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Abstract

We extend the standard model of general equilibrium with incomplete mar-
kets to allow for default and punishment by thinking of assets as pools. The equi-
librating variables include expected delivery rates, along with the usual prices
of assets and commodities. By reinterpreting the variables, our model encom-
passes a broad range of adverse selection and signalling phenomena in a perfectly
competitive, general equilibrium framework.

Perfect competition eliminates the need for lenders to compute how the size
of their loan or the price they quote might affect default rates. It also makes for
a simple equilibrium refinement, which we propose in order to rule out irrational
pessimism about deliveries of untraded assets.

We show that refined equilibrium always exists in our model, and that default,
in conjunction with refinement, opens the door to a theory of endogenous assets.
The market chooses the promises, default penalties, and quantity constraints of
actively traded assets.
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1 Introduction

General equilibrium theory has for the most part not made room for default. In
the Arrow—Debreu model of general equilibrium with complete contingent markets
(GE), and likewise in the general equilibrium model with incomplete markets (GEI),
agents keep all their promises by assumption. More specifically, in the GE model,
agents never promise to deliver more goods than they personally own. In the GEI
model, the definition of equilibrium allows agents to promise more of some goods
than they themselves have, provided they are sure to get the difference elsewhere.
Agents there too must honor their commitments, though no longer exclusively out of
their own endowments. FEach agent can keep his promises because other agents keep
their promises to him.

We build a model that explicitly allows for default, but is broad enough to incor-
porate conventional general equilibrium theory as a special case. We call the model
GE(R, A\, Q) because each asset j is defined by its promise Rj, the penalty rate \;
which determines the utility punishment for default on the promise, and the quantity
restriction ); attendant on those who sell it. When A and @) are set to infinity (or
made sufficiently high), the model reduces to GEL!

Fixing exogenously the set A of tradeable assets,

A={(R),A;,@j) : (R}, A;,Q;) is tradeable},

we solve for equilibrium E(A). The equilibrating variables include anticipated deliv-
ery rates K on assets, along with the usual prices (7, py) of assets and commodities.
In keeping with the spirit of perfect competition, we suppose that every agent regards
(p,m, K) as fixed.

One of the central features of our model is that assets are thought of as pools.?
Different sellers of the same asset will typically default in different events, and in
different proportions. The buyers of the asset receive a pro rata share of all the
different sellers’ deliveries, just as an investor today does in the securitized mortgage
market, or in the securitized credit card market. When the pools are large, an
(infinitesimal) buyer can reasonably assume that both the price 7; and pool delivery
rate K are unaffected by the number of shares he buys.

We have in mind the huge, anonymous markets now becoming so common on
Wall Street. Mortgages today are promises sold by homeowners to banks, who then
sell them into mortgage pools (totalling around $3 trillion). The bank plays a minor,
administrative role, collecting payments and verifying the eligibility of the homeown-
ers (according to criteria specified by the pool, not the bank). The bank receives a
“servicing fee” for its efforts, and passes the default and prepayment risk on to the
shareholders in the pool. The analysis therefore properly shifts from the one-on-one

!Many authors (including Townsend, 1979; Diamond, 1984; Gale-Helwig, 1985; Hart—Moore,
1998; and Allen—-Gale, 1998) have studied models of equilibrium default. But none of these models
yields GEI as a special case while explicitly incorporating nonpecuniary punishment for default.

2To the best of our knowledge, Jerry Green (1974) was the first to introduce pooling in the context
of default. His contribution is all the more remarkable, coming as it did, before pooling became so
prevalent in practice.



interaction of banker and homeowner to the pool level of anonymous shareholders
(lenders) and borrowers, which is more akin to perfect competition.?

Even though our pools are perfectly competitive, heterogeneous default still cre-
ates adverse selection. Sellers with a proclivity for default have incentive to sell
disproportionately many promises into the pool, thereby worsening the pool’s deliv-
ery rate. We show in Section 8 that the adverse selection and signalling phenomena
described by Akerlof (1979), Spence (1973), and Rothschild and Stiglitz (1976) can
all be captured in our perfectly competitive framework.?

An important consequence of default is that the subset A* = A*(E(A)) C A of
actively traded assets

A* = {(Rj, )\j, Qj) cA: (Rj, )\j, Q]) is positively traded in E(A)}

is usually much smaller than A. The reason is that, with default, the sale of an asset
is not the negative of its purchase. The buyer receives only what is delivered, but the
seller gives up in addition penalties for what is not delivered. The wedge between the
marginal utility of buying and the marginal disutility of selling is like a transactions
cost. Assets which yield gains to trade greater than this cost will still be traded, while
the rest will not. In GEI the selection of assets is usually regarded as outside the
model, because typically every (nonredundant) asset is actively traded, so A = A*.
However, with default, there will be many assets in A\.A* which are priced by the
market, but neither bought nor sold.” The promises, penalties, and sales limitations
corresponding to assets in A* can thus be regarded as endogenously emerging out of
A.

At equilibrium the market is “open” for every untraded asset j in A\A* via its
price 7; and its expected delivery rate K, though agents choose voluntarily not to go
there. For active markets j € A*, the rate K is determined via rational expectations
of the actual deliveries made in pool j. But if j € A\ A* is inactive, how are we to
assign K;?7 Allowing K to be arbitrarily low would by itself render j inactive. How
are we to eliminate such irrational pessimism?9

We introduce an equilibrium refinement in which the government intervenes to
sell infinitesimal quantities €; of each asset and fully delivers on its promises. We

31f the banks “cherry pick” their loans, selling only the worst ones into the pools, or if the agencies
which organize the pools likewise retain the best loans, then game theoretic considerations come to
the foreground, and the analysis becomes vastly more complicated. The system currently in place in
the United States is designed to eliminate or at least discourage such cherry picking. To the extent
it is successful, perfect competition becomes a plausible idealization of reality.

Moral hazard also enters the picture: first because sellers have a choice not to deliver, and
second, because a seller of many assets will be less able to fully deliver on any of them than if he had
refrained from overextending himself. For other general equilibrium models of adverse selection, see
Gale (1992), Hellwig (1987), and Prescott and Townsend (1984).

°In some applications we might choose to limit A exogenously; the point is that even if A is
inclusive, A" will still be limited.

In Green (1974) expectations of future delivery rates were taken to be completely exogenous.
Therefore the issue of rational expectations on active markets, much less that of pessimism on inactive
markets, could not arise. This eliminated the need for equilibrium refinement, and the possibility of
endogenous asset selection and signalling.



take K; = lim Kj(¢) as € — 0. This touch of intervention generates enough optimism
to rule out all spurious inactivity on asset markets.

Our refinement is very simple. Agents do not have to speculate on reactions to
reactions to ... to untried actions, as in the contract theory literature, where a small
number of parties are in face-to-face strategic interaction (see, e.g., Cho and Kreps
(1987)). They need only think about the observable macro variable Kj(e).”

If agents have the mental powers to anticipate future rates of default (contingent
on future events), just as they are presumed by conventional equilibrium theory to
have the mental powers to anticipate future prices (contingent on future events),
then default is consistent with the orderly function of markets. In Section 4 we prove
the existence of refined equilibrium with default under exactly the same conditions
necessary to prove the existence of equilibrium in the GEI model (where default is
ruled out by assumption.) More precisely, we show that our refined equilibrium E(.A)
exists for every collection A of assets (R, A, Q)) for which @) < oo, or for which @ = oo
but the promises R are all paid in the same numeraire.

Recall that each asset (Rj, Aj, Q;) is characterized by three dimensions. If the set
A of available assets is comprehensive (i.e., all conceivable levels and combinations
of the three asset dimensions are present in A), then we prove in Section 5 that A4*
will in effect select the Arrowian levels: completely spanning promises, with infinite
penalties, and nonbinding quantity constraints. On the other hand, if one of the
dimensions in A is exogenously fixed far from its Arrowian level, then the forces of
supply and demand will endogenously select the levels in the remaining dimensions
in A* to be far from Arrowian. In Sections 6 to 8, we illustrate the endogeneity of
A* by fixing each pair of dimensions and investigating how the market endogenously
picks the third.

In Section 6 we consider an example with all the Arrow promises, plus the riskless
promise. When penalties are exogenously restricted to be low, and quantity limits
fixed at their infinite Arrowian levels, we show that none of the Arrow securities is
actively traded, so that the market endogenously chooses the riskless promise. When
the penalties are raised sufficiently, the Arrow promises become active.

In Section 7, we suppose the span of promises is exogenously restricted, while the
quantity limits remain Arrowian. We first ask how harsh default penalties should be.
We find in our example that they should be so low that agents sometimes default even
when they have resources to deliver, but not so low that everybody always defaults.
We next ask how harsh the penalties will be that endogenously emerge in A*. We
find that the forces of supply and demand do select a unique penalty, which in the
example turns out to be the optimal penalty.

We show in Section 8 that if promises and penalties are fixed exogenously, then A*
endogenously selects quantity limits ();. Fixing the penalties in a particular way, we
can incorporate insurance as a special case of default, which displays adverse selection
and signalling in a pure form. We then obtain primary and secondary insurance poli-
cies as part of the refined equilibrium. Unlike the previous sections, we get multiple,
Pareto comparable equilibria. If we further impose the Rothschild—Stiglitz exclusivity

"In Section 3.2 we distinguish our refinement from the trembles used in game theory.



constraint, prohibiting agents from taking out more than one insurance policy, we get
a unique equilibrium, equivalent to their separating equilibrium, moreover without
jeopardizing the existence of equilibrium.

Finally, in Section 9 we ask why the right asset is necessarily used in Section 7,
but the wrong assets are used in most of the equilibria of Section 8. The answer
has to do with adverse selection. In refined equilibrium, the delivery rates K; of
untraded assets j depend only on the reliability of the agents most eager to sell (the
“on-the-verge sellers”). Depending on the allocation achieved via the traded assets,
the most eager to sell might be the most unreliable or the most reliable.

2 Default in Equilibrium: The GE (R, A, Q) Model

2.1 The Economy

As in the canonical model of general equilibrium with incomplete markets (GEI), we
consider a two-period economy, where agents know the present but face an uncertain
future. In period 0 (the present) there is just one state of nature (called state 0), in
which H agents trade in L commodities and J assets. Then chance moves and selects
one of S states which occur in period 1 (the future). Commodity trades take place
again, and assets pay off. The difference from GEI is that in our GE(R, A, Q) model,
assets pay off in accordance with what agents opt to deliver. Our notation for the
exogenous variables is:

¢e L=/{1,..,L} = set of commodities

se S ={1,.., S} = set of states in period 1

S* ={0} U S = set of all states

he H={1,..,H} = set of agents

el € Ri*XL = initial endowment of agent h

jeJ=A{1,..,J} = set of assets

R; € RiXL = promise per unit of asset j of each commodity ¢ € L in each state

ses

uh i RY*E — R = utility function of agent h

)\Qj € R, =R, U{co} = real default penalty on agent h for asset j in state s

Q? € R, = bound on sale of asset j by agent h

We assume that no agent has the null endowment, and that all named commodities
are present in the aggregate, i.e., e? = (efy,...,el;) # 0 for all h € H and s € S*,
and ey = ) hep egg > 0 for all s¢ € S* x L. Also each u” is continuous, concave and
strictly increasing in each of its S* x L variables. Having assumed strict monotonicity
and concavity, there is no further loss of generality in assuming that u”(z) — oo
whenever ||z||oo — 00.®

"Let u" be concave, continuous, and strictly monotonic. Let 0 = {z € R} L : ||z]|e <
2||3, €"lles}. Let L be the set of affine functions L : R — R such that L(z) > u"(z) for
all x € R_‘?_*L, and L(z) = f(z) for some « € 0. Define @"(z) = infres L(x). Then equilibrium with
u” and @" coincide, and @" has the desired property.



Agents h have heterogeneous, state-dependent endowments e € Rf; and disutil-
ities of default )\?j.

A promise Rj = (Rgj: s € S, £ € L) = (Rsj)ses € (RY)? for j € J, specifies
bundles of goods (or services) to be delivered in each state.

Each kind of asset prescribes a limit, Q?, on the sales each agent h can make of
it. Such limits are natural in any realistic model of credit.? If Q? = 0, then agent h
is essentially forbidden from selling asset j. If the limits Q? = 00, or are very large,
they may be entirely irrelevant, as they are in the examples of Sections 6 and 7.1 But
if they are small, then they may be used as a signal that the sellers are not making
many promises, and hence that the promises are reliable. We explore signalling in
Section 8.

An economy is defined as a vector

e = (e nern, (R (Vyhues @ren) ).
Note again that assets consist of promises, penalties for default, and limits on sales.

2.2 Equilibrium
2.2.1 Macro Variables and Individual Choice Variables

Our endogenous variables consist of three macro variables and four individual choice
variables:

pE R‘fﬁL = commodity prices

e Ri = asset prices

K €[0,1]°%7 = expected delivery rates on assets

zh e Ri*XL = consumption of h

o ¢ ]RJJr = asset purchases of h

ol e R;’r = asset sales of h
Dh ¢ RSFXL)XJ = deliveries by agent h on assets j € J
The possibility of default forces us to add delivery rates K as macro variables. In

keeping with anonymity, the promises go? and go? of different sellers h and & are not

allowed to be distinguished, even though they may deliver differently, D;L #+ DJF-L. Just

as the sales of promises gp? are pooled at the market for asset j, so we suppose the
deliveries on j are also pooled. The buyers (shareholders) of pool j receive a pro rata
share of all its different sellers’ deliveries. Each share of pool j delivers the fraction

Ko — DhenPs - ng
sj] —
> ohem Ps stSO?

9Evidence abounds that finite bounds are always imposed in the extension of credit. Even the
best “name” among borrowers has a limited credit line.

10Tn Section 4 we are able to prove the existence of equilibrium even when Q;‘ = oo, provided
A > 0 and the R; all deliver in the same good.



of its promise p, - R,; in state s. For large pools an agent will take K; as fixed (just
as he takes 7; as fixed). The shareholder of pool j does not know, or need to know,
the identities of the sellers or the quantities of their sales. All that matters to him is
the price 7; of the share and the anticipated delivery rates K; = (Kyj)ses-

The terms (Rj, (()\Zj)ses, Q?)heH) of pool j are set exogenously, just as the loca-
tion, date, and quality of a commodity are in traditional general equilibrium theory.
The prices 7;, the delivery rates K, and the trades (9? , w;b) nhey at each pool j are all
determined endogenously at equilibrium by the market forces of supply and demand.

An agent’s ability to keep a promise depends on how many promises he sells, both
of the same kind 7, and of other kinds j’ # j. Moral hazard enters the picture, since
a buyer of an asset (i.e., lender) does not know which other promises the seller (i.e.,
borrower) has made, and because borrowers have the option to default.

Adverse selection enters the picture because agents have different endowments
out of which to keep their promises, and also different disutilities of default. Some
agents, whom we may think of as unreliable, have more incentive to default and to
make large sales of promises into the pool.

Signalling enters the picture via the quantity limits @;. If no agent can sell
more than ¢); promises into the pool, and if reliable agents can be counted on to
sell the full quota @Q;, then buyers need not worry that the unreliable sellers are
disproportionately represented.

2.2.2 Household Budget and Payoff
The budget set B"(p,n, K) of agent h is given by:

Bh(p,ﬁ,K) = {(m,&,%D) ER:S'r*xL xRi xRi XRixSxL:

po- (w0 —€f) + - (0—¢p) < 0; @; < Q for j € J; and, Vs € 5,

Ds - (xs - 62) + Zps : Dsj < Zestjps : st
jeJ jed

The budget set allows agent h to deliver whatever he pleases. On the other
hand, the agent expects to receive a fraction Kg; of the promises bought by him
via asset j in state s. The first constraint says that agent A cannot spend more on
purchases of commodities xy and assets # than the revenue he receives from the sale
of commodities eg and assets ¢. Moreover he can never sell more than Q;L of any
asset j. The second constraint applies separately in each state s € S. It says that
agent h cannot spend more on the purchase of commodities x5 and asset deliveries
> i D,; in state s than the revenue he gets in state s from commodity sales e? and
asset receipts Zj 0; KsjpsRs;.

The only reason that agents deliver anything on their promises is that they feel a



disutility )\Zj from defaulting. The payoff of (x, 6, p, D) given prices p, to agent h is

- Dgj|*

MNelop. - Rei —
wh(w,a,go,D,p) _ uh(w) . Z Z sj[(pjps sg.v Ps
jeJ seS Ps * Vs

where vs € Rﬁ is exogenously specified with vs # 0. Note that [gojps ‘Rsj—ps-Ds;|t =
max{0, ¢;ps - Rsj — ps - Ds;} is exactly the money value of the default of h on his
promise to deliver on asset j in state s. Dividing it by ps-vs measures it in real terms.

Notice that the budget set is convex,!' and the payoff function w” is concave, in
the household choice variables (z, 6, o, D).12

2.2.3 Default Penalties

Once we allow for default it is evident that society has much to gain from punishing
those agents who fail to keep their promises. In a multiperiod world, market forces
themselves might provide some incentive to keep promises, since agents who acquired
a bad reputation for previous defaults might find it more difficult to obtain new
loans. Collateral is also a very important device for guaranteeing at least partial
payment (see Geanakoplos, 1997); but here we ignore it. For reasons of simplicity and
tractability, we confine attention to a two period model with exogenously specified
default penalties which are increasing in the size of the default. These penalties
might be interpreted as the sum of third party punishment such as prison terms,
pangs of conscience, (unmodeled) reputation losses, and (unmodeled) garnishing of
future income.

Default in our model can either be strategic or due to ill fortune. Penalties are
imposed on agents who fail to deliver, whatever the cause. Debtors choose whether
to repay or to bear the penalty for defaulting; creditors cannot observe why default
occurs. Agents who have no resources to repay will be punished as severely as they
would if they had the resources but chose not to repay.'® The consequences of default
penalties are therefore two-fold: they tend to induce agents to keep promises when
they are able, and they tend to discourage agents from making promises that they
know in advance they will not always be able to keep.

Although in practice the severity of the penalty (e.g., a felony vs. a misdemeanor)
depends on the nominal amount, and that is only adjusted slowly in the face of
inflation, we suppose the adjustment is instantaneous, so that the penalties depend
on the “real” default. Accordingly, we divide nominal defaults by the market price
in state s of a fixed basket of goods v;.

11t is also worth noting a scaling property of the budget set (which is immediate from its definition
and the fact that e # 0 and ps > 0 for all s € §*): (x,0,¢,D) € B"(p,7,K) and 0 < o < 1 =
(azx,af,ap,aD) € B"(p', 7', K') for all (p',n’, K') sufficiently close to (p,, K). This property will
often be useful to us.

12Had we expressed these choices with other (apparently natural) variables, such as dgj = delivery
per unit promised, the budget set would no longer be convex, nor would w" be concave.

13Tn our model default penalties do not distinguish fraud from ill fortune. In reality they are hard
to separate, but ever since Las siete Partitas of Don Alfonso X “the wise,” bankruptcy law has sought
to distinguish them.



For simplicity (and for the facility of doing comparative statics) we have taken
the default penalty to be linear and separable in the amount of default, as in Shubik—
Wilson (1977). But we can easily accommodate more general payoffs w” which allow
for the marginal rate of substitution between goods to depend on the level of default.
All that is needed for Theorem 1 is the continuity of w” in all its variables, and
concavity of w" in (x,0,p, D). For Theorem 2 we need to assume, in addition, that
given any z, w"(z,0, 0, D,p) < u”(e") if the default in any state, on any asset, is
sufficiently large.

One could easily imagine a legal system that imposes penalties that are noncon-
cave and even discontinuous in the size of the default, for example trigger penalties
that jump to a minimum level at the first infinitesimal default. One could also imag-
ine confiscation of commodities in case of default. Our model does not explicitly allow
for these possibilities. But as we show in our working paper (Dubey—Geanakoplos—
Shubik, 2000), with a continuum of households, such modifications to the default
penalties do not destroy the existence of equilibrium.

2.2.4 Market Clearing

We are now in a position to define a GE(R, \, Q) equilibrium. It is a list (p, 7, K, (2", 6",
", D" cpr) such that (1) to (4) below hold.

For h € H, (z", 0" o, D) € arg maxw(z,6, p, D,p) over BM(p, 7, K) (1)

Z(xh —eM =0 (2)

heH
Y (" =" =0 (3)
heH
s sjl 2iner Ps * FsjPys 5Ty
Ky = heH. . heH ) (4)
arbitrary, if Z ps - Rsji =0

heH

Condition (1) says that all agents optimize; (2) and (3) require commodity and
asset markets to clear. Condition (4), together with the definition of the budget set,
says that each potential lender (i.e., buyer) of an asset is correct in his expectation
about the fraction of promises that do in fact get delivered. Moreover, his expectation
of the rate of delivery does not depend on anything he does himself; in particular,
it does not depend on the amount 9? he loans (i.e., purchases) of the asset. Every
lender gets the same rate of delivery.

Since heterogeneous borrowers may be selling the same asset, the realized rate of
delivery K,; is an average of the rates of delivery of each of the borrowers, weighted
by the quantity of their sales. It might well happen that those borrowers with the
highest rates of default are selling most of the asset, and this is the adverse selection
and moral hazard that rational lenders must forecast.



We believe that our definition of GE(R, A, Q) equilibrium embodies the spirit of
perfect, anonymous competition, and represents a significant fraction of the mass
asset markets of a modern enterprise economy.

2.2.5 Chain Reactions of Default

Our general equilibrium formulation enables us to evaluate the system-wide conse-
quences of default. In a world in which promises can exceed physical endowments,
each default can begin a chain reaction. A creditor in one asset where payment
does not occur is deprived of the means of delivery in another asset where he is the
debtor, thereby causing a further default in some other asset, etc. The indirect effects
of default might be as important as the direct effects, but they are missed in partial
equilibrium models.

In modern financial economies, agents often are long and short in many different
assets. They rely on revenues from their loans to keep their own promises. But these
revenues are only as reliable as the loans other agents have made to yet different
parties, thus opening the possibility of a chain reaction of defaults. If « defaults
against (3, forcing B to default against =y, forcing v to default against 4, then in
our definition of equilibrium, «, 3, and v will pay default penalties, and the total
utility loss from defaults will be large. Curiously this phenomenon is at its most
dangerous when the financial system is at an intermediate level of development, with
smoothly functioning markets that permit agents to go short, but with missing asset
markets which force agents to hold complicated portfolios of assets to achieve the risk
spreading they desire.

Consider a world with four agents and three possible future events, each consisting
of many different states of the world. Suppose 8 wants to consume in the first event,
v in the second event, and d in the third event. Suppose agents 3, v, and é have no
endowment in the future states. Suppose a wants to consume in the present, but has
a considerable endowment of good in the future, except in one unlikely state w in the
third event.

If there were an advanced financial system of Arrow securities, agent o would in
effect sell directly to each of the other three agents. For example, with just three
Arrow event-contingent securities, each one paying off exclusively in a different one
of the three events, agent a would sell the first security to 3, the second to ~, and
the third to §. Agent a by himself would default in state w, and he alone would pay
a default penalty.

Suppose, however, that in a less advanced financial system there are again three
securities available. R!'?3 promises 1 dollar in every state, R?3 promises 1 dollar in
(every state in) events 2 and 3, and R3 promises 1 dollar in (every state in) event 3.
Then in equilibrium we could expect a to sell R?3, 5 to buy R'?3 and to sell R*3, v
to buy R? and to sell R3, and 6 to buy R3. In the bad state w in event three, the
chain of defaults indicated above will take place. The penalty that « pays for starting
the chain reaction may be very small compared to the total penalty incurrent by the
rest of the defaulters.

Notice that the asset span of { R1?3) R?3) R3} is exactly the same as with the three



Arrow event-contingent securities. What makes the chain of defaults possible is the
interlocking asset trade, with some investors holding assets that other investors short,
in a long chain. With Arrow securities this chain would never include more than one
link and one default.

One way around these chain reactions is to encourage market intermediation that
nets payouts, as discussed in Dubey, Geanakoplos, and Shubik (2000).

3 Equilibrium Refinement

3.1 Untraded Assets

It is a curious fact that many of the large asset markets that our model seeks to
describe have been initiated not by entrepreneurs but by government intervention.
The government, for example, began the GNMA mortgage program by guarantee-
ing delivery on the promises of all borrowers eligible for the program (but not the
timing!* of delivery). It is likely, however, that these mortgage markets would func-
tion smoothly even without government guarantees. Private companies indeed do
sell insurance on non-GNMA mortgages. A reasonable question to ask is why the
securitized mortgage market did not begin on its own?

One possible explanation is provided by our model. When assets are actively
traded, expected deliveries Ks; must be equal to actual deliveries. Expectations
cannot therefore be unduly pessimistic. But for assets that are not actively traded,
our model makes no assumption about expectations of delivery (see (4)). In the
real world, investors with no experience in observing default rates might tend to
overestimate their probability. This can create serious problems, in practice as in our
model. In the model, so far, there is nothing to stop the expectations from being
absurdly pessimistic, which in turn will support trivial equilibria with no trade in the
asset. The point is easily seen by a simple example. Consider an equilibrium of an
economy. Introduce new assets j, but choose their prices 7; close to zero. Then no
agent will be willing to sell them, for he gets very little in exchange, but undertakes
a relatively large obligation either to deliver commodities or to pay default penalties.
Also choose the K; to be positive but even smaller. Then in spite of their low price,
no agent will be willing to buy the assets since he expects them to deliver virtually
nothing. Thus we have obtained trivial equilibria in which there is no trade of the new
assets on account of arbitrarily pessimistic expectations regarding their deliveries.

We believe that unreasonable pessimism prevents many real world markets from
opening, and provides an important role for government intervention. But it is inter-
esting to study equilibrium in which expectations are always reasonably optimistic.
It is of central importance for us to understand which markets are open and which are
not, and we do not want our answer to depend on the agents’ whimsical pessimism.

11 A default induces the government to prepay the loan immediately, even if the lender would prefer
the scheduled payments.

10



3.2 Refined Equilibrium

Expectations for deliveries by assets that are not traded are analogous to beliefs in
game theory “off the equilibrium path.” Selten (1975) dealt with the game theory
problem by forcing every agent to tremble and play all his strategies with probability
at least ¢ > 0, and then letting ¢ — 0. We shall also invoke a tremble, but in
quite a different spirit. Our tremble will be “on the market” and not on households’
(players’) strategies. Indeed, it might well be that no household could tremble the
way we want.

Consider an external e-agent who sells and buys ¢ = (¢j)jcs > 0 of every asset,
and fully delivers on his promises. (One might interpret this agent as a government
which guarantees delivery on the first infinitesimal promises.) This touch of honesty
banishes whimsical pessimism.!?

An equilibrium E(eg) obtained with the e-agent is called an e-boosted equilibrium.
Thus any such E(¢) = (p(¢), n(e), K (¢), (z"(¢), 0" (¢), ¢"(€), D"(¢)) nepr) must satisfy:

(wh(s),ﬂh(e), gph(e), Dh(e)) € arg maxwh(:c, 0,¢,D,p(e)) over Bh(p(s),w(e), K(?)))
1*

0 ifs=0
D @) —el) =3 S ci(1 - Ky(e)Ry; ifses (2)
heH jeJ
D (0"(e) — ¢"()) =0 (3%)
heH
ps(€) - Rsjej + Y ps(e) - Di(e)
heH i pu(e) - Ry )
Koj(©) =4 pa(e) - Roye; + 3 po(e) - Rugh(e) @ R >0 (g
1 e if ps(e) - Rsj =0

Since the e-agent buys and sells €; units of each asset j, asset market clearing (3*)
is as before. But since he delivers fully ¢;R,; on his promises, and gets delivered only
€jKsj(e)Rsj, on net he injects the vector of commodities >, ;¢;(1 — Ksj(e)) Rs;
into the economy in each state s € S. This explains (2*). Finally, condition (4*)
says that delivery rates are boosted by the external agent. (The delivery rate is

15Tn the strategic market games literature it has been observed that markets can be arbitrarily
shut because each agent expects that no other agent will go there, and hence does not go himself.
Those markets are truly opened simply by announcing any price: trade will necessarily be induced,
unless there were no gains to trade to begin with. Unfortunately, in our model, the problem is not so
simple. As we saw in our thought experiment, it is always possible to announce some prices (7, K)
that eliminate all buying and selling, arbitrarily shutting the asset markets. To truly open them, we
need to pick appropriate (m, K). This is achieved by our carefully chosen boost.

In strategic market games an external agent was introduced simply to trade, because any trade
necessarily led to the formation of a price, which is all that was required. He could easily be replaced
by a tremble on household strategies which forced them to trade instead. This expedient does not
work for asset markets in the presence of default. Our external agent must trade and deliver fully.
Replacing him with households who tremble (and deliver less than fully on average), will lead to
more equilibria, defeating the purpose of our refinement.
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irrelevant when promises ps(e) - Rg; = 0, and we have arbitrarily set it equal to 1.)
As e — 0, this boost disappears for assets that are positively traded in the limit. But
if €5/ hem gpg-‘(s) does not go to zero, the limiting rates K; will be boosted (unless
there is no default by the real agents).

An equilibrium E = (p, 7, K, (2", 0", ©", D"),c i) is called a refined equilibrium if
there exists a sequence of e-boosted equilibria E(e) with ¢ — 0 and E(e) — E.

In (an unrefined) equilibrium, the price m; of an untraded asset j might be so
low that no agent is close to wanting to sell it, or so high that no agent is close to
wanting to buy it. In any refined equilibrium, if an untraded asset j is expected
to default somewhere, i.e., Kg;jps - Rsj < ps - Rsj for some s € S, then there must
be at least one agent who is selling it in E(e), otherwise K ; = 1, and is therefore
on-the-verge of selling it in E (in the sense that he would sell it if its price were any
higher). If every agent h on the verge of selling j is “strictly conscientious,” i.e., has
a penalty )\Zj greater than the marginal utility of his consumption in state s, then
clearly K,; = 1, since deliveries will be full in E(e) for all small e. If every agent is
strictly conscientious in at least m states on asset j, then Ky; > m/S for at least one
state s. These properties, and a few more described in Appendix 10.3, yield what we
call on-the-verge equilibria. They form a superset of refined equilibria, but are much
easier to compute. If the superset is a singleton, then Theorems 1 and 2 guarantee
that we can compute refined equilibrium as the unique solution of these on-the-verge
conditions, without having to bother with the infinite sequence E(¢). We exploit this
in our examples.

We could have imagined an external agent who delivers only 70% of his promises,
instead of 100%. It is clear that any “100% refined equilibrium allocation” is a “70%
refined equilibrium allocation,” thus explaining why our choice of 100% deliveries
gives the sharpest refinement.

In Sections 5-8, on the endogeneity of the asset structure, we show that the equi-
librium refinement plays a crucial role in determining whether an asset j is positively
traded (j € A*) or not (j € A\A*).

3.3 Perfectly Competitive Pooling vs. Negotiation

Pooling dramatically reduces the information needed to buy a diversified portfolio of
risks. Instead of forecasting individual deliveries K 2] for many different individuals
h, a buyer need only concern himself with a single average delivery K;. Figuring
out K Shj for one individual is typically no less difficult than estimating K; for a pool
with a large population. Buyers facing K; are aware that unreliable sellers have put
more into the pool, but they need not worry that they will get a worse selection than
other buyers.

Perfectly competitive pooling reduces information requirements even further. Buy-
ers need not worry about either 7; or K;; varying as they change their expenditures
on j.

Nor do they need to forecast how the delivery at any pool would vary if the price
were changed, since no one of them can change the price. In the contract theory
tradition, buyers try to lure a better clientele by offering higher prices. But then
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they must foresee delivery rates K(m, R, A, Q) over 4 dimensions, while with pooling
they need only foresee K over 3 dimensions (R, A, Q).16

Thus pooling ameliorates the costly information processing problems inherent in
multiple bilateral negotiations, which is one reason why it is becoming so prevalent
in modern economies.!”

Pooling also vastly increases liquidity. When an asset is very finely defined, so
as to require delivery in exactly those states most appropriate for a small group of
people, then it is not likely to be heavily traded. A seller may have to wait a long
time to find a suitable buyer, and vice versa. And when such a seller is found, he
will exercise some temporary monopoly power. When there is pooling, the volume of
trade is high and nobody has monopoly power.

4 The Orderly Function of Markets with Default

Our first goal in this paper is to establish that default is completely consistent with
the orderly function of markets. To that end we prove that under fairly general
conditions, refined equilibrium always exists in our model.

The universal existence of equilibrium is somewhat surprising because of the his-
torical tendency to associate default with disequilibrium (or more accurately, to make
full delivery part of the definition of equilibrium). Furthermore, endogeneity of the
asset payoff structure is known to complicate the existence of equilibrium with in-
complete markets. But we show that no new existence problems arise from the
endogeneity of the asset payoffs due to default.

The universal existence of equilibrium with default is also surprising because the
pioneering papers placing adverse selection in a model of competition, by Akerlof
(1970) on the market for lemons, and Rothschild and Stiglitz (1976) on insurance
markets, purportedly showed that adverse selection is quite commonly inconsistent
with equilibrium. (We discuss Rothschild—Stiglitz in Section 8.)

We are now ready to state our main theorem, which is that GE(R, \, @) equi-
librium always exists, even if we insist on the equilibrium refinement discussed in
Section 3. Its proof is given in the Appendix.

Theorem 1 For any A € RfSJ and @Q € Rf 7. a refined equilibrium exists, where
R+ = R+ U oo.

'6The reader may worry that the paucity of prices will compromise the potential of the model
to incorporate the interesting features of adverse selection and signalling. While our simplification
precludes the analysis of price-setting in one-on-one bargaining situations, adverse selection and
signalling are clearly still present in the model. As we show in Section 8, our simple model does
produce interesting equilibria, even for insurance markets.

"The informational difference between modern pools and traditional negotiation is beautifully
illustrated by the mortgage banker played by Jimmy Stewart in the movie “It’s a Wonderful Life.”
His clients have no qualifications for loans, but he chooses to lend to them on the standard terms,
based on his extraordinary intuitive insight into their character. His brilliance is rewarded in the
movie. Unfortunately, in modern day competitive pools, there is no role left for Jimmy Stewart’s
skills.
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Our proof uses the fact that gp? < Q? by assumption. Later the Q;‘ will play

an important role as signals, but now the reader may wonder what would happen
if they were eliminated, or taken to be enormously large. Recall that there is a
pathology that occasionally occurs even when there is no default, for example in
the GEI model. Sometimes two assets j and j' that promise different commodities
nevertheless become nearly equivalent at some spot prices (ps)ses because they then
promise nearly the same money. At these prices the asset span suddenly drops, and
demand blows up as agents try to go infinitely long in asset j' and infinitely short in
asset j (or vice versa). This destroys the existence of equilibrium. The bounds Q;L
prevent this, as Radner (1972) long ago pointed out for the GEI model.

Without the bounds, GEI equilibrium can only be guaranteed if all the assets
promise payoffs exclusively in the same good (say L) in each state s € S. (See
Geanakoplos—Polemarchakis (1986).)

Default accentuates the asset span problem: two assets that usually make different
deliveries might, given certain macro variables (p,w, K), actually deliver the same
money. For example, if R; = Rj, and agent h sells asset j and buys j’, defaulting
slightly in state s on j, while agent i’ sells ' and buys j, defaulting slightly in state &',
then h and A’ have effectively created a new asset trading off consumption between
s and s’. (We shall see that augmenting the span of asset deliveries is the raison
d’étre of lenient default penalties.) As the default rates get lower, one might think
the agents might go unboundedly longer and shorter in the two assets, creating the
same problem of asset span as in GEI, since in the limit there would be no default and
the span would drop. One should therefore wonder if default introduces additional
difficulties in proving the existence of equilibrium. We have just seen that in the
presence of the bounds Q? it does not. Even without the bounds Q?, we can show
that equilibrium exists, just as in GEI, provided that all assets deliver in the same
commodity.

Theorem 2 Let all promises R; be exclusively in good L for all s € S and let
R; #0 forall j € J. Define GE(R,\) = GE(R, \,Q) with Q;L =oo,Vhe H,jeJ.

Then GE(R, ) exists for any vector X € @fsj with g )‘ZszLj >0 forall h € H
and j € J.

In the course of the proof (see Appendix), we show that if an agent h is buying
a portfolio #" and selling an equally expensive portfolio ¢" that makes the same
promises, and if there is the slightest default on an asset in 6", then agent h must
default completely in some state on one of the assets in ¢”. The problematic scenario
just described with a slight default in two assets j and j’ making identical promises
could not occur, because h and k' would be defaulting completely (not slightly) in
some states s and s'.
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5 Endogenous Emergence of Arrow Securities

In some contexts it has become customary to think of endogenizing the asset structure
by allowing atomic agents to invent new assets (often one at a time) to upset a
prevailing equilibrium. These asset-creating agents are hypothesized to be motivated
by payoffs that might depend on the perceived volume of trade which would take
place in their new asset if no other prices changed (or in the new trading equilibrium,
after all prices equilibrated), or in some other way on their perceived profits from
introducing the new asset. When the status quo assets are chosen so that none of
these agents has an incentive to introduce a new asset, the asset structure is said
to have been endogenously determined. This approach to endogenizing the asset
structure inevitably involves a combination of price taking behavior and oligopolistic-
Nash thinking on the part of the asset-creating agents.

By contrast we follow a relentlessly competitive approach to the problem of en-
dogenous assets.'® Every agent is a price taker. An asset is endogenously missing in
our approach if it is not in A*, i.e., if there is a price at which no agent wants to sell
or buy it.

Recall that an asset is specified not just by its vector R?; of promises across states,
but also by the associated default penalties )\gj, and quantity constraints Q;L The
Arrow security, for state s, is an asset i(s) that promises one unit of good L in state
s (and nothing else), with penalty )\Zi(s) = oo and Q" 5 = for all h € H.

If the government could simultaneously and without limitations choose assets,
it would pick all the Arrow securities. We show in Theorem 3 that the market
would do the same. Given an arbitrary collection of assets which includes all the
Arrow securities (but possibly many other assets with low penalties or low quantity
constraints), equilibrium will necessarily be the same as if only the Arrow securities
were available. No asset with K,; < 1 will be actively traded. The set of actively
traded assets A* can always be taken to be just the Arrow securities, no matter how
big A is.

Theorem 3 Let £ = ((ul, e")pep, (R;, (()\Q'j)ses, Q‘;L)heH)jej) be an economy which
includes all the Arrow securities {i(s) : s € S}. Then for any GE(R, \, Q) equilib-
rivm n = ((p, 7, K), (", 0" " DM perr), we can find prices q € RS_IIS)L such that
(q, (x™Mnen) is an Arrow-Debreu equilibrium. Moreover, if A >> 0, no agent defaults
on any actively traded asset in 1, even if there are assets j € J with low )\Zj. Finally,
there is an equilibrium 1, possibly 1 itself, with the same ((p,7, K),(z™)nen) such
that the only actively traded assets in 1 are Arrow securities.

Proof Let 1 be given. Let go = po and let gs = m(5)(ps/ps1), Vs € S. Let

v(g) = max{u' (@) 1 g @ < g€, @ € RS ¥EY,

% For other competitive approaches for endogenous assets, see Allen and Gale (1988, 1991), Pe-
sendorfer (1995), and Townsend (1979).
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Observe that K,; = 1 for each asset j with )\Zj = oo Vh,s, if Ry # 0, since no
agent will default in the refinement and the external agent will be fully delivering. It
follows that by never defaulting, each agent h could, by selling and buying the Arrow
securities, achieve at least v"(gq), that is,

ul(2h) > ul(2") — default penalty > v"(q).

It follows that g-z" > g-€" Vh € H. Since nis a GE(R, A\, Q) equilibrium, Y, _,; 2" =
S hem €. Hence q-a" = q-e" Vh € H, and (g, (#")pen) is an Arrow-Debreu
equilibrium, and the default penalty actually borne by each agent h € H is zero.
Clearly each agent is indifferent to achieving z”* via the actively traded assets in
7, or via Arrow securities. If every agent trades exclusively via Arrow securities, then
supply will equal demand, and we achieve the desired equilibrium 7’. |

If A does not include all the Arrow securities, equilibrium will still select actively
traded assets. When default is expected on an asset and K; < 1, buyers receive only
what is delivered, but sellers give up in addition penalties for what is not delivered.
This effective transactions cost limits the number of assets that can be actively traded,
and leads to A* much smaller than A. This is so even though we confine attention to
refined equilibria in which optimistic expectations tend to boost trade in every asset.

In the following three sections we give examples showing that if two of the three
dimensions (R, A\, Q) of assets in A are fixed, the third dimension is endogenously
determined in equilibrium via A*. In our examples one of the two exogenous dimen-
sions is fixed far from Arrowian (to steer clear of Theorem 3), and we find that the
endogenous dimension is then chosen also far from Arrowian.

6 Endogenous Promises

Here we give an example showing that if penalties are low, the market will choose
to actively trade only a single riskless promise, instead of the Arrow promises. In
every state s € S, there is some agent who does not intend to deliver and is relatively
unworried about his punishment in that state (because he thinks the state is relatively
unlikely). He will have incentive to sell the corresponding Arrow promise j and debase
its Kyj, and therefore its price m;. This will effectively prevent agents intending to
deliver in state s from selling j. By raising the general level of default penalties, this
phenomenon is discouraged. As penalties are made harsher, A* increases.

Example 1: Suppose there are just two future states S = {1,2}, one commodity
L =1, and three asset promises Ry = (1,1), R; = (1,0), Ry = (0,1) with Q? = 00
for all h,j. Let there be two agents H = {1, 2} with period one endowments e! =
(1,0),e? = (0,1), and payoffs that depend only'? on consumption (x1,z2) in period

19To keep our examples as simple as possible, we suppose no utility in period 0. This violates the
strict monotonicity assumption of our model, but our theorems can be extended to cover this, and
the other examples. We refrain from doing so for ease of exposition.

16



1 and on penalties:

2 2

W'(z,0,¢,D) =
=0 =0

2 2

1 2
WQ(.%,@,QO,D) = g logml — Z)\(legpj — Dlj)+ —+ g 10g$2 — Z)\(jogoj — ng)+

i §=0 | i §=0

(We take the penalty deflator vs = 1, as we shall in all our remaining examples as
well.) Note that each agent h effectively assigns probability 2/3 to his good state
s = h, and probability 1/3 to his bad state s # h. The penalty rate is A in each
state, on all three assets. We shall show that for low values of A only asset Ry will
be actively traded in equilibrium.

In any (symmetric) equilibrium, each agent will consume 1 — z in his good state,
and z in his bad state. If A > 3, it is easy to check that the Arrow—Debreu allocation
(1 = (2/3,1/3), 2% = (1/3,2/3)) is achieved via trade in the Arrow securities Ry,
Ry. But for A < 7/3, the Arrow securities are inactive in any equilibrium. To quickly
check this is so for A < 2, simply note that the marginal disutility of selling Ry is %)\
for agent h = 1 (since 23 = x < 1/3,s0 1/x > 3 > 2 > ). For agent h = 2 it is
min{3), 2:2-} > min{3), 2} > 2\ if A < 2. Thus agent h = 2 is not selling Ry. But
agent h = 1 would default completely if he sold Rs, hence Ry is not sold actively in
equilibrium. Similarly R; is not actively traded. We leave it to the reader to show
that there is active trade in asset Ry in refined equilibrium for any 1 < A <7/3 (the
computation is similar to Example 2 in Section 7, where the equilibrium is calculated
in detail). For these A the market endogenously chooses asset promises Ry.

For 7/3 < A < 3, both agents sell both Arrow securities R; and Ra, giving
delivery rates less than 1. As A rises to 3, delivery rates converge to 1 and trades rise
to Arrow—Debreu levels.

7 Endogenous Default Penalties

We turn to the dual of the problem in the last section, and show that when asset
promises are exogenously restricted in A, the market will endogenously choose inter-
mediate default penalties in A*, even though higher and lower levels are available in
A.

We begin by asking how high the penalties should be, when promises are re-
stricted.

7.1 The Economic Advantages of Intermediate
Default Penalties with Incomplete Markets

There are four fundamental drawbacks to reducing the default penalties A so far that
some agents choose to default in at least some states in equilibrium: (1) creditors, ra-
tionally anticipating that they might not be repaid (on account of direct and indirect
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reasons), are less likely to lend; (2) borrowers may not repay even in contingencies
that have been foreseen, and even though they are able; (3) imposing penalties is a
deadweight loss; (4) the default of unreliable agents imposes an externality on reliable
agents who, because they cannot distinguish themselves from the unreliable agents,
are forced to borrow on less favorable terms.

Despite myriad reasons why default is socially costly, the benefits from permitting
some default often outweigh all of these costs. These benefits are basically twofold,
and both stem from the fact that markets are incomplete to begin with. First, an
agent who defaults on a promise is in effect tailoring the given security and substi-
tuting a new security that is closer to his own needs, at a cost of the default penalty.
With incomplete markets one set of assets may lead to a socially more desirable out-
come than another set. Second, since each agent may be tailoring the same given
security to his special needs, one asset is in effect replaced by as many assets as there
are agents, and so the dimension of the asset span is greatly enlarged. A larger asset
span is likely to improve social welfare (although this gain must be weighed against
the deadweight loss of the default penalties that are thereby incurred). In short,
permitting default allows for a plethora of additional assets that do not have to be
specified in advance.

A third benefit from allowing default, which is closely related to the first two, is
that agents can go long and short in the same security, thereby doubling their asset
span. We make use of this in the following example, which shows that the optimal
default penalty is intermediate, even though it causes all the disadvantages (1)—(4).

Example 2: Let H = {1,2,3}, S = {1,2,3}, and L = {1}. Suppose agents care
only for consumption at ¢t = 1, and have the same utility>’

3
u(zy, x2,x3) = Zlog(xs).
s=1

The endowments of the agents are el = (0,1,1), € = (1,0,1), e* = (1,1,0). We
assume there is one asset 0 promising Ry = (1,1,1). We take default penalties to be
)‘20 = A > 0 Vh, s, with the penalty deflator vs = 1 Vs € S. We take QF = co Vh.
We can calculate the equilibrium for any value of A € (1,00). When A < 1,
buyers realize that sellers will not deliver anything, so demand will be zero and
equilibrium will involve no trade. When A > 1, there can be no inactive refined
equilibrium.?’  When A — oo buyers will anticipate full delivery, but sellers will
realize that with probability 1/3 they will not be able to avoid a crushing penalty,
and so again equilibrium trade goes to 0. By setting an intermediate level of default

20All our examples satisfy the assumptions of Theorem 2. Hence we can be sure a refined
equilibrium exists. Actually log(z) is not continuous at 0, so by “logz” we really mean logz =

Inzifx >4
{%m—i—lnéflifogmgé

*1Suppose trades are very small in the perturbation. Then each agent will be delivering fully in his
good states, hence Ks > 2/3 for at least one s. But then h = s will want to trade a nonvanishing
amount, a contradiction.

for some very small 6 > 0.
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penalties we can make everybody better off. We graph the situation schematically in
welfare space:

W2 =U? -] (defaullt)

Arrow - Debreu eguilibrium
A=A =6/5

A<lorAd=o

W' =U" - ) (defaullt)

In equilibrium different sellers default differently. The buyers of the asset receive
the average deliveries of all the sellers. For instance, when A = \* = 6/5, sellers in
their good states deliver fully, and sellers in their bad state default completely, even
though they have goods on hand. Thus our example illustrates the pooling aspect of
assets, namely that investors buy shares of a pool of individually distinct deliveries.

At A =6/5, 2! = (1/3,5/6,5/6), 2% = (5/6,1/3,5/6) and 23 = (5/6,5/6,1/3),
" = o = ¢ = 1/2 Vh and K,y = K = 2/3 Vs. By buying and selling 1/2
unit of the asset Ry, agent h gains 1/3 = (2/3)(1/2) = K6" when s = h and
gains (—1/6) = (2/3)(1/2) — 1/2 = K" — ¢" in the two states s # h. Agent h
delivers fully when s # h because his marginal utility of consumption after delivery
is 1/(5/6) = 6/5 = A*. When s = h, agent h defaults completely since his marginal
utility of consumption 1/(1/3) = 3 > A*. Since for any s € S we have 2 agents
with h # s, Ks0 = 2/3. Thus the asset promise Ry = (1,1,1) actually delivers
(2/3,2/3,2/3) per unit promise. Agent h = 1 delivers 1/2 - (0,1,1), agent h = 2
delivers 1/2 - (1,0,1), and agent h = 3 delivers 1/2 - (1,1,0). The reason each agent
buys and sells only 1/2 a unit of asset Ry instead of a full unit to get to the Arrow—
Debreu allocation is that the sale of ¢ units of the asset is accompanied by the loss of
A utiles for the inevitable default in state s = h. The marginal utility from buying
the asset is (2/3)(6/5) + (2/3)(6/5) + (2/3) - (3) = 18/5; the marginal disutility from
selling is also (6/5) 4+ (6/5) + (6/5) = 18/5. (It is therefore more convenient to take
Ty = 18 / 5)

A consequence of pooling is that the volume of trade is high. In equilibrium (when
A =6/5), each agent sells 1/2 unit of the asset, giving a total volume of trade equal to
3-1/2 = 3/2, much greater than the volume of trade per asset in the Arrow-Debreu
equilibrium.

When 1 < A < 6/5, agents default in every state, delivering nothing in their bad
state and delivering D(A) only up to the point where the marginal utility of consump-
tion equals A in their good state. The reader can verify that K(\) = (6A—6)/(4A—3),
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D) =3 —(3/X), p(A) = (4/3) — (1/X), and zt(\) = (2(1 — (1/X)), 1/, 1/N), etc.
Clearly as?? X\ — 1, zt(\) — (0,1,1), D(A) — 0, and K(X\) — 0. (Asset trade ()
does not go to 0 as A — 1 because the log utility is —oco at zero consumption.) As
A 16/5, o(N), D(N), and K(\) are monotonically increasing, as is the utility of final
consumption.

For A > 6/5, the agents always deliver fully in their good states, while still de-
faulting completely in their bad states. Thus K, is maintained at 2/3, but asset
trade again begins to drop because the inevitable punishment makes selling less at-
tractive. The formulas are messy and we do not bother to present them here. An
increase in the penalty rate beyond A = 6/5 does not improve risk bearing (since ¢
begins to drop), and it also increases the deadweight loss from punishing agents who
cannot deliver anyway. It thus strictly lowers welfare.

Furthermore, observe that as A rises from 1 to A = 6/5, the deadweight utility
loss from default A\p+2A (¢ —D) = (4/3)A—1—(10/3)A+4 = 3 — 2\ actually falls, to
3/5. Since the allocation is improving, and the default penalty is falling, we deduce
that \* = 6/5 leads to the Pareto best outcome among all economies with )\Qj =\

Example 2 illustrates that the optimal default penalty might be low enough to
encourage some real default, despite the attendant deadweight loss, when markets
are incomplete. In fact, the optimal penalty is so low that agents do not deliver
anything in their bad state, even though the receipts they obtain from their asset
holdings are on hand for delivery. In short, there is strategic default. Diamond
(1984) presented a principal-agent model in which the optimal default penalty is
intermediate. But the agent always delivered everything he had on hand. Default in
his case was not strategic, but only due to bad fortune.”® Example 2 also illustrates
that the possibility of default makes the asset payoffs endogenous, since we do not
know before an equilibrium is calculated what the default rates will turn out to be.
If we change the utilities or endowments of the agents, or the default penalties, the
equilibrium will change, the default rates will change, and the asset payoffs will be
different.

7.2 Market Choice of Default Penalties

In Example 2 we asked how severe the default penalties should be to promote eco-
nomic efficiency. Since our model allows for the possibility that different punishment
regimes coexist at the same time, we can also ask how harsh the punishment scheme
will be that endogenously emerges in equilibrium. For example, an agent could in-
dicate his intention to perform a service, he could orally commit to performing the
service, he could put in writing that he promised to perform a service, or he could
draw up a contract with a lawyer announcing his promise to perform a service. If
all four of these promises are treated equally by the courts, then there is no issue

*?Recalling that log z = In only for > d, we really require 2(1—(1/X)) > 6, that is, A > 2/(2—4).
By taking d small, 2/(2 — ¢) is just about 1.

23 Hess (1983) gave an example in which it would be Pareto improving if an agent were allowed to
default in a particular state, without penalty, provided he delivered fully in the others.
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of selecting a punishment. But if the punishment in case of default is different for
these different manners of making the same promise, then in effect the parties to the
agreement are choosing the severity of default penalties attached to the promise.

We shall now show that in our example, the forces of supply and demand select
the optimal default penalty. The example is noteworthy for two reasons: it shows
that equilibrium forces can select a single default penalty at which all assets will
trade, and that this penalty is optimal. We are unable to prove a general theorem
establishing either point, but in Section 7.3 we do give circumstances under which
the market will indeed choose the optimal assets.

Example 3: Consider Example 2 with only one asset promise Ry = (1,1,1) and
Mo =\ =6/5, Vh € H and Vs € S. Tt is natural to regard the penalty \* as
imposed by a beneficent and knowledgeable government. But we may also regard A*
as emerging from the equilibrium forces of supply and demand.

Now let there be a finite number of additional assets R;, all making the same
promises R; = (1,1,1), but with default penalties \; = A for all h € H, s €
S, ranging at intervals of A*/100 from 0 to 100A*. The symmetry of the utilities,
endowments, and penalties guarantees (by symmetrizing the proof of Theorem 2) that
a symmetric, refined equilibrium must exist. (Symmetry implies that gp? = 9? =;
for all h € H and j € J, and that deliveries are the same up to relabeling states, and
hence that K; is invariant across s.) We shall now show that despite the myriad of
available assets, in every (symmetric) refined equilibrium, all trade will be conducted
in the asset j* for which )\Zj* = A*. We begin by describing an equilibrium of this
type, and then we show it is essentially the only (symmetric) equilibrium satisfying
the “on the verge” condition (described in the Appendix as a shortcut to computing
equilibrium).

The equilibrium will involve exactly the same prices, delivery rates, trades, and
consumption as described in Example 2 for the case A = A* = 6/5. There we found
that z! = (1/3,5/6,5/6), 2*> = (5/6,1/3,5/6), 3 = (5/6,5/6,1/3), and goék =1/2
for all h, and K+ = 2/3 for all s, mj» = 18/5 = the marginal utility of buying
or selling asset j*. We must now extend that equilibrium to define prices 7; and
delivery rates K; for all the new assets. The “on the verge” condition requires some
agents to be on the verge of buying and others to be on the verge of selling, each
asset. This uniquely specifies all these (7, K;) for j # j*. Set m; = min{\;,6/5} +
min{A;,6/5} +min{\;, 3} for j # j*, which is the marginal disutility of selling asset
j. At these prices agents are just indifferent between selling j and j*, so it is optimal
to supply zero of j.

The marginal utility of buying asset j must be equal to (18/5) /7= =1, i.e.,

6 6
ng—l—ng—i—:SKj _q

Ty

Hence, by on-the-verge trading, K; = (5/27)7; or else K; = 1. for A\; > 3, m; > 27/5,
so K; > 1,1e, Kj =1. For 3 > \; > A\* = 6/5, m; > 18/5, hence K; > 2/3,
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consistent with two out of three types being strictly conscientious. Thus on-the-verge
boosting holds.

By concavity, since the first-order conditions are satisfied, each agent is indeed
maximizing by trading exclusively via asset j*. We have thus displayed an on-the-
verge equilibrium in which (almost) any default penalty is available, yet only a single
one (namely the Pareto efficient penalty) is used in equilibrium.

We now argue that there can be no other symmetric on-the-verge equilibrium.
In any (symmetric) equilibrium we have consumption ! = (22,1 — 2,1 — x), and
similarly 22 = (1 — z,2z,1 — z), and 2% = (1 — 2,1 — z,2x). If 2 = 1/6, then all
(mj,K;) are defined, as in the last paragraph, by the “on the verge” condition and
in this case only asset j* will be actively traded®* (aside from trivial wash sales in
assets j with A\; > 3 and K; = 1). If z > 1/6, then agent 1 has delivered up to a
point in states 2 and 3 where his marginal utility of consumption 1/(1 —x) > 6/5.
He would not have done that unless he was selling an asset with default penalty
Aj > 1/(1 —x) > 6/5. If asset j delivers fully in every state, then it is irrelevant,
since by symmetry each agent is buying and selling an equal amount of it. But from
the argument in the proof of Theorem 2, if the asset did not fully deliver everywhere,
then any agent buying and selling it would default completely in at least one state.
Since by symmetry every agent buys and sells it, K; < 2/3. The marginal utility to

purchasing asset j is at most 3(% + =+ w) = %(13_1;)1% ==+ 7(1_2)3:0 <

(1f x>1 / 6) of utihty in period 1. The marginal disutility of selling asset j is at least
1 -+ 1=+t 1 — 13m, a contradiction.

If x < 1/6, we shall show there can be no equilibrium price 7* for asset j = j*.
The marginal disutility of selling asset j* is 72—+ = +2, since 1/(1—z) < 6/5 = A*.
Hence, the marginal disutility of selling is less than 18 / 5 It is also the case that every
agent would deliver in each of his two good states if he were selling asset j*. Hence,
from on-the-verge boosting, K, 505 > 2/3 for some s and so by symmetry, Vs € S. The
marginal utility of buying asset j* is then at least 2 5 1 = 2.1 +3 2@, For x < 1/6, the
marginal utility of buying is always larger than 18/5, hence larger than the marginal
disutility of selling, a contradiction. This proves there is a unique symmetric on-the-
verge equilibrium. Hence it must be the unique symmetrically refined equilibrium

(which we know exists by symmetrizing the proof of Theorems 1 and 2).

8 Endogenous Quantity Constraints

We saw in Section 7 that the forces of supply and demand could endogenously select
unique default penalties that are active in equilibrium, out of an arbitrarily large
array of possibilities. Here we give an analogous example for quantity constraints.

2 For 6/5 < A\; < 3, no agent will deliver anything on asset j in his bad state, since he consumes
1/3 and 3 > A;. Hence if j is actively traded, K; < 2/3, contradicting our formula K; = (5/27)m; =
(5/27)(6/5+6/5+ A;) > 2/3. If \; < 6/5, and yet consumption in the good state is 5/6, then no
agent who actively sells j will deliver anything on j in any state. Hence if j were active K; would
be zero, contradicting our formula for K;.
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Example 4: Consider our standard example, but now with 6 households whose
endowments are e! = (0,1,1), 2 = (1,0,1), € = (1,1,0), e* = (1,0,0), € = (0,1, 0),
and €% = (0,0,1). The utilities of all households are identical: u(x) = 22=1 log xs.
Their default penalties are given by

e b _
Agj:{ o iizh;é forall he H, s€ S, jeJ.
All assets j € J ={1,2,...,100} entail the same promises R; = (1,1, 1), but different
quantity constraints ¢); = j/30.

These penalties lead to full delivery in each agent’s good state(s), and to full
default, without any penalty, in each agent’s bad state(s). If a household buys and
sells equal quantities of an asset j, with delivery rates K; = (kj, kj, k;), he in effect
obtains insurance. By giving up (on net) a dollar in his good state, be obtains
k;j/(1 — k;) dollars in his bad state. Default, with the proper penalties, can thus
encompass insurance.

Example 4 satisfies the conditions of Theorem 1, so refined equilibria exist. One
equilibrium involves 07y = @y = Q12 = 12/30 = 2/5 for all h € H, 0%, = b, =
18/30 < Q3 for all h € {4,5,6}. Prices and delivery rates are given by k12 = m12 =
1/2, and k; = m; = 1/3 for all other j. In effect all households take out primary
insurance j = 12 up to its quantity limit Q12 = 2/5, at the rate 1/2, reflecting
equal proportions of reliable and unreliable in the pool. The unreliable households,
desperate for more insurance, take an additional secondary policy j = 30, but at a
much worse rate of 1/3, since they alone constitute the pool 7 = 30. Our refinement
leads to k; = 1/3 for all inactive assets j ¢ {12, 30}, as can easily be verified using our
on-the-verge condition. At this equilibrium both reliable and unreliable households
feel constrained by the primary limit Q12 = 2/5, and reliable households are just
indifferent to taking out the first dollar of secondary insurance. We therefore call it
the pivotal equilibrium.

Notice that out of a whole menu of potential quantity signals, the market chooses
just two at which there is active trade.

Primary and secondary insurance are well-known features of insurance markets.
We pursue the details in a sequel paper (Dubey—Geanakoplos, 2003). Let us mention,
however, that there are multiple equilibria, in contrast to the previous examples. Any
quantity limit 0 < @« < 2/3 can serve as the primary market maximum. In each
of these equilibria, all agents take out primary insurance up to its maximum limit,
giving 7« = kj+ = 1/2, while 7; = K; = 1/3 for all other j # j*. (Only in the
maximal equilibrium with @j« = 2/3 are reliable agents taking out all the primary
insurance they want at the going rate of 1/2.) If the primary quantity limit satisfies
2/3 > Qj+ > 2/5 then, as in the pivotal equilibrium, only unreliable agents will take
out further secondary insurance. If 0 < Q;+ < 2/5, then all households will take out
further secondary insurance, at a rate 1/3 < k < 1/2 (since unreliable agents take
out more secondary insurance than the reliable). The equilibrium with primary limit
Q)+ = 2/3 Pareto dominates the equilibria with primary limits 2/5 < Q;= < 2/3.
In the aforementioned sequel paper we introduce a further refinement, capturing the
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hierarchical nature of insurance contracts, and find that only the pivotal equilibrium
survives, along with the pure pooling equilibrium in which all agents join in the same
secondary pool (the primary limit is Q= = 0).

In their famous paper on insurance, Rothschild and Stiglitz (1976) imposed an
exclusivity assumption, that agents can take out only one policy (sell one asset), and
they found that equilibrium might not exist. Exclusivity destroys the convexity of
the budget set, so our existence theorem does not directly apply. But in another
companion paper, Dubey—Geanakoplos (2002), we showed that equilibrium in fact
does always exist, and is unique. Indeed it is precisely the separating equilibrium of
Rothschild-Stiglitz! (In our numerical example, reliable agents sell and buy ¢f =
Q9 = 9/30 units of asset i = 9, at price m; = 2/3 = k;. Unreliable agents sell and
buy ¢, = Q30 = 30/30 units of asset j = 30, at price 7; = k; = 1/3. The pricing of
the inactive assets implied by our refinement is strictly monotonic in @), over a large
interval, and is described in detail in Dubey-Geanakoplos (2002).) The universal
existence and uniqueness of the exclusivity insurance equilibrium is made possible by
our perfectly competitive framework.?’

9 A-Efficiency and the Market Choices A*

In Theorem 3 and also in Example 3 we found a match between what assets the
market ought to choose, and what assets it does choose. This is not always (or even
usually) the case. Example 4 displays multiple refined equilibria which can be Pareto
compared; in the bad equilibria, the wrong assets are used. Why is a socially useful
asset j sometimes not used in equilibrium?

The major problem is that in refined equilibrium, the delivery rates K,; for an
untraded asset j depend on the delivery rates of the agents most eager to sell it
(i.e., the agents on-the-verge of selling it). If the more reliable agents have higher
disutilities of selling j, their higher delivery rates will not be reflected in K;. The
asset may make useful promises, but still not be used by the market, because its
deliveries are debased by adverse selection.

Very often there will be only one seller type that is most eager to sell. If there
are several, then again the market cannot screen out unreliable sellers. We call an
asset unambiguously beneficial if it enables a Pareto improvement no matter what
the selection of sales from among the agents most eager to sell it. We shall prove
that assets that are not unambiguously beneficial can always be left inactive at some
on-the-verge equilibrium. Call an asset super beneficial if it remains unambiguously
beneficial even when its penalty rates are slightly reduced. We shall prove that super
beneficial assets can never be left inactive in any refined equilibrium.

More precisely, let A C A, and let E = (p, %, K, (&", éNh, »" DM perr) be a refined
equilibrium of the economy with assets A. Let j € A\A and let o; denote the set
of agents on the verge of selling asset j, i.e., the agents with the lowest marginal
disutilities of selling j, given prices in the A-equilibrium. (See Appendix 10.3.) We

25 Cho-Kreps (1987) also showed in their game-theoretic model that the separating equilibrium
must always exist. As we have said, their model has much greater complexity.
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say that asset j is unambiguously beneficial at E if, ¥ sufficiently small (gp?)he H
with gp? = 0 for all h ¢ o, 3 asset purchases and incentive-compatible deliveries
(9?, Djh)heH and an allocation (y")necp satisfying

(1) u(y") > w"(3") for all h € H, with at least one strict inequality
(2) Yhen ¥ = Xnemeb

(3) Yhen 9? = heH 90?

0" 4
i€cH V)
~ or .
(5) (DQJ)SGS € argmax {“h <y8, <$g + Z—Je >icn Dy — DsJ) >
(Dsj)yes ieH 7y s€s

5y - (Dyi — OGP R,
_ZsesAgjp (D (ka])}forallheH,
Ps * Us

Condition (5) says that h’s deliveries are incentive-compatible for him; and (4) says
that consumption is altered in period 1 only via deliveries on asset j.

If the asset j would still be unambiguously beneficial at E even after replacing all
its penalties )\Zj by (1 — 5))\2]-, for some § > 0, then we call it super beneficial.

We call E A-efficient if no asset k € A\A is unambiguously beneficial at £.26
We call E strongly A-inefficient if some asset k € A\ A is super beneficial at E.

Theorem 4: Let A C A, and let E = (p, 7, K, (fvh,éh,gbh,f)h)he}q) be a refined
equilibrium of the economy with assets A that is A-efficient. If utilities are smooth,>
then E can be extended to an equilibrium satisfying the on-the-verge conditions for
the economy with assets A, with the same active assets as before, A* = A* If the A
economy has a unique on-the-verge equilibrium, then the extended equilibrium is also
a refined equilibrium (and therefore is the unique refined equilibrium,).

Conversely, if E is strongly A-inefficient, and if utilities u" are smooth and
additively separable between time periods 0 and 1, then there is no refined equilibrium
of A which extends E, leaving all assets in A\.,Z untraded.

The on-the-verge conditions and the proof of Theorem 4 are in the Appendix.

Theorem 4 helps explain Examples 3 and 4. In Example 3, by symmetry, every
agent is always on-the-verge of selling every untraded asset, and since they all deliver
2/3 of the time, there is no adverse selection, and refined equilibrium chooses the right
asset. Every equilibrium that uses an asset A # A* must be strongly A-inefficient and

26Qur notion of A-efficient is different from the constrained efficiency defined in Geanakoplos—
Polemarchakis (1986).

?TSmoothness (in the sense of Debreu, which includes differentiability and the hypothesis that
each agent will be worse off than at his initial endowment if he consumes 0 of any good) guarantees
interior consumption, so that all derivatives are well-defined.
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thus will be upset by the \* asset. On the other hand, once the \* asset is used, no
other asset is unambiguously beneficial.

In Example 4, by contrast, the unreliable agents are always strictly more eager to
sell than the reliable agents. Thus K; is debased by the adverse selection to 1/3 for
every untraded asset, no matter what the equilibrium. Untraded assets have little
power to upset an equilibrium, and so we get multiple, low-welfare equilibria.

If Example 4 is modified by an exclusivity restriction, limiting every agent to
selling at most one asset, then the identity of the most eager seller depends on the
equilibrium E. 1If reliable and unreliable agents are pooled together at E, then the
reliable agents are the most eager to trade a new asset with the right quantity limit,
upsetting any pooling equilibrium. If reliable and unreliable agents are separated at
E, then unreliable agents are more eager to sell most new assets, and so the separating
equilibrium prevails, explaining why the separating equilibrium is the unique refined
equilibrium in the Rothschild—Stiglitz model. This is demonstrated in detail in our
companion paper Dubey—Geanakoplos (2002).
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10 Appendix

10.1 Proof of Theorem 1

Suppose first that penalties are finite, A € Rf 97 Fix a tremble & = (g;) jeg > 0. We
shall prove the existence of an e-boosting equilibrium for small enough ¢. For any
small lower bound b > 0, define

L
(=1

bgpsgVSKGS*XL,andOSWj§%‘v’j€J}.

Choose M large enough to ensure that: [[z]|ec > M = ul(z) > u"(23 oy ") for
all h € H. (By assumption, u”(z) — oo as ||z|| — oo, so such an M exists.) Now
define, for each h € H, O" = {(2,0,¢,D) € R * x R, x R x R : |20 <
M, 6; <2 ey @ ¢} < QF, and [|Dllo < ||Qllool | Rlloo}. Let O =XpenD".
Denote n= (p,ﬂ',K,( h,Qh,gp 7Dh)h€H) S Ab X [O 1]SXJ DH = Qb-
Consider the map Kp : Q — [0,1]°%/ defined by

Dbs - stgj + Zps . Dh

heH .
oz _ . 1 , if st 75 0
Kbsj (77) = § min Ps 3]5] + Z Ps - 3]90]
heH
1 if Ry =0

for each s € S, J € J. (Note that Rg; # 0 implies ps - Rg; > 0, since Ry > 0 and
ps > 0.) Clearly Kp,; is a continuous function.
Next, consider the correspondence v,bg : Oy = Ay defined by

Yy(n) = argmaX{po-Z(wg—eoHﬁ > (0" "

(p,m) €A heH heH

+ Zps- Z x —eh) Z(l —Kbsj(n))RSij

seS heH jed

Clearly this map is non-empty and convex-valued, and USC.
Finally for each h € H, define the correspondence v,bg (= 0" by

¥} (n) = argmax{w" (z,6,¢,D,p) : (2,0,¢,D) € B"(p,7, K) NnO"}.
x,0,p,D

Notice that wlff is non-empty valued and convex-valued, thanks to the continuity and
concavity of w”, for all h € H. To check that B"(p,r, K) n 0" is LSC, let p", ",
K™% p 7, K with p > 0. Let (z,0,%,D) € B"p,7,K). Fix 0 < a < 1. Then
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(az,ab,ap,aD) € BMp", 7", K™)NO" for sufficiently large n by the scaling property
of the budget set, because ps - el > 0 Vs € S*. Since a was arbitrary, this shows
that B"(p, m, K) NO" is LSC in (p, 7, K) whenever p > 0. Since B"(p,m, K) N " is
clearly USC, v,blf} is USC by the maximum principle.

Let vy, : Q5 = 23 be the correspondence defined by

Uln) = ef0n) x LR} x X whin).

By Kakutani’s theorem 1, has a fixed point 7° = (p°,n®, K® (z"(b),6"(b),
©"(b), D"(b))herr). To avoid notational clutter, we suppress the b.

Note that in state 0, po - (32, (zf — b)) +m- (32, (0" — ™)) = 0 (since, given the
monotonicity of each u”, this equality holds for each h individually in his budget-
set). It follows that the “price player” could not make the value of excess demand
(across commodities and assets) positive in period 0. Suppose for some j € J,
ZheH(G? - go?) > 0. By taking 7#; = 1/b and #; = 0 for i # j, it follows that

1 -
7 SO =+ P Y (2l — efy) <0,
I

LeL heH

forall peP,={qg€RY : q>bVl e L, >t g =1}. Hence

> (67 — &) < bL|leo]|oo-
h

Similarly, if >, (zh, — €b,) > 0 for some ¢, then by taking all #; = 0 and po; =
1 — (L —1)band pox, = b for all k # ¢, we get

no ohy o (L= 1)blleo]lo
Z(%e —egr) < A
heH

From the fact that K, fixed K, and from the fact that agents have optimized so
that p; - ng < ps- stgog?, whenever ps - Rs; # 0 we get

Ps - stgj + Zps : ng
heH S 1
Ds - stgj + Z Ds - st@?
heH

Ky =

Hence

Y b D= Kyps- Rygl — (1 — Ky)ps - Ryjej.
heH heH

From optimization of monotonic utilities in the budget set, we get

Ps - (m? - eg) = ZKsjps : steé‘l - Zps ) D.];j'
jed jed
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Adding over agents h € H, and substituting the above expression for ), _p ps - ng
we get

ps- Y (ah—el) = (1—Ky)ps- Rejej + > Y Kajps - Rej(0] — &)

heH jed jeJ heH
<) (1= Ky)ps - Rejej + J||Rl|sobL]|eo |oo-
jeJ

Suppose Y, (@fy —ely) = 325 ;(1 = Kgj)Rygjej > 0 for some s € S. Since we
are at a fixed point, the price player cannot increase the value of excess demand in
state s by taking pgyy =1 — (L — 1)b, and ps = b for all k # £. Hence

> (@l —el) =D (1 — Kyj)Rojej

heH jed

1

< ———— < (L-1)) 0o 00 ; oobL .
S oz onp | Db | lleolloe + 1Rl > ci| +JlIRlIbL]leol|

jed

Thus aggregate excess demand (including the external agent) goes to zero as
b — 0. Furthermore, ), 5 zh < 2> hen e as b — 0, provided the fixed (¢;)jcs
were chosen small to begin with. If py/psr became unbounded as b — 0, some agent
with e?e > 0 could have consumed M units of commodity sk, obtaining more utility
than v"(23",/cy "), for all small b; but since 2" < 2 Y weH e’ for small enough b,
this contradicts that h has optimized. We next argue that 7; must remain bounded
as b — 0. If Q;-‘ = 0 Vh, then replace 7; with 1. Otherwise, if m; — oo, any agent h
with Q;-‘ > 0 could replace his entire action by selling a tiny amount A of j, buying
M (< Am;/L) units of each period 0 good. Since e # 0 for all s, and commodity
price ratios are bounded in each state, agent h can do this without incurring any
default. But this gives him utility that exceeds u*(237,, ), which is more than he
can possibly be getting at the fixed point, a contradiction. Thus all asset prices are
bounded.

Since all choices and all macro variables are uniformly bounded for small b, we
can pass to convergent subsequences, obtaining £ = (p, 7, K, (z", 9h, ", DM pew) as
a limit point. Taking the limit of all inequalities derived above, we conclude that
aggregate excess demand for commodities and assets is less than or equal to zero in
E. Since price ratios ps¢/psk are bounded in each state s € S*, the limiting p > 0,
and all agents have positive income in every state in £. The bounds in (0" imposed on
(x,0, D) are not binding in E. Hence, by concavity of w”, individuals are optimizing
in E on their actual budget sets.

Note finally that if all commodity prices are positive, there cannot be excess
supply in any commodity in E, otherwise the price player would be making negative
profits. For the same reason there cannot be excess supply of any asset j in E, unless
m; = 0. But then no agent would sell j unless )\?jRSj = ( for all s € §. Without loss

of generality we may in this case take 9? = go? =0 for all A.
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Thus we have shown that E is an e-boosting equilibrium. Letting ¢ — 0 and
taking limits we obtain a refined equilibrium. This proves the theorem for finite
penalties .

If some penalties are infinite, we take limits of equilibria with increasing penalties.
Since all actions must stay bounded along the sequence (because Q;L < 00), any cluster
point of these equilibria will serve as the desired refined equilibrium.. |

10.2 Proof of Theorem 2

Theorem 2 specializes the conditions of Theorem 1. Hence we have a GE(R, A, Q)
equilibrium for all finite ). Consider a sequence of equilibria, 7(Q) = (p(Q), 7(Q), K(Q),
(z"(Q),0"(Q), ¥™(Q), D"(Q))nen), where Q;L =QeN,forallhe H, jeJ.

If there is a single () with @?(Q) < @, forall h € H, j € J, then by the concavity
of each w", n(Q) is a GE(R, \).

Passing to a convergent subsequence if necessary, we may suppose that for all
heH and j € J,

Q 7R a

Moreover, we might as well assume that for at least one j and some h and I/, 9? #0

and @' = 1.

For notational convenience, we shall write Rs; and D,;, instead of the more
accurate Rgr; and Dgpj, and we shall suppose that real default in each state s € S
is measured in terms of the commodity bundle vs = 17, which is one in the Lth
coordinate, and zero elsewhere. Since all assets are exclusively delivering in the Lth
good, no harm results from these simplifications. Finally, w.l.o.g. take p;;, = 1 for

all s € S.
Observe that for any h € H, s € S, j € J, the level of default

dyi(Q) = [Rej¢0} (Q) — D(Q)]T < —-[u"(e) — u'(e")],

whenever )\?j > 0, for otherwise agent h would have done better not trading at all.
(At any GE(R, ), Q), 2" <>, e" = e.) Hence if @?(Q) — 00,

[stSD?(Q) - D?j(Q)] _ [stSO?(Q) - D?j(@ﬂ+ _ d?j(Q)
PM(Q) Q) Q)

It follows that K ;(Q) — 1 for all s € S with R,; > 0, provided that », 5 gog-‘(Q) =

ZheH 9?(62) — O0.
Furthermore, since relative prices pg(Q)/psi(Q) stay bounded,

Y K(QRy05(Q) - Y Diy(Q)

jed jed

— 0.
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must stay bounded. Otherwise agent h would eventually be consuming a negative
quantity in state s, or a quantity exceeding the aggregate endowment es, contradicting
commodity market clearing.

Putting these last statements together, we must have that

Y Ksi(Q)Rs07(Q) = > D(Q)
th;o JjeJ 5 JjeJ _ RS(Qh _ S_Oh) =0,
foral he H, s € S.

Since 0" promises exactly the same value of deliveries as the portfolio @", no
matter what the relative prices ps, we know that Hh(Q) — 0" reduces the promised
receipts by exactly the same amount as " (Q) — @" reduces promised deliveries, for
any ). (This would not be true if assets delivered multiple goods.)

Consider any h with @" # 0, and hence o" # 0. For sufficiently large @ > 1,
0" = 0h(Q)— 8" >0
" ="Q)—¢" > 0.
At any large (), the agent could feasibly have chosen éh, @™ and deliveries
D! = Dy;(Q) — Ry; @} > 0 for all j € J.

With these choices he would pay exactly the same penalty as in the equilibrium 7(Q).
He would receive exactly the same consumption at time 1 if K;(Q)) = 1 for all j with

9;-1 > 0 (for then his receipts and deliveries both fall by R 0" =R, @") and strictly
more consumption otherwise (for then his receipts fall by > .. ; Ky; (Q)RS]@? <
=h =h _
> jesRsjlj =Rs- 0" =R, - o).
In order for him not to prefer this deviation, we must therefore have
W(Q)[@h — " <0 forall h € H.

But since 8" and @" are limits of GE(R, \, Q) equilibrium portfolios,
~h _
> 0= ¢
heH heH

hence we must have B
m(Q)[0" —@"] =0 for all h € H.

It now follows that household i would still prefer this deviation unless Vj € J, Vs € S,
[Rej >0, and 8 > 0 for any h € H] = [Kq;(Q) = 1].

Note finally that if g‘p? > (), there must be some agent ¢ with 9; > 0, hence K,;(Q) =1
for all s € S with Ryj > 0 and either 8 > 0 or @ > 0.
Replacing (p(Q), 7(Q), K(Q), (z"(Q),0"(Q), ¢"(Q), D"(Q))nem) with

(P(Q), 7(Q), K(Q), (+"(Q),8", 8", D")err) we get another GE(R, A, Q) with $(Q) <
Q for all h and j. (Notice that we are reducing sales and purchases only for assets
with K,; = 1, which therefore leaves the K unchanged.) |
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10.3 On-the-Verge Equilibria

Solving equilibrium conditions (1)—(4) generally gives too many equilibria E and
checking which of them are refined seems at first glance to be a daunting task. It
requires constructing an infinite sequence of equilibria E(e) — E, as ¢ — 0, satisfying
(1)-(4%).

Under certain circumstances, the task becomes dramatically simple. Suppose
throughout this section that utilities u” are differentiable, and that at a (possibly
unrefined) equilibrium (p, 7, K, (2", 0", o" D")pcr) we have?® py - 2P > 0 for all b
and all s. We shall show that there are algebraic conditions on F that are easy to
check and necessary for E to be refined. If it turns out that there is a unique E
satisfying the algebraic conditions, then from our existence theorem we can conclude
at once that E is a refined equilibrium without bothering with the sequence E(g).
(In fact E will then be the unique refined equilibrium.)

We can define the marginal utility of money in state s to each agent h by pl =
[Ou"(2") /050 /pse for any ¢ with 2!, > 0. The marginal utility to h of purchasing
any asset j is then

S
MU} =y " piKjps - Ry
s=1

and the marginal disutility of selling asset j is

S h
MDU =" py; - Ry min{ - ,u?}

-V
1 Ds - Us

An agent is said to be on the verge of buying (selling) asset j if he is not buying
(selling) it, but would do so if the price m; were ever so slightly lowered (raised):

verge of buying: 7; = MU;"/,U,SL
verge of selling: 7 = MDUJh//,LS

If, in the refined equilibrium, p, - Rs; > 0 and K,; < 1, then we know that in
the perturbation E(g), some agent h was actually selling j and not fully delivering
in state s (otherwise K, = 1 on account of the external agent). It also follows that
some agent was buying j (since markets clear in the perturbation and the external
agent buys and sells the same amount of asset j). Passing to the limit, we conclude
that at a refined equilibrium

m;j = max{MU} /g } = min{M DU} / 5}

for all untraded assets j for which K;p, - Rsj < ps - Rs; for some s > 1. We call this
the on the verge of trading condition.

If ph > )\Zj/ps - vg for some untraded asset j, we say that agent h is strictly
conscientious for asset j in state s. In any perturbation of the equilibrium, such an

28 This will be implied by Debreu’s smoothness condition of footnote 25.
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agent will fully deliver on asset j in state s. Thus if it turns out that all agents h
on-the-verge of selling an untraded asset j are strictly conscientious, then Kg; must
be 1. Furthermore, if every agent is strictly conscientious in at least m states on
asset j, then Ky;j > m/S for at least one state s. We will call these requirements
“on-the-verge boosting.”

Any equilibrium satisfying the on-the-verge trading and boosting conditions is
called an on-the-verge equilibrium. With smooth utilities, equilibrium conditions
(1)—(4) can also be reduced to equations. Hence every on-the-verge equilibrium is the
solution of one of a finite collection of systems of finite equations. As we have seen,
every refined equilibrium is an on-the-verge equilibrium.

The on-the-verge of trading condition appears not to leave any gap between the
marginal utility of buying and selling an asset j with default. If this were truly so,
then one would generically find that there was positive trade in all assets. But as we
have emphasized, and as we saw in our examples, equilibrium often involves inactive
assets. The explanation of the paradox is that there is a gap, but it is filled by the
external agent. In E(g) delivery rates K(¢) are boosted above delivery rates K(e) of
the real agents. If the marginal utility of buying were computed using K (&) instead
of K(e), the gap would be visible.

10.4 Proof of Theorem 4

We use the notation of Section 10.3. For each asset j € A\j, define 7; = minyecpy MDU]}-‘/,u%.
Let the set 0; C H of traders on the verge of selling j consist of those h who achieve
the min just defined. For each h € 0 and each s € S, define K. ?g =0if )\Qj < Ps-vspl,

and K gj = 1 otherwise.

Suppose E is A-efficient. For each j € A\ﬂ, consider a sequence (go?(s))hegj #+
0 converging to 0 for which a central planner cannot find a Pareto improvement.
Define g‘o? = limeﬁo(gog?(s))/zi@j ¢j(e)), for all h € 0. Deﬁ~ne K; = _Zhegj @?th
We claim that at the macro variables (p, (ﬁj)jez, (Wj)jeA\ﬂN’ (Kj)jeZ’ (Kj)jeA\Z)’ we
cannot have M Ujh* Jul” > m; for any (h*,j) € I~{ x (A\A). Otherwise the central
planner could use asset j to Pareto improve on F via the (gp?(e)) heo;- The planner
could assign h* to buy Zz‘eaj " g0§- (¢) units of asset j. Each seller h with K Shj =1
will deliver fully in state s (choosing a bundle D?j with ps - ng = go?(s)ﬁs - Rgj).
We conc'lude_that the value of deliveries p, - Zh@j ng > Py ;Zh@j @?(S)stK ;‘] =
Zz‘eaj ©; (6)KsjPs - Rsj, no matter how the sellers h with ng = 0 deliver. With
smooth utilities consumption is interior, and the buyer A* is almost indifferent to

the exact delivery >, o ng so long as Ps - Y ¢ o ng is unaffected. Hence h* gains

at least nearly } ;. goz- (5)(MU;L*) > ico, goz- (£)(ph"m;) in utility, for small e. Let
the central planner also adjust consumption at date 0, taking away goods valued
at ; Zieaj <p§- (€) + 0, for very small § > 0, from agent h*, and giving the fraction
w?(a) / Yico, ¢'(e) of these goods to each seller h € 0. Agent h* and all agents
h € oj are strictly better off, for small enough € and 9, contradicting the hypothesis
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that E is A-efficient and confirming that MU /uft < m; for all (h, j) € H x (A\A). If
maxheH{MU]}-‘/,u’(}} =mj, set Kj = Kj. Otherwise let K, = (1—a)K;+a(1,1,...,1).
Take the smallest a € [0, 1] for which maxheH{MUjh//,co} = 7j, if such an « exists.
Otherwise take o = 1. Set K; = K,. Replacing K; with Kj, it is evident that the
on-the-verge conditions are satisfied.

Conversely, suppose E is strongly A-inefficient and let j € A\.Z be super beneficial
at E. Let E be a refined equilibrium of the A-economy, extending E, at which no
asset in A\ A is traded. Let (75, K;) be defined by E. Clearly K,; < 1 for at least one
s. Otherwise, even with full deliveries, the maximum marginal utility of buying j is
less than or equal to 7;, which is less than or equal to the minimum marginal disutility
of selling j. By separability, that would remain so after rearranging goods at time 0,
contradicting the hypothesis that j is super beneficial. Consider the perturbations
E(e) refining E, and defining sales go?(s), and deliveries D?j (e). <Zheaj (,0?(6) #0
for small ¢, for then K,; =1 for all s € S.) Delivery rates in E(e) are always at least
Ksj(e) = (Zheaj go?(a)f(shj)/zheaj go?(a), for small e, since strictly conscientious
agents will fully deliver. Hence K; > K; = lim._,o Kj(e).

Now define @;P = lim.0 @?(5)/Ziegj (,0?(6) for h € 0. We shall argue that a
central planner cannot Pareto improve given sales 5@?, using asset j with penalties
(1 — 8)A;. If he did, delivery rates would be no more than K; < K; (where we
have used separability between time 0 and 1 and the continuity of marginal utility
of consumption). But then there is no Pareto improving trade, since the marginal

utilities of the potential buyer is less than or equal to the marginal utility of the
seller. m
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