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Abstract—In the last few years, many studies in the cognitive and
system neuroscience found that a consistent network of brain re-
gions, referred to as the default network, showed high levels of ac-
tivity when no explicit task was performed. Some scientists believed
that the resting state activity might reflect some neural functions
that consolidate the past, stabilize brain ensembles, and prepare
us for the future. Here, we modeled the default network as undi-
rected weighted graph, and then used graph theory to investigate
the topological properties of the default network of the two groups
of people with different intelligence levels. We found that, in both
groups, the posterior cingulate cortex showed the greatest degree in
comparison to the other brain regions in the default network, and
that the medial temporal lobes and cerebellar tonsils were topolog-
ically separations from the other brain regions in the default net-
work. More importantly, we found that the strength of some func-
tional connectivities and the global efficiency of the default network
were significantly different between the superior intelligence group
and the average intelligence group, which indicates that the func-
tional integration of the default network might be related to the
individual intelligent performance.

Index Terms—Default network, functional magnetic resonance
imaging (fMRI), intelligence, intrinsic activity.

I. INTRODUCTION

S CIENTISTS and engineers have been attempting to simu-
late human cognitive mechanisms to make an artificial in-

telligent system that exhibits mental capabilities, including per-
ception, action, and motivation. One has been concerned pri-
marily with the processes of how information is extracted from
sensory inputs in an artificial system and integrated over time to
make decisions and then take actions. So researchers have paid
much attention to the dynamics when the system is required to
make response to and interact with the external environment.
Unfortunately, it seems that the progress is not exciting enough.
An interesting question is what the artificial system does when it
is idle. In other words, is it necessary to explore the significance
of investigating the dynamics of the artificial system when the
system is not explicitly engaged in the interaction with the ex-
ternal environment?
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On the other hand, some scientists in the cognitive and system
neuroscience found that a consistent network of human brain
regions showed high levels of activity when no explicit task
was performed. They suggested that the human brain has a de-
fault or intrinsic mode of functioning [1]–[3]. As we know, the
adult human brain represents about 2% of the body weight,
yet requires about 20% of the body’s total energy consump-
tion. It is estimated that 60% to 80% of the brain’s total en-
ergy consumption is used to maintain the neurons and their sup-
porting cells. Surprisingly, the energy consumption associated
with the evoked activity may account for only 0.5% to 1.0%
of the brain’s total energy consumption [2], [4]. Then what is
the other brain’s energy consumption used for? Although the
unidentified part of brain’s energy consumption is extremely
larger than the task-evoked consumption, its physiological sig-
nificance is not very clear. So some scientists called it as “dark
energy” in the term of astronomic and believed that the “dark
energy” is related to the brain’s intrinsic activity, including the
present in the so-called default network [4]. The default net-
work is comprised of a set of brain regions, including medial
prefrontal cortex, posterior midbrain regions, medial temporal
lobes, lateral parietal cortex, and so on. These brain regions
show greater neural activity during passive states in comparison
to a range of cognitive task states. Although there are some argu-
ments about cognitive functions of the default network [5]–[7],
some investigators suggest that the brain’s default network di-
rectly contributes to internal mentation that is largely detached
from the external world, including self-reflective thoughts and
judgments, conceiving the mental states of other peoples, and
envisioning the future to make up alternative decisions [3]. Ad-
ditionally, researchers have found the damaged activity of the
default network in some neuropsychiatric diseases, for example,
Alzheimer disease [8], schizophrenia [9], and in the coma and
even vegetative state [10]. Taken together, these findings sug-
gested that the intrinsic activity of the default network could
play an important role in human cognitive functions.

For a long time, researchers have been concerned with some
explicitly intelligence demanding tasks, for example, rational
planning, reasoning, and working memory in order to under-
stand the neural basis of the individual intelligence differences
[11], [12]. In comparison, there are a few studies to investigate
the associations between the intrinsic activity and the intelligent
performance [13]–[18]. However, human brains are not only
adaptive, but also anticipatory and prospective [19], [20]. Some
scientists thought that it was the ability to reflect on the past and
contemplate the future that facilitated the development of some
unique human attributes, including imagination and creativity
[4], [21], [22]. As mentioned above, the default network should
support the neural activity for consolidating the past, stabilizing
the brain’s integration, and predicting the future [3], [6]. So it
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is necessary to pay attention to the association between the dif-
ferent intelligent performance and the internal modes of cogni-
tion, especially, the activity of the default network.

In the present study, we explored the associations between the
different human intelligent performance and the activity of the
default network when the subjects were not required to do any
explicitly cognitive tasks. Using the graph theory, we modeled
the default network as undirected weighted graph for each sub-
ject and then investigated the network topology of the default
network of the subjects.

II. MATERIALS AND METHODS

In the present study, we used the dataset that has been de-
scribed previously to carry out the present study. For more de-
tails about the dataset and the data preprocessing, please refer
to [17].

A. Subjects

Fifty-nine healthy right-handed subjects were included in this
study. The Chinese revised wechsler adult intelligence scale
(WAIS-RC) was administered to all subjects to assess individual
intelligence, since a factor analytic study showed that the Wech-
sler full-scale intelligence quotient (FSIQ) scores accounted for
about 90% of the variance in the general intelligence, or factor
[23]. The subjects were divided into two groups on the basis of
the individual intelligence quotient score. Thus, the superior in-
telligence group ( ) consisted of 15 women and 17
men (mean age , ; mean , ),
while the average intelligence group ( ) con-
sisted of 15 women and 12 men (mean age , ;
mean , ). There was not a significant
difference in age between the two groups. All subjects were
recruited by advertisement and gave written informed consent.
This study was approved by the ethical committee of Xuanwu
Hospital of Capital Medical University.

B. Imaging Protocol

Magnetic resonance (MR) imaging was acquired using a 3.0-
Tesla MR scanner (Magnetom Trio, Siemens, Erlangen, Ger-
many). Functional images were collected axially by using an
echo-planar imaging (EPI) sequence sensitive to blood oxygen
level-dependent (BOLD) contrast. During the resting state scan-
ning, the subjects were instructed to keep still with their eyes
closed, as motionless as possible, and to not to think about any-
thing in particular.

C. Data Analysis

1) Preprocessing: For the present functional magnetic res-
onance imaging (fMRI) data, several preprocessing steps were
used, including 1) correcting for within-scan acquisition time
differences between slices; 2) realigning the volumes to the first
volume to correct for inter-scan movements; 3) spatially nor-
malizing to a standard EPI template and making a resample;
4) spatially smoothing; 5) linear regression to remove the in-
fluence of head motion, whole brain signals, and linear trends;
6) temporally band-pass filtered. Specially, the parameters ob-
tained during movement correction showed that the maximum

TABLE I
ROI BRAIN REGIONS FOR DEFAULT NETWORK

displacement in the cardinal direction was not greater
than 1 mm, and the maximum spin was not greater than
1 for each participant.

2) Region Definition: In the present study, we used a priori
regions of interest (ROIs) to define the default network as
previous studies [24]–[26]. In detail, we defined and extracted
the default network using a two-step recursive method. First,
we chose an initiating seed within the posterior cingulate
cortex (PCC), (MNI coordinates ) according to the
previous study [27] and computed the functional connectivity
map for each subject with the initiating seed. Based on the
pattern of functional connectivity map of all subjects, we
extracted the peak coordinates corresponding to the bilateral
Parahippocampal gyrus (PHC) and other regions within the
default network, including medial prefrontal cortex and lateral
parietal cortex. Since the initiating PCC seed might be not well
suitable for the present dataset, we used the peak coordinate
within the left PHC obtained in the above analysis to compute
the functional connectivity map of the left PHC for all subjects,
and then combined the information of the local peak functional
correlation to the left PHC along with the a priori anatomic
knowledge to redefine the coordinates of the PCC and the
retrosplenial cortex (Rsp).

Thus, using the above two-step procedure, the following co-
ordinates of a priori ROIs were obtained as shown in Table I.
Finally, all of ROIs were defined as a spherical region with a ra-
dius of 6 mm at the center of the obtained coordinates of a priori
ROI. Since the size of voxel in the present study was 3 3 3
mm, each ROI was comprised of 33 voxels.

3) Individual Functional Connectivity Graph: After ex-
tracting the 13 ROIs for each subject, we computed the
functional connectivity between each pair of the 13 ROIs. The
functional connectivity was produced by averaging the BOLD
time series separately in the two regions, and then computing
the Pearson’s correlation coefficient between the two averaged
time series. The resulting correlation was then transformed
to approximate Gaussian distribution using Fisher’s -to-
transformation [28]. Thus, for
each subject, we obtained a 13 13 matrix, with each element
representing the strength of functional connectivity between
the corresponding two brain regions within the default network.
Specifically, the diagonal element was self-correlation of the
corresponding region. For computational convenience, we set
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all the diagonal elements’ value to 2, whose approximate
correlation was 0.964.

Although it is not very clear how the brain areas within the
default network combine with each other, researchers have
found that the functional connectivities within the default
network were consistent and replicable in a normal population
[1], [3], [29]. In the present study, using the one-sample -test,
we found that all functional connectivities within the default
network were significantly greater than 0 ( , FDR cor-
rected). This suggested that the functional connectivity between
any two nodes within the default network is positive, which
was consistent with previous studies [30], [31]. In addition,
although we found that some of the functional connectivity
in some subjects was negative, the negative functional con-
nectivity accounted for less than 5% of the number of all the
functional connectivity. To adopt the commonly used network
measures to investigate the topological characteristics of the
default network, we set the negative functional connectivity
as 0. This allowed us to use the undirected weighted graph
to model the default network. That is, the node of graph was
used to denote the brain region within the default network, and
the weight of the edge between two nodes was represented
to the -valued strength of functional connectivity between
the corresponding two brain regions. Thus, we constructed a
complete undirected weighted graph to model the topology of
the default network for each subject.

4) Median Functional Connectivity Graph: First, we intu-
itively investigated the average topology of the default network
within each of the two groups. For more robustness, we used
the median, rather than the mean, of -valued strength of each
functional connectivity to represent the average strength of the
functional connectivity. Thus, we obtained a median functional
connectivity graph separately for each group, and then analyzed
the network measures and topological architecture for the me-
dian functional connectivity graph of each group.

In graph theory, the degree of a node was the number of
edges linking to the node, and was defined as [32]

(1)

where denoted to the weighted edge that connected node
with node , that is, in the present study, the -valued strength
of the functional connectivity between brain region and brain
region . The degree can be used to qualify the extent to which
the node was central in the graph. With the node degree, we can
define the hub node, which is the node with high degree in a
graph.

Here, we calculated the degree for every node of the median
functional connectivity graph separately for the two groups. In
addition, to graphically represent the architecture of the graph,
we used Kamada–Kawai algorithm (fix the first and last nodes)
that was implemented in Pajek [33]. The Kamada–Kawai algo-
rithm was a force directed graph layout algorithm. The basic
idea of this algorithm was to minimize the energy function of
the graph by moving the nodes and changing the distance be-
tween them. So, the layout of the graph could be used to repre-
sent how close the nodes in graph were. Specifically, the layout

of the graph was not unique and changeable when using the Ka-
mada–Kawai algorithm. However, in the present study, we noted
that two features of the layout were stable. One was the central
position of PCC in the layout of default network, whereas an-
other was the segregation of the bilateral PHC and cerebellar
tonsils from the other nodes within the default network. Here,
we called the nodes except the bilateral PHC and cerebellar ton-
sils as major nodes within the default network. Accordingly, we
made two hypotheses that, 1) PCC was the most important hub
node in the default network; 2) the bilateral PHC and cerebellar
tonsils were topologically separations from major nodes within
the default network. For the first hypothesis, we used the paired
test to validate whether PCC was the node with the greatest de-
gree in each subject. For the second one, we still used the paired
test to validate whether the average of the shortest path lengths
between bilateral PHC (or cerebellar tonsils) and each of the
major nodes was significantly greater than the one between any
pair of major nodes in each subject.

5) Comparison of Topological Properties of Graph Between
Two Groups: Next, we used the two-sample -test to investi-
gate whether there was significant difference in some network
measures of the graph of the default network between the supe-
rior intelligence group and the average intelligence group. These
measures included the strength of functional connectivity be-
tween any two nodes, node degree of every node, clustering co-
efficient of every node, the shortest path length between any pair
of nodes, and the global efficiency of graph. The definition and
significance of degree have been stated in (1).

The clustering coefficient was a typical property of a node
in a graph, and it can be used to quantify how close the neighbors
of the node are. Various definitions for clustering coefficient
in the weighted graph have been proposed over years. In present
study, since the weighted graph was complete, we used the def-
inition as [34]

(2)

where denoted to the weighted edge that connected node
to node . Thus, it was easy to know the following equation

.
The shortest path lengths play an important role in the trans-

port and communication within a graph. It refers to the length
of the path of minimal length between two nodes and can be
used to characterize how well two nodes communicate. In this
study, the weight of the edge between two nodes was repre-
sented to the -valued strength of functional connectivity, and
we set all the diagonal elements of individual functional connec-
tivity matrix to 2 as the above description. Therefore, we defined
the distance between two nodes in the graph by subtracting the
-valued strength of functional connectivity from the constant

2. The more general definition of the distance in this study was
as follows

constant (3)

where was the -valued strength of the functional connec-
tivity between the brain region to the brain region . Here,
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the constant was 2. Thus, it was clear that the distance was in-
versely related to the strength of the functional connectivity.
Then, we computed the shortest path lengths with the Dijkstra’s
algorithms [35].

With the shortest path lengths, we can define the so-called
global efficiency of the graph as [32], [36]

(4)

where was the number of nodes in the graph, and was the
shortest path length between node and node . The quantity of
the efficiency can be used as an indicator of the traffic capacity
of a network. Here, we used the global efficiency to qualify the
associations between intelligence differences and the functional
integration of the default network.

6) Correlations of Network Measures to FSIQ Scores Across
All Subjects: We correlated the FSIQ scores with network mea-
sures across all subjects. These measures included the strength
of the functional connectivity, node degree, clustering coeffi-
cient, the shortest path length, and global efficiency.

III. RESULTS

The median functional connectivity matrix and weighted
graph for both groups were shown in Fig. 1. As shown in Fig. 1,
the homologous brain regions showed the strong functional con-
nectivity. The PCC showed the greatest degree and was situated
in the center of the layout of the default network in both of the
two groups. We validated that PCC was the node with the greatest
degree in the default network (the paired -test, for
both groups). On the other hand, we found that the bilateral PHC
and cerebellar tonsils showed the comparative weak connectivity
with major nodes in the default network and thus they were
topologically segregations in the layout of the default network.
As presented in methods, we used the paired -test to validate the
result. We found that, the bilateral PHC and cerebellar tonsils
showed greater shortest path lengths to the major nodes of the
default network in comparison to the nodes within major nodes
(bilateral PHC, for both groups , cerebellar tonsils,

for both groups).
We compared the network measures of the default network

between the superior intelligence group and the average intelli-
gence group. We found that there were significant differences in
the strength of some functional connectivities between the two
groups as shown in the center subplot in Fig. 2 (the two-sample
-test, , uncorrected), and we found significant differ-

ences in some node’s degree, including L.IT, L.Sup.F, vMPFC,
L.PHC (the two-sample -test, , uncorrected), while
there were no significant differences in any clustering coeffi-
cient between the two groups. We also found significant differ-
ences in the shortest path length between the two groups (the
two-sample -test, , uncorrected). More importantly,
we found that there was the significant difference in the global
efficiency of the graph of default network (the two-sample -test,

, uncorrected).
We correlated the network measures with the FSIQ scores

across all subjects, and found that there were no significant
correlations between the FSIQ scores and some network mea-
sures, including node degree, clustering coefficient, and global

Fig. 1. The median functional connectivity matrix and graph separately for the
superior intelligence group (Column A, left) and the average intelligence group
(Column B, right). The first row represents the function connectivity between
any pair of brain regions in the default network in a pseudoanatomical organ-
ization. The gray value of line is proportional to the connection strength. The
second row represents the correlation matrices. The third row represents one
layout of graph of the default network using the Kamada–Kawai algorithm. The
distance between nodes roughly represents how close the brain regions func-
tionally correlated. Node size is proportional to its node degree.

efficiency (Correlation , ), while some
functional connectivities showed the significant correlations to
the FSIQ scores, including PCC-vMPFC, Rsp-vMPFC, Rsp-L.
PHC, Rsp-R.PHC and R.IT-L.PHC ( , uncorrected).
These correlation results were also shown in Fig. 2.

IV. DISCUSSION

In the study on the default network, researchers can often
use PCC as seed region to define and extract the default net-
work [27], [31], [37]. In the present study, using weighted graph
theory, we quantitatively confirm that PCC was the most impor-
tant hub node in the default network, which suggested that PCC
could be the center of information processing within the default
network. This might be one of the reasons that researchers can
use PCC to robustly find the other regions within the default net-
work and further construct the default network.

PCC is located in the posterior part of the cingulate cortex
and comprises Brodmann 23, 31. The anatomy of PCC in the
macaque monkey has been extensively studied [38]–[40]. Re-
searchers have found that PCC had reciprocal projection with
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Fig. 2. The significantly different functional connectivity between the superior intelligence group and the average intelligence group and the significant corre-
lations between the strength of the functional connectivity to the FSIQ scores across all subjects. The central subplot shows the significantly different functional
connectivity in the strength between the average intelligence group and the superior intelligence group (two-sample �-test, � � ����, uncorrected). The gray value
of line in the central subplot is proportion to the score. The significant correlations between the strength of the functional connectivity and the FSIQ scores were
shown around the central subplot.

the medial temporal lobes and robust connections with pre-
frontal cortex and parietal cortex. A study based on human
diffusion tensor imaging has found that there were fiber tract
connections between PCC and the medial prefrontal cortex
[41]. Specially, Hagmann and colleagues mapped white matter
cortico–cortical connections with diffusion spectrum imaging
and found that the posterior medial regions formed a topologi-
cally central core in human brain [42]. Additionally, using the
partial correlation analysis method with fMRI data, Fransson
and colleagues found that PCC showed strong connections with
the rest of brain regions within the default network [43]. The
authors suggested that PCC should play a pivotal role in the de-
fault network, which was consistent with our present result. In
addition, some clinical studies suggested that the abnormality
of PCC could be related to some neuropsychiatric diseases.
For example, lots of functional studies consistently found that
there was significant difference in the activity of PCC between
the patients in Alzheimer disease and the normal controls [30],
[44], [45]. These evidences from different sources suggested
the core importance of PCC within the default network and its
significance for human cognitive ability.

At the same time, as the study of default network goes in
depth, researchers have recognized that the default network
should comprise some interacting subsystems [3]. Among
these subsystems, the bilateral Hippocampus (HF) and PHC
constitute the medial temporal lobes subsystem (MTLs), which
provide information from prior experiences in the forms of
memories. The other brain regions within the default network,
including the prefrontal cortex and lateral parietal cortex, used
the prior information from the MTLs and assimilated what
actually happens to adapt and improve the brain’s mental
capabilities, for example, the anticipatory ability in forms of
envisioning future event, self-relevant mental planning, and
even mind wandering [1], [3], [46].

Specially, we found that the MTLs showed comparatively
greater functional connectivity with Rsp. It suggests that Rsp
could play as a transformer in the combination of the MTLs
with the other brain regions within the default network. Al-
though it is a posterior part of the cingulate cortex like PCC,
Rsp is mainly defined by Brodmann area 29, 26. In animal
study, some researchers found that Rsp had dense reciprocal
projections with HF and PHC [39], [40]. Grecius and col-
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leagues used diffuse tensor imaging to show robust struc-
tural connections between the MTLs and Rsp in human brain
[41]. On the other hand, researchers found that, relative to the
robust posterior midline brain regions and medial prefrontal
cortex, the MTLs were less prominent in the task-induced
deactivations [3]. Additionally, the functional connectivity of
HF showed imperfect overlap with the default network [47].
Fransson and colleagues found weak functional connections
between the MTLs and the rest of the brain regions within the
default network [43]. In the present study, we found that the
MTLs were topologically separations from the other brain re-
gions within the default network. Taking the function of MTLs
together, we believe that MTLs play as a retrieving subsystem,
analogously as a prior knowledge database, to be involved in
the default network.

The neural basis of human intelligence has been investi-
gated for many years. Researchers have found, using various
neuroimaging paradigms that have ranged from the structural
[48]–[50] to functional imaging [51]–[54], that a brain network
characterized by interactions between multiple brain regions
supported the intelligence. Specially, in our previous study
[17], we found that the strength of the functional connectivity
between the brain regions distributed in the frontal, parietal,
occipital, and limbic lobes was significantly correlated with
individual intelligence scores even in the resting state and in
the absence of an explicit cognitive demand. Broadly speaking,
there are some pioneering studies to investigate the relationship
between the resting state fMRI signals and the individual
cognitive performance [15], [16], [18]. Specially, Hampson
and colleagues found that the strength of the resting state func-
tional connectivity between PCC and a medial frontal region
incorporating portions of the medial frontal gyrus and ventral
anterior cingulated cortex were correlated with the subjects’
performance in working memory task [15]. Additionally, in
another age-related study, Sambataro and colleagues found that
the strength of the functional connectivity between PCC and
medial prefrontal cortex (MPFC) was positively correlated to
the working memory performance [18]. In the present study,
we found that some functional connectivities showed the
significant positive correlations to the FSIQ scores, including
PCC-vMPFC. These results would together suggest the im-
portant role of the functional interacting between PCC and
MPFC in the cognitive performance. In addition, although we
did not find significant positive correlation between the global
efficiency of the default network and the FSIQ scores, there
were significant differences in the global efficiency between the
average intelligence group and the superior intelligence group.
As shown in methods, the global efficiency is inversely related
to the shortest path length, which roughly means that the global
efficiency is related to the strength of functional connectivity in
the present study. In comparison to the functional connectivity,
the measure of the global efficiency is numerically easier to use
to estimate the functional integration of multiple brain regions
in a network [36], [55]. In this study, the superior intelligence
group showed larger global efficiency of the default network
compared to the average intelligence group, which suggests
that the subjects with higher intelligence have more integrated
functional architecture of the default network.

In this study, we constructed a complete undirected weighted
graph to model the topology of default network for each subject.
This is significantly different from previous studies. In previous
studies, the threshold was applied to produce a binary adjacency
matrix or undirected “0–1” graph, irrespective of the strength of
the connection between two nodes [24], [26], [56], [57]. Since
the functional connectivity between the brain regions within the
default network is significantly positive in a normal population,
it is difficult to apply a threshold to model the default network
as a binary graph. In the present study, we used the -valued
strength of functional connectivity as the weight to model the
connection between the brain regions within the default net-
work, which can resolve the issue of threshold in a sense. Un-
fortunately, we have faced some trouble in the methods, espe-
cially in the definition of the weight and the distance. First, al-
though the one-sample -test showed that all of the functional
connectivity within the default network was significantly posi-
tive in our dataset, we found that some functional connectivities
in some subjects were negative. These negative functional con-
nectivities might result from the error in the extraction of ROIs
or the registration to the template. Besides, we speculated that
the functional separation within the default network might re-
sult in the negative functional connectivity in some sense. To
adopt the commonly used network measures, such as node de-
gree, global efficiency, and so on, to investigate the topolog-
ical characteristics of the default network, we set the negative
functional connectivity to 0. Although the number of the nega-
tive functional connectivity was less than 5% of the number of
all the functional connectivity, and we checked and found that
there was no significant difference for most of network charac-
teristics in the present study no matter when setting the negative
functional connectivity to 0 or not, we remind the reader that
there are some limitations to set the negative functional connec-
tivity to 0. Second, we adopted a linear method to define the
distance between the nodes as shown in (3). In fact, there are
other definitions that can be used as the distance, for example,
using the multiplicative inverse of the strength of the functional
connectivity as the distance as in [58]. We compared the differ-
ence in the shortest path lengths between the two groups when
separately using the present subtraction and the multiplicative
inverse as the distance. We found that there was significant dif-
ference when using different methods to define distance and, it
was difficult to explain the results when using the multiplica-
tive inverse as the distance. Since the negative functional con-
nectivity was set to 0, its multiplicative inverse is infinite. Ad-
ditionally, since the distance defined as (3) is inversely related
to the strength of functional connectivity, the difference in the
shortest path length between the two groups and the correlations
between the shortest path length and the FSIQ scores were both
independent on the constant. So we prefer to use the present
linear method to define the distance. However, the choice of
the constant would influence the significance of difference in
global efficiency between the two groups. Thus, it is required to
pay much attention to the above two limitations. Future efforts
should be made to resolve these issues.

Specially, we chose the left PHC, a region that is subsequently
verified to be the topological isolation to the major nodes of the
default mode network, as the seed region for defining PCC and
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Rsp. Here, our motivation is to use the peak functional corre-
lation between the central nodes, (i.e., PCC and Rsp), and the
PHC to verify the functionally separations within the default
network. We verified the robustness of the functional connec-
tivity between the other major nodes of the default network, in-
cluding aMPFC and vMPFC, and the seed regions of PCC and
Rsp. So, we believed that the locations of the seed regions of the
PCC and Rsp were suitable for the present dataset.

Interestingly, we noted that some artificial cognitive ar-
chitecture, for example, Adaptive control of thought-rational
(ACT-R)[59] and global workspace dynamical architecture
[60], had designed some modules or mechanisms to rehearse
imaginary events or scenarios, and then use the information
from the rehearsal to modulate the actual behavior. The ar-
chitectures suggest the importance of the ability to reflect on
the past and predict the future [61], which are similar to the
cognitive functions of the default network in the human brain.
Specially, there are some arguments about the extension of
the physiological significance of the default network, so more
efforts are required to make sense of the default network, espe-
cially its functions and organization structure. We believe that
the ongoing studies on the intrinsic activity of the human brain
will bring more cues, not only for human cognitive functions,
but also for the developmental artificial cognitive system. Here,
we suggest that the topological pattern of a network comprising
specifically functional distributed subsystems and the infor-
mation hub nodes that converges these subsystems might be
important for a developmental artificial intelligent system.

In summary, using the graph theory, we found that PCC
showed the greatest degree in comparison to the other brain
regions within the default network, which quantitatively sug-
gests that PCC was the hub node for information integration of
default network. On the other hand, we found that the bilateral
PHC and cerebellar tonsils showed the significantly weaker
connectivity with the major nodes in the default network and
thus, they were topologically segregations in the layout of the
default network. This suggests that MTLs and cerebellar tonsils
play as a subsystem to be involved in the default network. More
importantly, we found that the strength of some functional
connectivities and the global efficiency of the default network
were significantly different between the superior intelligence
group and the average intelligence group, which indicates
that the functional integration of the default network might be
related to the individual intelligent performance.
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