
	

Defactoring ‘Pace of Change’:
Exploring Code Review
Methods for
Textual Scholarship and
Literary Studies

Joris	J.	Van	Zundert	
joris.van.zundert@huygens.knaw.nl	
Huygens	Institute	for	the	History	of	the	Netherlands	
Royal	Netherlands	Academy	of	Arts	and	Sciences	
	
Matt	Burton	
mcburton@pitt.edu	
University	of	Pittsburgh,	United	States	of	America	
	

Introduction
	 We	start	from	the	assertion	that	coding	and	code—
as	 the	 source	 code	 of	 computer	 programs	 that	 is	
readable	 to	 humans	 and	 which	 drives	 the	
performative	 nature	 of	 software	 (Ford	 2015,	 Hiller	
2015)—can	 be	 inherent	 parts	 of	 scholarship	 or	
scholarship	by	 and	of	 themselves.	That	 is:	we	 assert	
that	 code	 can	 be	 scholarly,	 that	 coding	 can	 be	
scholarship,	and	that	there	is	little	difference	between	
the	authorship	of	code	or	text	(Van	Zundert	2016).	The	
dichotomy	that	has	been	often	sought	between	on	the	
one	 hand	 a	 ‘pure’	 intellectual	 realm	 associated	with	
scholarly	writing	and	academic	print	publication,	and	
on	the	other	hand	the	‘material	labour’	associated	with	
for	 instance	 instrument	 making	 or	 programing,	 is	
artificial.		
	 We	 argue	 the	 validity	 of	 this	 assertion	 along	
Burgess	 and	 Hamming	 (2011)	 and	 Clement	 (2016).	
These	 scholars	 refer	 to	 earlier	work	 in	which	Bruno	
Latour	 (1993)	 casts	 the	 defining	 characteristic	 of	
modernity	as	a	process	of	‘purification’	which	aims	to	
contrast	 the	 human	 culture	 of	 modernity	 to	 nature.	
Burgess	and	Hamming	observe	a	congruent	process	in	
academia:	 “Within	 the	 academy	 we	 see	 these	
processes	 of	 purification	 and	 mediation	 at	 work,	
producing	 and	 maintaining	 the	 distinction	 between	
intellectual	labor	and	material	labor,	both	of	which	are	
essential	 to	 multimedia	 production”	 (Burgess	 &	
Hamming	 2011:¶11).	 This	 process	 serves	 to	
distinguish	 between	 scholarly	 and	 non-scholarly	

activities:	 “The	 distinction	 between	 intellectual	 and	
material	 labor	 is	 pervasive	 throughout	 scholarly	
criticism	 and	 evaluation	 of	 media	 forms.	 […]	 In	
addition,	 any	 discussion	 of	 scholarly	 activities	 in	
multimedia	 format	 are	 usually	 elided	 in	 favor	 of	
literary	 texts,	 which	 can	 be	 safely	 analyzed	 using	
traditional	 tools	 of	 critical	 analysis.”	 However,	 this	
distinction	 is	 based	 upon	 a	 technological	 fallacy	
already	pointed	out—as	Burgess	and	Hamming	note—
by	 Richard	 Grusin	 in	 1984.	 Grusin	 argued	 that	
Hypertext	 has	 not	 changed	 the	 nature	 of	 text	
essentially,	 as	 writing	 has	 always	 already	 been	
hypertextual	 through	 the	 use	 of	 indices,	 notes,	
annotations,	 and	 intertextual	 references.	 To	 assume	
that	 the	 technology	 of	 Hypertext	 has	 unvealed	 or	
revolutionary	activated	the	associative	nature	of	text,	
amounts	 to	 the	 fallacy	 of	 ascribing	 the	 associative	
agency	of	cognition	to	the	technology,	which	however	
is	of	course	a	‘mere’	expression	of	that	agency.	
	 Analogous	to	Burgess	and	Hamming,	we	argue	that	
relegating	 the	 evaluation	 of	 scholarship	 to	 the	
reviewing	of	print	publications	 is	an	equal	 fallacious	
ascribing	of	agency	to	the	technology	of	written	text.	
Such	 a	 narrow	 understanding	 of	 scholarship	
presupposes	that	something	is	scholarship	because	it	
is	in	writing,	that	writing	makes	it	scholarship.		
	 It	 is	 possible	 to	 evade	 all	 such	 possible	
technological	 fallacies	 by	 understanding	 scholarship	
as	argument.	We	argue	 therefore	 that	 scholarship	 in	
essence	 is	argument,	and	that	technologies	enable	to	
shape	 and	 express	 that	 argument.	 This	 is	 not	 to	 say	
that	 technologies	 are	 mere	 inert	 and	 neutral	
epistemological	tools,	obviously	different	technologies	
shape	and	affect	argument	in	different	ways.	Different	
technologies	can	therefore	enrich	scholarly	argument.	
Scholarship	is	thus	not	bound	to	the	use	of	text	as	an	
epistemological	 technology,	 but	 essentially	 is	 in	 the	
shaping	of	an	argument.	Text	and	writing	may	still	be	
the	most	celebrated	semiotic	technologies	to	express	
an	argument,	but	computer	code	understood	as	 ‘just	
another’	 literacy	 (cf.	 Knuth	 1984,	 Kittler	 1993,	 Vee	
2013)	can	equally	be	the	carrier	of	scholarly	argument.		
However,	 the	 acceptance	of	 code	 as	 another	 form	of	
scholarly	argument	presents	problems	to	the	current	
scholarly	 process	 of	 evaluation	 because	 of	 a	 lack	 of	
well	developed	methods	for	reviewing	and	critiquing	
scholarly	 code.	 Digital	 humanities	 as	 a	 site	 of	
production	 of	 non	 conventional	 research	 outputs—
digital	 editions,	 web	 based	 publications,	 new	
analytical	 method,	 and	 computational	 tools	 for	
instance—has	 spurred	 the	 debate	 on	 evaluative	
practices	 in	 the	 humanities	 considerably,	 exactly	

because	 practitioners	 of	 digital	 scholarship	
acknowledge	that	much	of	the	relevant	scholarship	is	
not	 expressed	 in	 the	 form	 of	 traditional	 scholarly	
output.	Yet	 the	 focus	of	review	generally	remains	on	
“the	 fiction	 of	 ‘final	 outputs’	 in	 digital	 scholarship”	
(Nowviskie	 2011),	 on	 old	 form	 peer	 review	
(Antonijevic	 2016),	 and	 on	 approximating	
equivalencies	 of	 digital	 content	 and	 traditional	 print	
publication	 (Presner	 2012).	 Discussions	 around	 the	
evaluation	of	digital	scholarship	have	thus	“tended	to	
focus	 primarily	 on	 establishing	 digital	 work	 as	
equivalent	 to	 print	 publications	 to	 make	 it	 count	
instead	of	 considering	how	digital	 scholarship	might	
transform	 knowledge	 practices”	 (Purdy	 &	 Walker	
2010:178,	 Anderson	 &	 McPherson,	 2011).	 As	 a	
reaction	 digital	 scholars	 have	 stressed	 how	 peer	
review	of	digital	scholarship	should	foremost	consider	
how	digital	scholarship	is	different	from	conventional	
scholarship.	They	argue	that	review	should	be	focused	
on	the	process	of	developing,	building,	and	knowledge	
creation	 (Nowviskie	 2011),	 on	 the	 contrast	 and	
overlap	 between	 the	 representationality	 of	
conventional	scholarship	and	the	strong	performative	
aspects	 of	 digital	 scholarship	 (Burgess	 &	 Hamming	
2011),	 and	 on	 the	 medium	 specificity	 of	 digital	
scholarship	(Rockwell	2011).	
	 The	 debate	 on	 peer	 review	 in	 digital	 scholarship	
however,	 has	 been	 geared	 much	 to	 high-level	
evaluation,	 concentrating	 for	 instance	 on	 the	 issue	
how	 digital	 scholarship	 could	 be	 reviewed	 in	 the	
context	 of	 tenure	 track	 evaluations.	 Very	 little	 has	
been	proposed	as	to	concrete	techniques	and	methods	
for	 more	 practical	 level	 applied	 peer	 review	 of	
program	code.		Existing	practical	guidance	pertains	to	
digital	objects	such	as	digital	editions	(Sahle	&	Vogler	
2014)	or	 to	 code	 as	 cultural	 artefact	 (Marino	2006),	
but	no	substantial	work	has	been	put	forward	on	how	
to	 peer	 review	 scholarly	 code.	 We	 are	 left	 with	 the	
rather	general	statement	that	“traditional	humanities	
standards	need	to	be	part	of	the	mix,	[but]	the	domain	
is	 too	 different	 for	 them	 to	 be	 applied	 without	
considerable	 adaptation”	 (Smithies	 2012),	 and	 the	
often	 echoed	 contention	 that	digital	 artefacts	 should	
be	 evaluated	 as	 such	 and	 not	 as	 to	 how	 they	might	
have	 been	 documented	 in	 conventional	 articles.	 The	
latter	 argument	 probably	 most	 succinctly	 put	 by	
Geoffrey	Rockwell	(2011):	“While	such	narratives	are	
useful	 to	 evaluators	 […]	 they	 should	 never	 be	 a	
substitute	 for	 review	of	 the	work	 in	 the	 form	 it	was	
produced	in.”	
	 Yet,	 the	 problem	 is	 growing	 more	 urgent.	
Increasingly,	code	is	created	and	used	as	a	mechanism	

of	 analysis	 in	 textual	 scholarship	 and	 literary	
studies—cf.	 for	instance	Enderle	2016,	Jockers	2013,	
Piper	 2015,	 Rybicki	 et	 al.	 2014,	 and	 Underwood	
2014—which	 leads	 to	 the	 need	 to	 evaluate	 the	
technical,	 methodological	 and	 epistemological	
qualities	of	such	code,	as	for	instance	the	‘Syuzhet	case’	
showed	 (Swafford	 2016).	 The	 algorithms,	 code,	 and	
software	 that	 underpins	 the	 analyses	 in	 these	
examples	of	scholarship	are	not	standardized	‘off	the	
shelf’	 software	 productions.	 These	 code	 bases	 are	
nothing	 like	 a	 software	 package	 or	 product	 such	 as	
AntConc		that	can	be	viewed	as	a	generic	and	packaged	
distributable	 tool;	 a	 tool	 that	 might	 be	 subject	 to	 a	
scholarly	type	of	tool	criticism	explaining	and	opening	
it	for	reuse	by	other	scholars.	Instead	these	codebases	
are	bespoke	code:	they	are	one-off	highly	specific	and	
complex	 analytical	 engines,	 tailored	 to	 solving	 one	
highly	specific	research	question	based	on	one	specific	
set	 of	 data.	 Reuse,	 scalability,	 and	 ease-of-use	 are,	
justifiably	(Baldrigde	2015),	not	specific	aims	of	these	
code	objects	at	all.	Such	might	be	the	case	with	generic	
software,	 but	 these	 programs	have	been	 algorithmic	
instruments	tailor	made	to	serve	the	research	case	at	
hand.	 As	 such—and	 following	 what	 was	 argued	
above—we	 must	 regard	 these	 code	 bases	 as	 an	
inherent	 part	 of	 the	 scholarly	 argument	 they	
contribute	 to.	And	 as	 such	 they	deserve	 and	 require	
specific	and	rigorous	peer	review,	 like	any	argument	
in	humanities	research.	How	such	peer	review	should	
be	conducted	is,	however,	a	large	unknown.	
	 As	 a	 contribution	 to	 the	 challenges	 of	 code	 peer	
review	we	present	an	experimental	technique	we	call	
defactoring.	Drawing	on	Braithwaite	(2013),	we	have	
re-configured	 the	 program	 code	 that	 underpins	 a	
recent	 article	 by	 Ted	Underwood	 and	 Jordan	 Sellers	
(Underwood	 &	 Sellers	 2016)	 into	 a	 computational	
narrative—echoing	 Knuth’s	 literate	 programming	
(1984)—to	be	critically	analyzed	and	annotated.	This	
method	 is	 intimately	 intertwined	 with	 the	 Jupyter	
Notebook	platform,		which	allows	for	the	composition	
of	 scholarly	 and	 scientific	 inscriptions	 that	 are	
simultaneously	 human	 and	 machine	 readable.	 The	
Notebook	 is	both	a	document	 format	and	a	platform	
for	mixing	code	and	prose	into	executable	objects.	We	
have	 extracted	 Underwood	 and	 Seller’s	 code	 and	
defactored	 it	 into	 a	 Jupyter	 Notebook,	 available	 at	
https://github.com/interedition/paceofchange.	 This	
means	we	have	recombined	code	from	disparate	files,	
linearized	the	execution	path,	demodularized	function	
calls,	 and	 annotated	 code	 blocks	 with	 our	 own	
expository	comments.	As	an	annotated	Notebook	we	
can	now	engage	Underwood	and	Seller’s	code	directly	

as	a	scholarly	inscription	and	more	deeply	interrogate	
the	role	of	data,	algorithms,	and	code	in	the	production	
of	knowledge.	
	 In	 the	 case	 of	 scholarship	 that	 uses	 computation,	
large	 parts	 of	 the	 intellectual	 importance	 are	
embodied	in	the	code	rather	than	living	exclusively	in	
the	 print	 publication.	 As	 our	 case	 study	 also	 shows,	
usually	the	method	description	in	the	print	publication	
presents	 the	 intellectual	 contribution	 of	 the	 code	
development	in	a	very	reduced,	and	rather	imprecise	
high-level	 fashion.	 The	 code	 itself	 is	 a	 more	 precise	
inscription	of	the	analysis	the	researchers	conducted.	
The	methodological	approach	we	present	is	a	way	to	
engage	 the	 code,	 and	 thus	allows	a	peer	 reviewer	 to	
understand	and	interpret	the	intellectual	narrative	of	
the	 code.	 This	 results	 in	 a	 fuller	 grasp	 and	
understanding	of	 the	methods	applied,	and	thus	 to	a	
more	comprehensive	review	of	the	 intellectual	effort	
associated	with	the	publication.	
	 After	demonstrating	the	work	in	the	notebook,	we	
will	conclude	our	paper	with	a	critical	reflection	of	the	
reviewing	 work	 that	 was	 undertaken	 with	 it.	 We	
identify	 the	 applicability,	 feasibility,	 benefits,	 and	
drawbacks	of	 this	 specific	approach.	We	also	outline	
some	possible	future	directions	of	research	that	could	
further	 contribute	 to	 exploring	 review	 methods	 for	
code	scholarship.	

Bibliography

Anderson,	 S.,	 McPherson,	 T.,	 (2011).	 Engaging	 Digital	
Scholarship:	Thoughts	on	Evaluating	Multimedia	Schol-
arship.	Profession	136–151.	

Antonijevic,	S.,	(201)5.	Amongst	Digital	Humanists:	An	eth-
nographic	 study	 of	 digital	 knowledge	 production,	 Pal-
grave	Macmillan.	

Baldridge,	 J.,	 (2015).	 It’s	 okay	 for	 academic	 software	 to	
suck.	 Java	 Code	 Geeks.	 Available	 at:	 https://www.java-
codegeeks.com/2015/05/its-okay-for-academic-soft-
ware-to-suck.html	[Accessed	April	25,	2016].	

Braithwaite,	R.,	(2013).	Defactoring.	Reginald	Braithwaite:	
via	 raganwald.com.	 Available	 at:	 http://ragan-
wald.com/2013/10/08/defactoring.html	 [Accessed	
March	15,	2016].	

Burgess,	H.J.	&	Hamming,	J.,	(2011).	New	Media	in	Acad-
emy:	Labor	and	the	Production	of	Knowledge	 in	Schol-
arly	 Multimedia.	 DHQ:	 Digital	 Humanities	 Quarterly,	
5(3).	 Available	 at:	 http://digitalhumani-
ties.org/dhq/vol/5/3/000102/000102.html	 [Accessed	
September	2,	2016].	

	

Clement,	T.E.,	(2016).	Where	Is	Methodology	in	Digital	Hu-
manities?	 In	 Debates	 in	 the	 Digital	 Humanities	 2016.	
University	of	Minnesota	Press,	pp.	153–175.	Available	at:	
http://dhdebates.gc.cuny.edu/debates/text/65.	

Enderle,	 J.S.,	 (2016).	 A	 Plot	 of	 Brownian	 Noise.	 Jonathan	
Scott	 Enderle.	 Available	 at:	 https://github.com/send-
erle/svd-noise/blob/master/Noise.ipynb	 [Accessed	
September	24,	2016].	

Ford,	P.,	(2015).	What	is	Code?	Businessweek.	Available	at:	
http://www.bloomberg.com/graphics/2015-paul-ford-
what-is-code/.	

Grusin,	 R.,	 (1994).	What	 is	 an	 Electronic	 Author?	 Theory	
and	 the	 Technological	 Fallacy.	 Configurations,	 2(3),	
pp.469–483.	

Hiller,	M.,	(2015).	Signs	o’	the	Times:	The	Software	of	Phi-
lology	 and	 a	 Philology	 of	 Software.	Digital	 Culture	 and	
Society,	1(1),	pp.152–163.	

Jockers,	M.L.,	 (2013).	Macroanalysis:	Digital	Methods	and	
Literary	History,	Urabana,	Chicago,	Springfield:	UI	Press.	

Kittler,	F.,	(1993).	Es	gibt	keine	Software.	 In	Draculas	Ver-
mächtmis.	Leipzig:	Reclam	Verlag,	pp.	225–242.	

Knuth,	D.E.,	(1984).	Literate	Programming.	The	Computer	
Journal,	27(1),	pp.97–111.	

Latour,	 B.,	 (1993).	 We	 Have	 Never	 Been	 Modern,	 Cam-
bridge,	Massachusetts:	Harvard	University	Press.	

Marino,	M.C.,	(2006).	Critical	Code	Studies.	Electronic	Book	
Review.	 Available	 at:	 http://www.electronicbookre-
view.com/thread/electropoetics/codology	 [Accessed	
January	16,	2015].	

Nowviskie,	B.,	(2011).	Where	Credit	Is	Due:	Preconditions	
for	 the	 Evaluation	 of	 Collaborative	 Digital	 Scholarship.	
Profession,	pp.169–181.	

Piper,	 A.,	 (2015).	 Novel	 Devotions:	 Conversional	 Reading,	
Computational	 Modeling,	 and	 the	 Modern	 Novel.	 New	
Literary	History,	46(1),	pp.63–98.	

Presner,	 T.,	 (2012).	 How	 to	 Evaluate	 Digital	 Scholarship.	
Journal	 of	 Digital	 Humanities,	 1(4).	 Available	 at:	
http://journalofdigitalhumanities.org/1-4/how-to-eval-
uate-digital-scholarship-by-todd-presner/.	

Purdy,	 J.P.	 &	Walker,	 J.R.,(2010).	 Valuing	 Digital	 Scholar-
ship:	 Exploring	 the	 Changing	 Realities	 of	 Intellectual	
Work.	Profession,	pp.177–195.	

Rockwell,	G.,(2011).	On	the	Evaluation	of	Digital	Media	as	
Scholarship.	Profession,	pp.152–168.	

Rybicki,	J.,	Hoover,	D.	&	Kestemont,	M.,	(2014).	Collabora-
tive	authorship:	Conrad,	Ford	and	Rolling	Delta.	Literary	
and	Linguistic	Computing,	29(3),	pp.422–431.	

Sahle,	P.	&	Vogeler,	G.,	(2014).	Criteria	for	Reviewing	Schol-
arly	Digital	Editions	(version	1.1).	Institut	für	Dokumen-
tologie	 und	 Editorik.	 Available	 at:	 http://www.i-d-
e.de/publikationen/weitereschriften/criteria-version-
1-1/	[Accessed	October	13,	2016].	

Smithies,	 J.,	 (2012).	 Evaluating	 Scholarly	 Digital	 Outputs:	
The	Six	Layers	Approach.	Journal	of	Digital	Humanities,	
1(4).	 Available	 at:	 http://journalofdigitalhumani-
ties.org/1-4/evaluating-scholarly-digital-outputs-by-
james-smithies/	[Accessed	September	2,	2016].	

Swafford,	J.	(2016)	‘Messy	Data	and	Faulty	Tools’,	in	Gold,	M.	
K.	and	Klein,	L.	F.	(eds)	Debates	in	the	Digital	Humanities.	
Minneapolis:	 University	 of	 Minnesota	 Press,	 p.	 600.	
Available	 at:	 http://dhdebates.gc.cuny.edu/de-
bates/text/100.	

Underwood,	T.,(2014).	Understanding	Genre	in	a	Collection	
of	a	Million	Volumes,	Interim	Report.	Figshare.	Available	
at:	 https://figshare.com/articles/Understand-
ing_Genre_in_a_Collection_of_a_Million_Volumes_In-
terim_Report/1281251	[Accessed	March	15,	2016].	

Underwood,	T.	&	Sellers,	 J.,(2016).	The	Longue	Durée	of	
Literary	 Prestige.	 Modern	 Language	 Quarterly,	 77(3),	
pp.321–344.	

Vee,	A.,	(2013).	Understanding	Computer	Programming	as	a	
Literacy.	LiCS,	1(2),	pp.42–64.	

Zundert,	J.J.	van,	(2016.)	Author,	Editor,	Engineer	—	Code	&	
the	Rewriting	of	Authorship	in	Scholarly	Editing.	Interdis-
ciplinary	Science	Reviews,	40(4),	pp.349–375.	

	

	

	

