding scheme from the la-
tent code that is both scalable and powerful enough to model the interdependencies between
the nodes and edges in the graph.

Step 3: Autoregressive Embeddings Generation. As specified above, we are inter-
ested in building a graph decoding scheme that models the nodes and their connectivity
(represented by continuous embeddings S) in an autoregressive fashion so that the latent
code on which is conditioned the decoding has enough dimensions to encode more high-
level features. Like stated previously, methods that suggest to compute the graph all at
once (Simonovsky & Komodakis, 2018; Cao & Kipf, 2018) model each node and edge as
conditionally independent given the latent code z: this means that every detail of their
dependencies within the graph has to be encoded in this latent variable: that does not leave
much room for high-level feature learning if the size of the latent code is not chosen care-
fully. We propose to tackle this drawback by autoregressive generation of the continuous
embeddings s = [s0, s1, ..., sn] for n nodes, with the embedding containing enough informa-
tion about the node itself and its neighbourhood. More precisely we model the generation
of node embeddings such that:

p(s|z) =
n∏
i=1

p(si|s<i, z). (3)

In our model, the autoregressive generation of embeddings is parametrized by a simple Long
Short-Term Memory (LSTM, ? and is completely deterministic such that at each time step
t the LSTM decoder takes as input the previously generated embeddings and the latent
code z which captured node-invariant features of the graph. Each embedding is computed

4

Under review as a conference paper at ICLR 2019

as a function of the concatenation of the current hidden state and the latent code z such
that:

ht+1 = fdLSTM (gin([z, st]), ht) (4)
st+1 = fembed([ht+1, z]), (5)

where fdLSTM corresponds to the LSTM recurrence operation and gin and fembed are
parametrized as simple MLP layers to perform nonlinear feature extraction.

Step 4: Graph Decoding from Node Embeddings. As stated previously, we want
to drive the generation of the continuous embeddings s towards latent factors that contains
enough information about the node they represent (i.e. we can easily retrieve the one-hot
atom type performing a linear transformation of the continuous embedding) and its neigh-
bourhood (i.e. the adjacency tensor can be easily retrieved by comparing those embeddings
in a pair-wise manner). For those reasons, we suggest to factorize each bond type that we
can have between two atoms in a relational inference fashion (Zitnik et al., 2018; Kipf et al.,
2018).

Let S ∈ Rn×p be the concatenated continuous node embeddings generated in the previous
step. We reconstruct the adjacency tensor E by learning edge-specific similarity measure as
follows for k-th edge type:

p(E:,:,k|S) =
n∏
i=1

n∏
j=1

p(Ei,j,k|si, sj). (6)

We model this by a set of edge-specific factors U = (u1, · · · , ue) ∈ Re×p such that we can
reconstruct the adjacency tensor as :

Ẽi,j,k = σ(sTi Dksj) = p(Ei,j,k|si, sj), (7)

where σ is the logistic sigmoid function, Dk the corresponding diagonal matrix of the vector
uk and the factors (ui) ∈ Re×p are learned parameters.

We reconstruct the node features (i.e. the atom type) with a simple affine transformation
such that:

Ñi,: = p(Ni|si) = softmax(Wsi), (8)

where W ∈ Rp×d is a learned parameter.

These four steps define our proposed graph autoencoder.

Generating Graphs of Arbitrary Sizes. In order to generate graphs of different sizes
we need to add what we call here an Existence module that retrieves a probability of
belonging to the final graph from each continuous embedding generated by the embeddings
generator (in step 3). This module is parametrized as a simple MLP layer followed by a
sigmoid activation and stops the unrolling of the embedding LSTM generator whenever we
encounter a non-informative embedding. This module can be interpreted as an < eos >
translator.

3.2 Training

Teacher forcing. In order to make the model converge in reasonable time we used a trick
similar to the teacher-forcing based training of language models (Williams & Zipser, 1989).
The training is thus done in 3 phases:

• We first pre-train the GCN part along with the embedding decoder (factorization,
nodes and existence modules) to reconstruct the graphs. This corresponds to the
training of a simple Graph AE as in Kipf & Welling (2016a) except that we also
want to reconstruct the nodes’ one-hot features (and not just the relations).

5

Under review as a conference paper at ICLR 2019

• We then append those two units to the embedding aggregator and generator while
keeping them fixed. In this second phase, the embedding generator is trained in a
teacher forcing fashion where at each time step t the LSTM decoder does not take
as input the previously generated embedding but the true one that is the direct
output of the pretrained GCN embedding encoder.

• Finally in order to transition from a teacher-forcing to a fully autoregressive state
we increasingly (Bengio et al., 2015) feed the LSTM generator more of its own
predictions. When that fully autoregressive state is reached the pre-trained units
are not frozen anymore and the whole model continues training end-to-end.

Log-Likelihood Estimates We train this first autoencoder framework in a MLE fashion
with the following negative log-likelihood estimate Lrec = LX +LX̄ +LN corresponding to
the existing edges (X), the non-existing edges (X̄) and the node features (N) reconstruction
terms:

LX = − 1
|X|

∑
(i,j)∈X

ETi,j,: log(Ẽi,j,:) + (1− Ei,j,:)T log(1− Ẽi,j,:) (9)

LX̄ = − 1
|X̄|

∑
(i,j)∈X̄

∑
k

log(1− Ẽi,j,k) (10)

LN = − 1
n

∑
NT log(Ñ), (11)

where X is the set of existing edges, X̄ the set of non existing edges, E the adjacency tensor,
N the node features tensor, n the number of nodes in the graph. As molecular graphs are
sparse we found that such separate normalisations were crucial for the training.

3.3 Conditional Generation and Optimisation

Model overview. In this part we discuss our approach to build a conditional framework
starting from the previous autoencoder architecture where the construction of a probabilistic
graph G̃ is conditioned on some unregularized latent code z derived from a given input
graph. We then augment this unstructured z with a set of structured attributes y that
represent some physico-chemical properties of interest so that the decoder is conditioned
on the joint (z, y). At the end of a successful training we expect this decoder to generate
samples that have the properties specified in y and to be similar (in terms of information
contained in z) to the original query molecular graph (encoded as z). To do so we choose
a mutual information maximization approach (detailed in the appendix) that involves the
use of discriminators that assess the properties ỹ of the generated samples.

Discriminator Pre-Training In this phase we pre-train a discriminator to assess the
property y of a generated sample so that we can backpropagate its feedback to the generator
(the discriminator can be trained on another dataset and we can have several discriminators
for several attributes of interest). In order to have informative gradients in the early stages of
the training we have trained the discriminator on continuous approximations of the discrete
training graphs (details in the appendix A.1) so that our objective becomes:

Ldis = E(x,y)∼p̃data(x,y)[− logQ(y|x)], (12)

where the graphs sampled from p̃data(x) are the probabilistic approximations of the discrete
ones.

The next step is to incorporate the feedback signal of the trained discriminator in order to
formulate the property attribute constraint. The training is decomposed in two phases in
which we learn to reconstruct graphs of the dataset (MLE phase) and to modify chemical
attributes (Variational MI maximization phase).

6

Under review as a conference paper at ICLR 2019

Model Reconstruction
JT-VAE (with stereochemistry) 76.7
JT-AE 69.9
DEFactor - 56 89.2
DEFactor - 64 89.4
DEFactor - 100 89.8

Table 1: Molecular graph reconstruction task. JT-VAE result is taken from Jin et al.
(2018) and uses a latent code of size 56. We compared the expressivity of our decoder in
a molecular reconstruction task with the JT-VAE decoder. JT-VAE model refers to the
original VAE framework as described in in Jin et al. (2018) whereas JT-AE is the adapted
deterministic version of it (we removed the stereochemistry information of the molecules as
we believe it is an unnecessary burden for the model).

Encoder Learning. The encoder is updated only during the reconstruction phase where
we sample attributes y from the true posterior. The encoder loss is a linear combination
of the molecular graph reconstruction (Lrec) and the property reconstruction(Lprop) s.t.
Lrec = E(x,y)∼pdata(x,y),z∼E(z|x)[− log pgen(x|z, y)] (using the log-likelihood estimates in (7))
and Lprop = E(x,y)∼pdata(x,y),z∼E(z|x),x′∼pgen(x|z,y)[− logQ(y|x′)]. The total encoder loss
is:

Lenc = Lrec + βLprop. (13)

Generator Learning. The generator is updated in both reconstruction and conditional
phases. In the MLE phase the generator is trained with same loss Lenc as the encoder so
that it is pushed towards generating realistic molecular graphs. In the MI maximization
phase we sample the attributes from a prior p(y) s.t. we minimize the following objective:
Lcond = Ex∼pdata(x),y∼p(y)z∼E(z|x),x′∼pgen(x|z,y)[− logQ(y|x′)],

Lgen = Lrec + αLcond + βLprop. (14)

In this phase the only optimisation signal comes from the trained discriminator. Conse-
quently there is a risk of falling off the manifold of the molecular graphs as no realism
constraint is specified. A good way to make sure that this does not happen is to add
a similar discriminator trained to distinguish between the real probabilistic graph and the
generated ones so that when trying to satisfy the attribute constraint the generator is forced
to produce valid molecular graphs. We leave that additional feature for future work.

4 Experiments

To compare with recent results in constrained molecular graph optimization Jin et al. (2018);
You et al. (2018a), we present the following experiments :

• Molecular Graph Reconstruction: We test the autoencoder framework on the
task of reconstructing input molecules from their latent representations.

• Conditional Generation: We test our conditional generation framework on the
task of generating novel molecules that satisfy a given input property. Here, we
are interested in the octanol-water partition coefficient (LogP) optimization used
as benchmark in Kusner et al. (2017); Jin et al. (2018); You et al. (2018a).

• Constrained Property Optimization: Finally, we test our conditional autoen-
coder on the task of modifying a given molecule to improve a specified property,
while constraining the degree of deviation from the original molecule. Again we use
the LogP benchmark for the experiment.

7

Under review as a conference paper at ICLR 2019

Molecular graph reconstruction: In this task we evaluate the exact reconstruction
error from encoding and decoding a given molecular graph from the test set. We report in
Table 1 the ratio of exactly reconstructed graphs, where we see that the our autoencoder
outperforms the Junction Tree-VAE (JT-VAE) Jin et al. (2018) which has the current state-
of-the-art performance in this task. Appendix B.3 reports the reconstruction ratio as a
function of the molecule size (number of heavy atoms).

Conditional Generation: In this task we evaluate the conditional generation formulation
described in Section 3.3. For a given molecule mi with an observed property value yi, the
goal here is to modify the molecule to generate a new molecule with the given target property
value; (m′i, y∗i).
New molecules are generated by conditioning the decoder on (zi; y∗i), where zi is the latent
code for mi. The decoded new molecule m′i, is ideally best suited to satisfy the target
property. This is evaluated by comparing the property value of the new molecule with the
target property value. A generator that performs well at this task will produce predicted
molecules with property values that are close to the target. In these experiments, LogP was
chosen as the desired property, and we use RDKit, online to calculate the LogP values of
generated molecules.
The scatter plots in Figure 2 give for a randomly selected set of test molecules, the correlation
of target property values against the evaluated property value of the correctly decoded
molecules.

Constrained Property Optimization: In this section we follow the evaluation method-
ology outlined in Jin et al. (2018); You et al. (2018a), and evaluate our model in a constrained
molecule property optimization. In contrast to Jin et al. (2018), because of the conditional
formulation, our autoencoder is already suited for that task without the need for retrain-
ing.
Given the 800 molecules with the lowest penalized LogP1 property scores from the test set,
we evaluate the decoder by providing pairs of (zi, y∗i) with increasing property scores, and
among the valid decoded graphs we compute:

• Their similarity scores (Sim.) to the encoded target molecule (called the prototype);
• Their penalized LogP scores. Note that in this setting the conditioning property

values (y∗i) are the unpenalized LogP scores. However, to evaluate the model we
compute the penalized LogP scores to assess the model’s ability to decode synthet-
ically accessible molecules.

• While varying the similarity threshold values (δ), we compute the success rate (Suc.)
for all 800 molecules. This measures how often we to get a novel molecule with an
improved penalized LogP score.

• Finally, for different similarity thresholds, for successfully decoded molecules, we
report the average improvements (Imp.) and the similarity (Sim.) for the molecule
that is most improved. We compare our results with Jin et al. (2018); You et al.
(2018a).

The final results are reported in Table 2. As can be seen, although slightly behind GCPN You
et al. (2018a) w.r.t. success rates (Suc.), DEFactor significantly outperforms other models
in terms of improvements (Imp.) achieved (by between 130% and 195% for thresholds 0.2
and 0.6 respectively, with respect to the next best model GCPN).

5 Future work

In this paper, we designed a new way of generating molecular graphs in a conditional
optimisation setting . We believe that our DEFactor model is a significant step forward

1The penalized logP is octanol-water partition coefficient (logP) penalized by the synthetic
accessibility (SA) score and the number of long cycles, see Jin et al. (2018)

8

Under review as a conference paper at ICLR 2019

Figure 2: Conditional generation: The initial LogP value of the query molecule is spec-
ified as IL and the Pearson correlation coefficient is specified as c. We report on the y-axis
the conditional value given as input and on the x-axis the true LogP of the generated graph
when translated back into molecule (we have of course only reported the values when the
decoded graphs correspond to valid molecules, which explains the difference in the total
number of points for each query molecule).

δ
JT-VAE GCPN DEFactor

Imp. Sim. Suc. Imp. Sim. Suc. Imp. Sim. Suc.

0.0 1.91± 2.04 0.28±0.15 97.5% 4.20±1.28 0.32±0.12 100% 6.62±2.50 0.20±0.16 91.5%
0.2 1.68± 1.85 0.33±0.13 97.1% 4.12±1.19 0.34±0.11 100% 5.55±2.31 0.31±0.12 90.8%
0.4 0.84± 1.45 0.51±0.10 83.6% 2.49±1.30 0.47±0.08 100% 3.41±1.8 0.49±0.09 85.9%
0.6 0.21± 0.71 0.69±0.06 46.4% 0.79±0.63 0.68±0.08 100% 1.55±1.19 0.69±0.06 72.6%

Table 2: Constrained penalized LogP maximisation task: each row shows a different level of
similarity constraint δ and columns are for improvements (Imp.), similarity to the original
query (Sim.), and the success rate (Suc.). Values for other models are taken from You et al.
(2018a).

to build ML-driven applications for de-novo drug design or generation of molecules with
optimal properties without resorting to methods that do not directly optimise the desired
properties.
Note that a drawback of our model is that it uses an MLE training process which forces
us to either fix the ordering of nodes or to perform a computationally expensive graph
matching operation to compute the loss. Moreover in our fully deterministic conditional
formulation we assume that chemical properties optimisation is a one-to-one mapping but
in reality there may exist many suitable way of optimizing a molecule to satisfy one property
condition while staying similar to the query molecule. To that extent it could be interesting
to augment our model to include the possibility of a one-to-many mapping. Another way
of improving the model could also be to include a validity constraint formulated as training
a discriminator that discriminates between valid and generated graphs.

9

Under review as a conference paper at ICLR 2019

References
Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling for

sequence prediction with recurrent neural networks, 2015.

Nicola De Cao and Thomas Kipf. Molgan: An implicit generative model for small molecular
graphs, 2018.

Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel.
Infogan: Interpretable representation learning by information maximizing generative ad-
versarial nets, 2016.

Hanjun Dai, Yingtao Tian, Bo Dai, Steven Skiena, and Le Song. Syntax-directed variational
autoencoder for structured data. CoRR, abs/1802.08786, 2018.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks, 2014.

Rafael GÃşmez-Bombarelli, Jennifer N. Wei, David Duvenaud, JosÃľ Miguel HernÃąndez-
Lobato, BenjamÃŋn SÃąnchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre,
Timothy D. Hirzel, Ryan P. Adams, and AlÃąn Aspuru-Guzik. Automatic chemical design
using a data-driven continuous representation of molecules, 2016.

William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on
large graphs, 2017.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Comput., 9
(8):1735–1780, November 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735. URL
http://dx.doi.org/10.1162/neco.1997.9.8.1735.

John J. Irwin, Teague Sterling, Michael M. Mysinger, Erin S. Bolstad, and Ryan G. Coleman.
Zinc: A free tool to discover chemistry for biology. Journal of Chemical Information and
Modeling, 52(7):1757–1768, 2012. doi: 10.1021/ci3001277. URL https://doi.org/10.
1021/ci3001277. PMID: 22587354.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder
for molecular graph generation, 2018.

Seokho Kang and Kyunghyun Cho. Conditional molecular design with deep generative
models. 2018. doi: 10.1021/acs.jcim.8b00263.

Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard Zemel. Neural
relational inference for interacting systems, 2018.

Thomas N. Kipf and Max Welling. Variational graph auto-encoders, 2016a.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks, 2016b.

Matt J. Kusner, Brooks Paige, and José Miguel Hernández-Lobato. Grammar variational
autoencoder. In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th Interna-
tional Conference on Machine Learning, volume 70 of Proceedings of Machine Learning
Research, pp. 1945–1954, International Convention Centre, Sydney, Australia, 06–11 Aug
2017. PMLR. URL http://proceedings.mlr.press/v70/kusner17a.html.

Yibo Li, Liangren Zhang, and Zhenming Liu. Multi-objective de novo drug design with
conditional graph generative model, 2018a.

Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter Battaglia. Learning deep
generative models of graphs, 2018b.

Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets, 2014.

10

http://dx.doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1021/ci3001277
https://doi.org/10.1021/ci3001277
http://proceedings.mlr.press/v70/kusner17a.html

Under review as a conference paper at ICLR 2019

Maximilian Nickel and Volker Tresp. Tensor factorization for multi-relational learning. In
Proceedings of the 2013th European Conference on Machine Learning and Knowledge Dis-
covery in Databases - Volume Part III, ECMLPKDD’13, pp. 617–621, Berlin, Heidelberg,
2013. Springer-Verlag. ISBN 978-3-642-40993-6. doi: 10.1007/978-3-642-40994-3 40. URL
https://doi.org/10.1007/978-3-642-40994-3_40.

Augustus Odena, Christopher Olah, and Jonathon Shlens. Conditional image synthesis with
auxiliary classifier gans, 2016.

Marcus Olivecrona, Thomas Blaschke, Ola Engkvist, and Hongming Chen. Molecular de
novo design through deep reinforcement learning, 2017a.

Marcus Olivecrona, Thomas Blaschke, Ola Engkvist, and Hongming Chen. Molecular de
novo design through deep reinforcement learning, 2017b.

RDKit, online. RDKit: Open-source cheminformatics. http://www.rdkit.org. [Online;
accessed 11-April-2013].

Marwin H. S. Segler, Thierry Kogej, Christian Tyrchan, and Mark P. Waller. Generating
focussed molecule libraries for drug discovery with recurrent neural networks, 2017.

Martin Simonovsky and Nikos Komodakis. Dynamic edge-conditioned filters in convolutional
neural networks on graphs, 2017.

Martin Simonovsky and Nikos Komodakis. Graphvae: Towards generation of small graphs
using variational autoencoders, 2018.

Ronald J. Williams and David Zipser. A learning algorithm for continually running fully
recurrent neural networks, 1989.

Jiaxuan You, Bowen Liu, Rex Ying, Vijay Pande, and Jure Leskovec. Graph convolutional
policy network for goal-directed molecular graph generation, 2018a.

Jiaxuan You, Rex Ying, Xiang Ren, William L. Hamilton, and Jure Leskovec. Graphrnn:
Generating realistic graphs with deep auto-regressive models, 2018b.

Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. Seqgan: Sequence generative ad-
versarial nets with policy gradient. CoRR, abs/1609.05473, 2016. URL http://dblp.
uni-trier.de/db/journals/corr/corr1609.html#YuZWY16.

Marinka Zitnik, Monica Agrawal, and Jure Leskovec. Modeling polypharmacy side effects
with graph convolutional networks. 2018. doi: 10.1093/bioinformatics/bty294.

11

https://doi.org/10.1007/978-3-642-40994-3_40
http://www.rdkit.org
http://dblp.uni-trier.de/db/journals/corr/corr1609.html#YuZWY16
http://dblp.uni-trier.de/db/journals/corr/corr1609.html#YuZWY16

Under review as a conference paper at ICLR 2019

Appendix A Models comparison

Model Inference Parameters Constrained Probabilistic No Retraining
MolGAN 7 7 7 3 NA
JT-VAE 3 3 3 7 7
GCPNN 7 3 3 7 3

DEFactor(Ours) 3 3 3 3 3

Figure 3: We report here a comparison of the abilities of previous recent models involving
molecular graph generation and optimization

We are interested in the following features of the models :

• Inference : If the model is equipped or not with an inference network. To encode
some target molecule like we do in the conditional setting.

• Parameter-efficient : If the number of parameters of the model depends on the
graph sizes.

• Constrained : If the model is studied in a constrained optimization scenario :
namely the case where we want to optimize a property while constraining the degree
of deviation from the original molecule.

• Probabilistic : If the outptut of the model is a probabilistic graph s.t. it is
differentiable w.r.t to the decoder’s parameters.

• No Retraining : If we need to retrain/fine-tune/perform gradient-ascent each time
we want to optimize a novel molecule.

Appendix B Conditionnal setting

B.1 Graphs continuous approximation

For the pre-training of the discriminators we suggested to train them on continuous approx-
imation of the discrete graphs that ressembles the output of the decoder. To that extent we
used the trained partial graph autoencoder (used for the teacher forcing at the beginning of
the training of the full autoencoder)

Figure 4: Partial graph Autoencoder used for the pre-training part

12

Under review as a conference paper at ICLR 2019

B.2 Mutual information maximization

For the conditional setting we choose a simple mutual information maximization formula-
tion. The objective is to maximize the MI I(X;Y) between the target property Y and the
decoder’s output X = Gθ(Y) under the joint pθ(X,Y) defined by the decoder Gθ. In the
conditional setting Gθ is also conditioned on the encoded molecule z but for simplicity we
treat it as a parameter of the decoder (and thus reason with one target molecule from which
we want to modify attributes). We define the MI as:

I(y;Gθ(y)) = Ex∼Gθ(y)[Ey′∼pθ(y|x)[log pθ(y′|x)]] +H(y)
= Ex∼Gθ(y)[DKL(pθ(.|x)||Q(.|x))
+ Ey′∼pθ(y|x)[logQ(y′|x)]] +H(y)
≥ Ex∼Gθ(y)[Ey′∼pθ(y|x)[logQ(y′|x)]] +H(y)

In our conditional setting we pre-trained the discriminators (parametrized by Q in the
lower bound derivation) to approximate pdata(y|x) which makes the bound tight only when
pθ(ypaired|x) is close to pdata(y|x) and this corresponds to a stage where the decoder has
maximized the log-likelihood of the data well enough (i.e. when it is able to reconstruct
input graphs properly when z and y are paired). Thus, in the conditional setting we are
maximizing the following objective:

Lcond = Ex,y∼pdata(x,y),z∼E(x),y′∼p(y)[logGθ(y, z) + I(y′;Gθ(y′, z))]

B.3 Reconstruction as a function of number of atoms

Figure 5: Accuracy score as a function of the number of heavy atoms in the molecule(x axis)
for different size of the latent code

Notice that as we make use of a simple LSTM to encode a graph representation, there
is a risk that for the largest molecules the long term dependencies of the embeddings are
not captured well resulting in a bad reconstruction error. We capture this observation in
figure 4. One possible amelioration could be to add other at each step other non-sequential
aggregation of the embeddings (average pooling of the emebeddings for example) or to make
the encoder more powerful by adding some attention mechanisms. We leave those for future
work.

B.4 Visual similarity samples

13

Under review as a conference paper at ICLR 2019

Figure 6: LogP increasing task visual example. The original molecule is circled in red.

14

	Introduction
	Related work
	DEFactor
	Graph Construction Process
	Training
	Conditional Generation and Optimisation

	Experiments
	Future work
	Models comparison
	Conditionnal setting
	Graphs continuous approximation
	Mutual information maximization
	Reconstruction as a function of number of atoms
	Visual similarity samples

