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Default Risk and Diversification: Theory and Applications

Abstract

Recent advances in the theory of credit risk allow the use of standard term structure machinery

for default risk modeling and estimation. The empirical literature in this area often interprets the

drift adjustments of the default intensity’s diffusion state variables as the only default risk premium.

We show that this interpretation implies a restriction on the form of possible default risk premia,

which can be justified through exact and approximate notions of “diversifiable default risk.” The

equivalence between the empirical and martingale default intensities that follows from diversifiable

default risk greatly facilitates the pricing and management of credit risk. We emphasize that this

is not an equivalence in distribution, and illustrate its importance using credit spread dynamics

estimated in Duffee (1999). We also argue that the assumption of diversifiability is implicitly used

in certain existing models of mortgage-backed securities.



Reduced-form models of defaultable securities, which view the default of corporate bond issuers

as an unpredictable event, have become a popular tool in credit risk modeling. A key advantage

of this approach is that it brings into play the machinery of classical term structure modeling

techniques. This is convenient for the econometric specification of models for credit risky bonds as

well as for the pricing of credit derivatives.

The strong analogy with ordinary term structure modeling, which will be briefly recalled in the

next section, allows for specifications of default intensities and short rates using for example the

affine term structure machinery of which the models by Cox, Ingersoll and Ross (1985) and Vasicek

(1977) are the classic examples.1 Pricing bonds and derivatives in this framework requires only

the evolution of the state variables under an equivalent martingale measure. However, in order to

understand the factor risk premia in bond markets and to utilize time-series information in the

empirical estimation, a joint specification of the evolution of the state variables under the “physical

measure” and the equivalent martingale measure is required. The structure of these risk premia is

well understood, for example, in the affine models of the term structure.

A key concern in our understanding of the corporate bond market is the form and size of the

risk premia for default risk. Since the reduced-form approach allows us to model default risk using

standard term structure machinery, it is natural to use the same structure for the risk premia of the

intensity processes as we would use for the short rate process in ordinary term structure models.

This choice has led to an interpretation of the drift adjustment on the state variables underlying

the martingale default intensity as a “default risk premium” or “price of default risk.”2 Recent

examples of this approach are the empirical works by Duffie and Singleton (1997), Duffee (1999),

and Liu, Longstaff and Mandell (2001). The last paper proceeds a step further along the risk

premium interpretation by computing the expected returns on defaultable bonds using these drift

adjustments.

We show in this paper that this specification for the default risk premia implies a strong re-

striction on the set of possible risk premia. The fact that the intensity process is not just an affine

function of diffusion state variables but is also the compensator of a jump process allows for a much

richer class of risk premia. The critical distinction is really whether agents only price variations in

the default intensity, which then must be pervasive, or they also price the default event itself.

This insight can be derived from existing works such as Back (1991) and Jarrow and Madan

(1995). Through the well-known connection between the state-price density and the marginal

utility of a representative investor or a single optimizing agent, it is easy to see that the structure

of the default risk premia used in the current empirical literature implies that there can be no
1For more general works on affine models, see for example Duffie and Kan (1996) and Dai and Singleton (2000).
2To be precise, the martingale intensity is usually assumed to depend on short rate factors. This is to capture

the systematic dependence of credit spreads on the default-free term structure. The drift adjustments on these short
rate factors are appropriately interpreted as interest rate risk premia. However, usually one more state variable is
included for the intensity and its risk adjustment is given the interpretation of a default risk premium.
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jumps in endowments or aggregate consumption at a default date. We will return to this argument

below. It is useful, however, to state more generally and explicitly what the structure of default

risk premia is in reduced-form credit risk models. We do this with an explicit description of the

possible risk premia using the work of Jacod and Mémin (1976). This explicit analysis gives insights

essential to understanding the economic content of different risk premium specifications in default

modeling. Using a conditional diversification argument similar to that used for the original APT,

we demonstrate another sense (in addition to the equilibrium characterization) in which one can

view the “change in drift risk premium specification” as corresponding to a notion of diversifiable

default risk.

Our results show that for diversifiable default risk, there is an equivalence between the martin-

gale and empirical default intensity functions. In this context, the drift change in the intensity is

a sufficient description of the default risk premium. A corollary is that if one is concerned with a

systematic jump event carrying a non-zero risk premium, then the drift change in the intensity as

specified above is not the appropriate specification. Contrary to the change of drift for diffusion

state variables, a systematic jump risk premium will imply a larger instantaneous intensity, and

hence a larger spread as maturity approaches zero. It will also generate a higher volatility in the

intensity process suggesting larger fluctuations in yield spreads than what can be explained from

fluctuations of observed default intensities alone.

With the necessary theory in place for the structure of default risk premia in reduced-form

intensity models, we next turn to potential applications involving conditionally diversifiable default

risk. First, if default intensities are specified as functions of observable state variables, diversifiable

risk connects the empirically estimated intensity function obtained from default data with prices

observed in the market. Despite the use of an empirical intensity function for pricing, we stress

that this is not a risk-neutrality result. Indeed, we show that in the setting of diversifiable default

risk it is possible to have both a downward-sloping yield curve for credit spreads assuming risk

neutrality and an upward-sloping curve using the pricing measure, consistent with the empirical

evidence supplied by Helwege and Turner (1999).

Second, in the other direction, if we specify default intensities as functions of latent state

variables, diversifiable risk establishes a link between the martingale intensities obtained from

market prices and actual default probabilities. This link is potentially useful when trying to extract

risk measures such as credit VaR from observed market prices, a key concern in modern credit

risk management. To illustrate this approach, we take the estimated martingale intensities and

the associated drift adjustments from Duffee (1999) to compute the term structure of default

probabilities. We show that the assumption of diversifiable default risk produces estimates that are

in reasonable agreement with numbers derived from Moody’s rating migration data for the long-end

of the term structure, but that the short-end is more problematic. Adjusting for liquidity and tax
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effects here may provide a partial explanation of the deviation, but a more detailed empirical study

along the lines of Driessen (2002) is needed to test the hypothesis formally.

As a final observation on potential applications, we argue that the concept of diversifiable

default risk is not limited to credit risk modeling. In the pricing of mortgage-backed securities, it is

common to price prepayment risk using empirically estimated prepayment functions which depend

on systematic variables such as the level of interest rates. We explain this connection by examining

the model of Stanton (1995).

The structure of the paper is as follows. In Section 1 we provide an intuitive illustration of

different forms of default risk premia. In Section 2 we formally introduce the concept of conditionally

diversifiable default risk using the framework of Lando (1994). In Section 3, we first establish an

exact equivalence between empirical and martingale default intensities using equilibrium-based

arguments, then prove a more general asymptotic equivalence using the limit economy specified in

Section 2. In Section 4 we discuss potential applications of diversifiable default risk. We conclude

with Section 5.

1 Variations in Default Risk vs. Event Risk

In the next section we will explicitly construct a reduced-form credit risk model with several issuers.

However, before giving this construction, it is helpful to explain in a very simple setting the critical

distinction between the two types of default risk premia that we are trying to understand.

1.1 Comparisons with Ordinary Term Structure Modeling

Consider an economy indexed by the time interval [0, T ∗] on which we have a short rate process

r and a collection of Treasury securities. In this economy there is a single issuer of a defaultable

bond which has a default time τ . This default process is assumed to have an intensity λ under P,

the “physical” measure. The intensity of the default process provides the local default probability

in the sense that the probability of the issuer defaulting over a small interval (t, t+∆t) is equal to

λt∆t. This intensity may depend on the short rate r.

In an arbitrage-free market, we have the existence of an equivalent martingale measure Q. Hence

the price of a zero-coupon Treasury bond is given as

p(t, T ) = EQt exp(−
Z T

t
rudu). (1)

It is shown in Artzner and Delbaen (1995) that under Q, τ has a default intensity also, and we

label this intensity eλ. Using this intensity, the price of a defaultable bond with maturity T and zero
recovery in default is, under weak regularity conditions, given by

v(t, T ) = EQt exp(−
Z T

t

³
ru + eλu´ du). (2)
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Lando (1994, 1998) extends this formula into pricing building blocks for contingent claims

and Duffie and Singleton (1999) show that with a fractional recovery rate one obtains the same

formula except that eλ is interpreted as the fractional loss rate multiplied by the default intensity.
The common theme here is that we have reduced the problem of pricing defaultable securities to

evaluating the same expectation used in ordinary term structure modeling. This analogy becomes

very compelling if we model the intensity using stochastic processes for which we know explicit

solutions.

For example, consider a CIR model for the default intensity of an issuer. Using the analogy

with the theory of short rate models, we specify the behavior of the P -intensity λt as

dλt = κ(θ − λt)dt+ σ
p
λtdW

P
t , (3)

and the behavior of λt under the equivalent measure Q as

dλt = (κ+ ν)(
κθ

κ+ ν
− λt)dt+ σ

p
λtdW

Q
t , (4)

where the processes WP and WQ are Brownian motions under P and Q, respectively.3 κ, θ, ν, and

σ are constants chosen so that λ stays positive under both P and Q. ν is then interpreted as the

risk premium for default risk. To facilitate further reference, we will refer to this as a “drift change

in the intensity.” For example, Duffee (1999), Duffie and Singleton (1997), and Liu, Longstaff and

Mandell (2001) all have parameters playing the role of a “drift change in the intensity.”

When trying to quantify risk premia in default markets, it is critical to note that this drift

change in the intensity only captures the compensation of taking on default risk which arises from

systematic factors changing the intensity. As we will see later, if the default event itself (the point

process) carries a risk premium, then the Q-intensity could, for some positive constant µ, be equal

to eλt = µλt, with a dynamics given by
deλt = (κ+ ν) (

µκθ

κ+ ν
− eλt)dt+√µσqλ̃tdW

Q
t . (5)

The constant µ is the risk premium needed to represent compensation for the default event itself.

In general, this multiplicative risk premium need not be constant, just as the drift change in the

intensity could be time varying and random as well. The advantage of the work of Jacod and Mémin

(1976) is that, in contrast with Artzner and Delbaen (1995), it provides an explicit characterization

of the possible risk premia. Their results will prove particularly useful when considering the infinite

economy needed to prove our diversifiability result.

To further explain this distinction between the concepts of pricing variations in default risk

versus pricing the jump event itself, we finish this informal introduction by considering the following

two examples.

3WP and WQ are related through dWP
t = dWQ

t − ν
σ

√
λtdt.

4



1.2 Floating Rate Note with Step-Up Provision

Consider a firm whose P -intensity is given by λt. Assume a riskless rate of rt, and assume that the

firm issues a short rate note promising to pay a continuous coupon flow equal to rt + λt, up to a

maturity date T and a lump sum payment of 1 at maturity. This is a bond with a continuously

adjusted step-up provision which adjusts the coupon to reflect the instantaneous default intensity

under the “physical measure.” For simplicity, we assume that there is no recovery payment in

default. Consider the pricing of this claim under the different possible measure changes.

With a measure change corresponding to a drift change of the P -intensity, the dynamics for the

Q-intensity has a drift adjustment, but the intensity process is the same (set µ equal to one and

compare equation (5) with (4)). Using the results in Lando (1994, 1998), we see that the price of

this claim is

v(0, T ) = EQ0

Z T

0
(rt + λt) exp(−

Z t

0
(ru + λu)du)dt+E

Q
0 exp(−

Z T

0
(ru + λu)du) = 1, (6)

regardless of how the drift is changed in the Q-intensity. In other words, the payment of the

instantaneous objective default intensity is enough to compensate for the default risk, no matter

how risk-averse the agents are with respect to changes in default risk.

Assume instead that there is a risk premium for the default event of the firm. This corresponds

to the Q-intensity of the jump being a different process. Assume for simplicity that this intensity

at time t is equal to µλt, where one should think of the constant µ > 1 if agents are risk-averse.

Using the same approach as before, the claim issued by the firm has a price equal to

v(0, T ) = EQ0

Z T

0
(rt + λt) exp(−

Z t

0
(ru + µλu)du)dt+E

Q
0 exp(−

Z T

0
(ru + µλu)du), (7)

which is clearly decreasing in µ. Hence the more risk-averse the agents are towards the default

event, the less are they willing to pay for a claim which steps up the coupon payment by an amount

equal to the physical default intensity.

1.3 Short-Term Bonds

The above is an idealized example, but the insight carries over to more standard contracts. For

example, if we use the P -intensity to price a short-term bond when the true risk adjustment contains

compensation for the default event, the drift corrections to the state variables will have to be very

large to produce the desired level of spreads.

To illustrate this claim, we take the dynamics of the P -intensity λ under both P and Q given

in equations (3) and (4), with parameters specified as: κ = 0.186, θ = 0.00499, σ = 0.074, and

ν = −0.216. These values correspond to Duffee (1999)’s estimates for the martingale intensity of a
generic Aa-rated issuer. For simplicity, the short rate is assumed to be independent of the default

intensity. Hence we ignore short rate related factors in Duffee’s framework. We also assume that
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there is a compensation for the default event in the form of a constant µ = 1.1. This value is taken

for illustrative purposes only since the empirical literature does not provide any guidance on the

“reasonableness” of such a parameter.

Based on this setup, we compute the yield spread of a one-year zero-coupon bond using equation

(2), assuming of course zero recovery and eλ = µλ. We then consider the case where one takes µ
to be equal to 1. This corresponds to the default risk premium arising solely from a “drift change

in the intensity” explained above. In this case, one naturally assumes that the dynamics of the

Q-intensity eλ is given by
deλt = ¡κ+ ν0

¢
(

κθ

κ+ ν0
− eλt)dt+ σ

q
λ̃tdW

Q
t . (8)

However, in order to match the correct yield spread, we infer that ν0 would have to be set equal

to −0.44, a value much larger in magnitude than the “true” drift adjustment ν = −0.216. This
problem worsens when one examines bonds with shorter maturities, or when the compensation for

default event risk µ becomes greater. For example, to match the spread on a six-month bond, ν0

would have to be equal to −0.60. In the limit as maturity approaches zero, the required drift will
have to be infinite if one is to match the spread produced assuming that µ > 1.

2 Conditionally Diversifiable Default Risk

We now move on to the formal construction of our model following Lando (1994). Consider an

economy indexed by the time interval [0, T ∗]. In this economy, there is a d-dimensional vector of

state variables X, which we think of as the systematic risk factors.

2.1 Default Processes

Following the standard literature on large markets, we assume that there exists a countably infinite

number of firms in this economy.4 Each firm is subject to default risk, and the default time of firm

i is τ i. It is convenient to consider the one-jump process associated with firm i, i.e. N i
t = 1{τ i≤t}.

This process is assumed to have an intensity process λi, which depends on the state variables X.

The precise meaning of this intensity is given below. The intuition is that at time t the probability

of defaulting over a small interval (t, t+∆t) for firm i is equal to λit∆t.

The notion of conditional diversifiability imposed in our model requires that conditional on the

evolution ofX, the default processes are independent of each other. This captures the idea that once
4There are two ways to work with a large economy (“large” in the sense of the number of firms). In the first

approach, one constructs a sequence of finite sub-economies which in the limit becomes a large market. This allows
concepts such as the absence of arbitrage to be defined in a rigorous way, for example, see Kabanov and Kramkov
(1998) and Klein and Schachermayer (1997). However, it is difficult to generate analytical results with this approach
because the structure of risk premia for existing assets changes with the addition of each new asset. It implies that
the sub-economies are not nested within each other. Therefore, we use the alternative approach of starting directly
with a large market. More discussions of our methodology and its relation with the first approach can be found in
Section 3.2.
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the systematic parts of default risk have been isolated, the residual parts represent idiosyncratic,

or firm-specific shocks that are uncorrelated across firms. Examples of idiosyncratic shocks may

include lawsuits, technological advances and managerial incompetence.

Formally, we start with a filtered probability space
³
Ω,FXT ∗ ,

©FXt ªT ∗t=0 , PX´ where FXt is the

filtration generated by the process Xt. Here, the probability measure PX is the empirical measure

describing the properties of the state variables observed in the real world.

On this space there are also a countably infinite number of nonnegative processes,
©
λit, i = 1, 2, . . .

ª
which are predictable with respect to FXt .5 To construct the default processes, first augment the
probability space with a sequence of i.i.d. unit exponential random variables

©
Ei, i = 1, 2, . . .

ª
that

are independent of the processXt. Then for each i, define a stopping time τ i = inf
n
t :
R t
0 λ

i
udu ≥ Ei

o
.

The ith default process can be defined as N i
t = 1{τ i≤t}, which can only take two values, 0 or 1.

With this construction, the compensated point processM i
t = N

i
t−
R t∧τ i
0 λiudu is a (local) martingale

and hence λi is indeed an intensity process for N i. The default process given above is called a Cox

process, a doubly stochastic Poisson process, or a conditional Poisson process.

The uncertainty in this economy is then summarized by the filtered probability space
³
Ω,FT∗ , {Ft}T

∗
t=0 , P

´
where the augmented filtration Ft = FXt ∨ G1t ∨ G2t ∨ · · · , and Git is the filtration generated by the
ith default process. Here the probability measure P is the extension of PX to FT ∗ . Note that by
construction, conditioning on the history FXT ∗ , the default processes are independent of each other.
This independence captures the essence of conditional diversifiability.

With this construction, the conditional distribution of the ith default time is (assuming no

default before t)

Pt
¡
τ i > s | FXT∗

¢
= exp

µ
−
Z s

t
λiudu

¶
, s ∈ [t, T ∗] , (9)

and consequently the unconditional distribution is

Pt(τ
i > s) = EPt

µ
exp

µ
−
Z s

t
λiudu

¶¶
, s ∈ [t, T ∗] , (10)

where EPt (·) denotes the expectation under P conditional on Ft. This completes the specification
of the default processes under the empirical measure. We now turn to the pricing of defaultable

bonds issued by the firms.

2.2 Valuation of Defaultable Bonds

Let the time-t price of a zero-coupon bond issued by firm i with maturity T be denoted by vi (t, T )

where 0 ≤ t ≤ T ≤ T ∗. When firm i defaults, a fraction 0 ≤ δi < 1 of the face value of its bond

5We will refer to the notion of predictability repeatedly. Unless explicitly stated otherwise, it is safe to think of
predictable processes in our context as left continuous and adapted to the filtration generated by the state variables
and the default processes.
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will be payable at the maturity date of the bond. This is the “recovery of Treasury” assumption

used for example in Jarrow and Turnbull (1995) and Jarrow, Lando and Turnbull (1997).6

In addition, in this economy there is a collection of default-free zero-coupon bonds trading,

whose prices are given by p (t, T ). There is a money market in the economy defined through a short

rate process r, which is adapted to the filtration FXt generated by the state variables. We assume

that the market is complete in the filtration generated by the state variables, so that there is a

unique measure QX equivalent to PX on FXT ∗ , which satisfies

p (t, T ) = EQ
X

t

µ
exp

µ
−
Z T

t
rudu

¶¶
. (11)

We will not assume completeness of the defaultable bond market. Instead, we denote by Q an

extension of QX to FT ∗ , which prices all defaultable bonds by discounted expectation:

vi (t, T ) = EQt

µ
exp

µ
−
Z T

t
rudu

¶¡
δi1{τ i≤T} + 1{τ i>T}

¢¶
. (12)

2.2.1 Default Processes Under the Equivalent Martingale Measure

At this point it is useful to note the properties of the default processes under an equivalent change

of measure from P to Q. We are interested in knowing when the defaultable bond prices in

equation (12) can be expressed in terms of eλit, the martingale default intensities under Q. This is
an important first step because we will attempt to derive a relation between the physical intensity

and the martingale intensity using the process of diversification, i.e. forming larger and better

diversified portfolios. To do this, we need to identify conditions under which the pricing formula

from Lando (1998) holds:

vi (t, T ) = δip (t, T ) + 1{τ i>t}
¡
1− δi

¢
EQt exp

µ
−
Z T

t

³
ru + eλiu´du¶ . (13)

First, as we mentioned earlier, Artzner and Delbaen (1995) show that it is no restriction to

assume the existence of an intensity under an equivalent measure. Therefore, the notion of an

alternative intensity eλit under Q is well justified. Second, under a change of measure the intensity
will not stay invariant. Generally one has eλit = µitλ

i
t, for some strictly positive Ft-predictable

process µt, with the Radon-Nikodym density martingale Zt = EPt
³
dQ
dP

´
represented by (ignoring

the part of the measure change corresponding to the state variables):

Zt = 1 +
IX
i=1

Z t

0
Zs−

¡
µis − 1

¢
dM i

s, (14)

for finite I. Recall that M i
t is the compensated jump martingale from our previous construction of

the default processes.
6Other recovery rate assumptions are possible, including the “recovery of market value” assumption of Duffie and

Singleton (1999).
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Apart from the obvious consequence of eλit 6= λit, this has an additional implication for our

model. Although we have assumed that λit is adapted to FXt , there is no reason to expect that such
a property will be preserved for eλit. The general dependency on the filtration Ft can be interpreted
as due to counterparty risk [see Jarrow and Yu (2001)], or changing perception of default risk due

to specific events [see Collin-Dufresne, Goldstein and Helwege (2002)].

When the intensities are adapted to Ft, generally the default processes are no longer independent
conditional on the history of Xt and a potentially recursive structure results.7 Kusuoka (1999)

constructs explicit examples using the measure change (14) and demonstrates that the counterparts

to (9) and (10) do not hold under the new measure. This causes the explicit link between prices

and intensities in (13) to fail. Collin-Dufresne, Goldstein and Hugonnier (2003) show that the

interpretation of defaultable bond prices as promised cash flow discounted at a default risk-adjusted

short rate can be preserved if the expectation in (13) is taken under an alternative measure which

assigns zero probability to firm i defaulting before time T . However, their measure change is firm-

specific and generally it is not possible to construct a single alternative measure that preserves the

structure of (13) for bonds issued by all firms.

Given these difficulties in modeling the default processes under the pricing measure, we can

proceed with two different approaches. First, we show that when markets become “large,” the fact

that default risk is conditionally diversifiable implies a restriction on the set of pricing measures

which leaves “most” of the default intensities almost invariant, i.e. the goal is to say something

about the properties ofQ on the filtration generated by the state variables and the default processes.

This constitutes our main result to be found in Section 3.3 below. This approach requires no

additional structure besides those stated above. The downside, however, is that the equivalence

between the physical intensity and the martingale intensity is only “asymptotic.”

In comparison, our second approach requires the additional assumption of conditionally inde-

pendent defaults under the pricing measure Q, which affords an explicit application of the pricing

formula (13) in the context of well-diversified portfolios. With the use of (13), we are essentially

proposing a factor structure on prices similar to that of the APT on asset returns. At the expense

of being more restrictive, this approach allows us to use diversification and utility-based arguments

to motivate exact equivalence between the intensities. These results are contained in Section 3.1

and 3.2.

To understand what it takes to preserve conditional independence, we note the following suffi-

cient condition:

Proposition 1 Assume that µit in the Radon-Nikodym density (14) are FXt -adapted. Then the
default processes N i

t are independent conditional on FXT ∗ under the pricing measure Q.
7A “total hazard” construction can be used to build the default processes from i.i.d. unit exponential random

variables. See Yu (2002) for details.
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Proof : First, we note that when µit are adapted to FXt , the density ZT can be written as a
product of terms that are conditionally independent given FXT ∗ under P :

ZT =
IY
i=1

ZiT ,

where

ZiT = exp

µZ T

0
ln
¡
µis
¢
dN i

s −
Z T

0

¡
µis − 1

¢
λisds

¶
.

This is because by construction N i
t are mutually independent under P given FXT ∗ .

We then note that for i 6= j, T ≤ T ∗ and T 0 ≤ T ∗,

Q
¡
τ i > T, τ j > T 0|FXT ∗

¢
= EQ

¡
1{τ i>T}1{τj>T 0}|FXT ∗

¢
= EP

¡
1{τ i>T}1{τj>T 0}ZT∗ |FXT ∗

¢
= EP

1{τ i>T}1{τj>T 0}ZiT ∗ZjT ∗ Y
k 6=i,j

ZkT ∗ |FXT ∗


= EP
¡
1{τ i>T}ZiT ∗ |FXT ∗

¢
EP

³
1{τj>T 0}Z

j
T ∗ |FXT ∗

´
= EQ

¡
1{τ i>T}|FXT ∗

¢
EQ

¡
1{τj>T 0}|FXT ∗

¢
= Q

¡
τ i > T |FXT ∗

¢
Q
¡
τ j > T 0|FXT ∗

¢
,

as desired. ¥
Intuitively, when µit is adapted to FXt , so is the martingale intensity eλit. This suggests that we

can again use the conditional independent construction to define the default processes under Q.

We also note that under the assumption of Proposition 1, individual defaults can still command an

event risk premium. However, they do not directly affect the prices of bonds issued by other firms.

Therefore we have essentially assumed away counterparty risk as defined by Jarrow and Yu (2001).

3 Invariance of the Default Intensity

In this section we present three sets of results on the invariance of the default intensity under

the equivalent change of measure. In Section 3.1 we use the notion of L2-convergence to examine

the pricing of well-diversified portfolios. Assuming conditional independent defaults under Q, we

further argue that only “approximate” equivalence should be expected and only under very special

circumstances would one obtain exact equivalence. In Section 3.2 we use utility-based arguments to

motivate exact equivalence, which can be thought of as a natural consequence of further restrictions

on the state price density. The analogy with equilibrium-based exact APT is also noted. Finally,

in Section 3.3 we present necessary restrictions on the martingale intensities in a large economy as

a result of the conditionally independent construction under P and the absence of arbitrage. This

provides the “asymptotic equivalence” mentioned in the previous section.
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3.1 The Pricing of Well-Diversified Portfolios

First, we study the implications of diversification by examining the pricing of large, diversified

portfolios. Recall that FT contains the information of the state variables and of an infinite collection
of single jump processes. In this section we assume the existence of a martingale measure Q on

(Ω,FT ) such that the pricing functional induced by Q:

Φ(X) = EQ
µ
exp

µ
−
Z T

0
rsds

¶
X

¶
(15)

is defined on a domain M which contains L2 (Ω,FT , P ) . Recall that pricing functionals are defined
to be strictly positive.

For simplicity, we let each firm i issue infinitely divisible claims CiT , payable at T , all bounded

by a constant K and FXT -measurable. Now consider the terminal payoff

Y IT =
IX
i=1

wiIC
i
T1{τ i>T}. (16)

This represents a portfolio of defaultable claims with weights given by wiI where
PI
i=1w

i
I = 1. The

condition limI→∞
PI
i=1

¡
wiI
¢2
= 0 is imposed so that in the limit as I →∞ we will end up with a

“well-diversified” portfolio.

Define the FXT -measurable random variable

SIT =
IX
i=1

wiI exp

µ
−
Z T

0
λiudu

¶
CiT . (17)

According to (9), SIT is the expected value of Y
I
T conditional on the filtration FXT . The proof of the

following proposition establishes that the distance between Y IT and S
I
T in the L

2 (P ) norm converges

to zero and this implies convergence in price as well.

Proposition 2 Assume that the pricing functional Φ : M → R defined in (15) is strictly positive

on its domain M and that this domain contains L2 (Ω,FT , P ) . Then the difference in price between
Y IT and S

I
T converges to 0 as I →∞.

Proof: Let V (·) be the variance operator under P . Then

V
¡
Y IT − SIT

¢
= EP

¡
V
¡
Y IT − SIT | FXT

¢¢
+ V

¡
EP

¡
Y IT − SIT | FXT

¢¢
. (18)

We now show that this variance goes to 0 as I →∞:

V
¡
Y IT − SIT | FXT

¢
=

IX
i=1

¡
wiIC

i
T

¢2
exp

µ
−
Z T

0
λiudu

¶µ
1− exp

µ
−
Z T

0
λiudu

¶¶
, (19)
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and so

EP
¡
V
¡
Y IT − SIT | FXT

¢¢ ≤ IX
i=1

EP
³¡
wiIC

i
T

¢2´ ≤ K2
IX
i=1

¡
wiI
¢2 → 0 as I →∞. (20)

The second term in equation (18) is zero since

EP
¡
Y IT − SIT | FXT

¢
= 0. (21)

Since the variance of the difference goes to 0, we have shown that°°Y IT − SIT°°→ 0 in L2P . (22)

Since the pricing functionalΦ is (strictly) positive on the restriction to the complete space L2 (Ω,FT , P ),
it is continuous on this restriction and therefore prices must converge to each other as well. ¥

This proposition shows that the pricing of well-diversified portfolios of defaultable claims can

be reduced to the pricing of FXt -adapted claims. It provides a sense in which diversification has
completely eliminated the default event risk component from valuation.8

For individual default intensities, however, this argument does not go far enough. To see this

informally, we invoke the assumption of conditional independent defaults under Q, which enables

us to use (13) to rewrite the price of the portfolio as

p0
¡
Y IT
¢
=

IX
i=1

wiIE
Q

µ
exp

µ
−
Z T

0

³
ru + eλiu´ du¶CiT¶ . (23)

On the other hand, the claim SIT is free from default and has a price of

p0
¡
SIT
¢
=

IX
i=1

wiIE
Q

µ
exp

µ
−
Z T

0

¡
ru + λiu

¢
du

¶
CiT

¶
. (24)

The fact that the two are equal in the limit for all well-diversified portfolios suggests a link between

the two intensities, although it is difficult to formalize the relationship in this framework. In

particular, we see that the best we can hope for are approximate results, as there can be a finite

number of violations of invariance that still preserves the equality between (23) and (24) for well-

diversified portfolios.

3.2 Utility-Based Arguments and Exact Equivalence

To obtain exact equivalence with an explicit application of diversification, much stronger assump-

tions are needed. For example, to the extent that there are a large number of firms within the same

8Jarrow (1988) explores sufficient conditions on preferences for the pricing operator given in expression (15) to be
strictly positive. In incomplete markets, when M does not contain L2 (P ), he also provides sufficient conditions on
preferences for the continuity of the pricing operator.
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industry and credit rating category, issuing bonds with similar characteristics (e.g. maturity and

coupon) and trading at similar spreads, one may form a homogeneous portfolio to diversify away

the default risk in each bond. In the extreme, in addition to conditional independence under both

P and Q we will simply assume that λit = λt and eλit = eλt for all i. An application of Proposition 2
to bonds that have not defaulted by time t yields:

EQt

µ
exp

µ
−
Z T

t

³
ru + eλu´ du¶¶ = EQt µexpµ−Z T

t
(ru + λu)du

¶¶
. (25)

In other words, individual bonds can be priced using the dynamics of the physical intensity under

the pricing measure, precisely the “drift change of the intensity” discussed in Section 1.1. Assuming

left-continuity, the above can be differentiated with respect to T . Setting T = t, we obtain eλt = λt.

In this special case, the payoff of the well-diversified portfolio is equal to the conditional expected

payoff of the individual bonds for all possible realizations of the state variables. Consequently any

risk-averse investor would never place a finite proportion of her wealth in any individual bond.

This logic is similar to Connor (1984)’s derivation of exact APT using equilibrium-based arguments,

where he assumes, among other things, a linear factor structure for asset returns, risk-averse agents,

and an insurable factor economy in which any allocation has a well-diversified factor equivalent.

These assumptions together imply an equilibrium allocation that is always well-diversified and, as

a result, firm-specific risks are not priced in equilibrium.

These observations suggest that a result of exact equivalence is closely related to restrictions

on the equilibrium marginal utility of investors. Recall that under technical conditions presented

in Back (1991), the marginal utility of consumption for each investor in a CCAPM setting is

proportional to the state price density. That is, there exists for each investor k a constant αk such

that

Zt exp(−
Z t

0
ru du) = αku

k
c (t, c

k(t)) (26)

holds for the optimal consumption choice ck(t). If investors hold only well-diversified portfolios

in equilibrium, their consumption bundles, and hence the state price density, would be insulated

from individual default event risks. Indeed, if Zt is adapted to FXt , we see immediately from
equation (14) that we must have µit = 1 and eλit = λit for all i, for otherwise Zt would depend on

the compensated jump martingales.

We can draw an analogy with Connor’s arguments here by assuming the existence of diversified

portfolios that mimic the systematic risk exposure of individual bonds. Motivated by (13), we let

instantaneous bond returns be jointly driven by common state variable and firm-specific default
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risk:9

dvi (t, T )

vi (t−, T ) =
¡
rt + b

i (t, T )
¢
dt+ ai (t, T )dXt − LidM i

t , i ∈ Z++, (27)

whereM i
t = N

i
t−
R t∧τ i
0 λisds is the compensated martingale associated with N

i
t . The state variables

Xt is assumed to be a semimartingale. The coefficients ai (t, T ) and bi (t, T ) are FXt -adapted
predictable processes. They can be interpreted as the volatility of the state variables and their

market prices of risk, respectively. The last term represents default risk, and drops by Li at default,

consistent with an assumption of constant recovery of pre-default market value 1− Li. Assuming
that the bond then becomes risk-free and still trades, equation (27) describes the dynamics of bond

prices before as well as after default.

Following Connor’s definition of insurability, we assume the existence of diversified portfolios

with the dynamics:

dqi (t, T )

qi (t−, T ) =
¡
rt + b

i (t, T )
¢
dt+ ai (t, T )dXt, i ∈ Z++. (28)

These portfolios have the same exposure to systematic risk as individual bonds but without the

firm-specific default event risks. As a result, investors would always hold diversified portfolios and

individual default risk would not be compensated. Mathematically, under the assumption that

there exists a pricing measure Q in an economy with an infinite collection of assets specified by

(27) and (28), both the bond price vi and the price of the corresponding diversified portfolio, qi, are

Q-martingales after discounting. This implies thatM i
t is also a Q-martingale. The equality between

the intensities follows. This argument is made precise in the proof of the following proposition.

Proposition 3 Assume that the economy consists of a money market account with short rate rt
and an infinite collection of traded securites with dynamics specified in (27) and (28). Then the

Q-intensity eλit is equal to the P -intensity λit for all i.
Proof: Without loss of generality, we assume Li = 1. Let Y it =

R t
0 b

i (u, T )du+
R t
0 a

i (u, T )dXu.

From (28),

qi (t, T )

B (t)
= E ¡Y it ¢ , (29)

where B (t) = exp
³R t
0 rudu

´
is the money market account and E (·) is the Doléans-Dade exponential

9Without the conditional independence assumption we would have to assume that the bond return be affected by
not only its own default, but the default event of other issuers.
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operator. Similarly, from (27),

vi (t, T )

B (t)
= E ¡Y it −M i

t

¢
= E

Ã
Y it − fM i

t +

Z t∧τ i

0

³
λiu − eλiu´ du

!

= E
³
Y it − fM i

t

´
exp

ÃZ t∧τ i

0

³
λiu − eλiu´du

!

= E ¡Y it ¢ E ³−fM i
t

´
exp

ÃZ t∧τ i

0

³
λiu − eλiu´ du

!
, (30)

where fM i
t = N

i
t −

R t∧τ i
0

eλiudu is a Q-martingale due to the existence of a Q-intensity eλit associated
with N i

t . The above derivation uses the formula E (X)E (Y ) = E (X + Y + [X,Y ]) and properties
of the quadratic covariation [X,Y ] extensively. Specifically, the third equality is due to the fact thatR t∧τ i
0

³
λiu − eλiu´ du is a process of finite variation (FV)–it is the difference between two increasing

processes, and that it is also continuous. The last equality results from
h
Y it ,fM i

t

i
= 0 since fM i

t is a

quadratic pure jump semimartingale that shares no jump with Y it .
10

Since qi (t, T ) /B (t) is a Q-martingale, E ¡Y it ¢ is a Q-martingale due to (29). On the other
hand, E

³
−fM i

t

´
is also a Q-martingale. Let At = E

¡
Y it
¢
and Bt = E

³
−fM i

t

´
. Their product AtBt

is a Q-local martingale since

[At, Bt] =

·
1 +

Z t

0
Au−dY iu, 1−

Z t

0
Bu−dfM i

u

¸
= −

Z t

0
Au−Bu−d

h
Y iu ,

fM i
u

i
= 0. (31)

Therefore one can write vi (t, T ) /B (t) = UtVt, where Ut = E
¡
Y it
¢ E ³−fM i

t

´
is a Q-local martingale

and Vt = exp
³R t∧τ i
0

³
λiu − eλiu´du´ is an FV process because it is a monotonic transformation of

an FV process. Vt is also predictable because it is pathwise continuous. It should then have the

following semimartingale decomposition:

UtVt = U0V0 +

Z t

0
Uu−dVu +Wt, (32)

where Wt is a Q-local martingale with W0 = 0.11 The decomposition (32) should be unique,

since the second term, the FV component, is continuous and hence predictable. However, since

UtVt = v
i (t, T ) /B (t) is itself a Q-martingale, the FV component in the decomposition must vanish.

This implies that Vt is a constant, and subsequently equal to one. Hence eλit = λit. ¥
10This is true if the jumps of Xt coincide with those of N i

t with zero probability. The standard reference for the
results on the quadratic covariation and the Doléans-Dade exponential is Protter (1990, II-6 and II-8).
11See Dellacherie and Meyer (1982, p.223) for detail.

15



Apparently, this notion of diversifiability is much more restrictive than our assumption of condi-

tionally diversifiable default risk. However, it underscores our earlier statement that much stronger

assumptions are needed to obtain exact equivalence.

A special example further illustrates the previous proposition. Assuming the absence of state

variables, zero interest rate, and zero recovery, a differentiation of (13) shows

dvi (t, T )

vi (t−, T ) =
³eλi − λi

´
dt− dM i

t .

According to the assumption of (28), a diversified portfolio qi must provide the same return but

without the default event risk. Hence

dqi (t, T )

qi (t−, T ) =
³eλi − λi

´
dt.

Clearly, individual bond prices grow over time at rate eλi but suffer from occasional −100% returns
from default. Meanwhile, qi represents a diversified portfolio not affected by individual default

events. Its rate of return must equal the risk-free rate of zero, implying that eλi = λi. Its value

stays constant over time because the growth in bond value is exactly offset by average losses in the

portfolio.

3.3 Necessary Conditions in a Large Economy and Asymptotic Equivalence

The previous subsection discusses the sufficient conditions for an exact equivalence between the

martingale and empirical default intensities. We acknowledge that these conditions are quite re-

strictive. In a finite economy, it would be a coincidence if the default of one bond can be perfectly

hedged by a portfolio of other bonds. Even in a limit economy, one still may not have the ability

to form the type of diversified portfolio in (28).

We present a more precise description of the sense in which the empirical and martingale

intensities must be approximately the same for “most” assets. Since no additional structure is

imposed apart from that of Section 2.1, we consider this subsection the main result of the paper.

A number of studies have addressed the issue of asymptotic arbitrage in dynamic models rigor-

ously, including Kabanov and Kramkov (1998), Björk and Näslund (1998) and Klein and Schacher-

mayer (1997). Our approach is similar to that of Björk and Näslund (1998) in that we work directly

in an economy with an infinite number of assets. However, we allow for more general dynamics.

We will relate our results to the other two papers below.

Consider the economy formally defined in Section 2.1 and assume that there is a single state

variable given as an Ito process:

dXt = µ (t)dt+ σ (t) dWt, (33)
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where Wt is a Wiener process under P , and µ (t) and σ (t) are stochastic processes adapted to the

filtration generated by W and regular enough to ensure a unique strong solution. It is trivial to

generalize the following analysis to a multivariate setting. We specializeXt to an Ito process in order

to simplify the presentation of our main results below, but the argument works for jump-diffusions

and more general classes of semimartingales as well.

As in Section 2, we define a pricing measure for the economy to be a measure Q equivalent to

P such that under Q all bonds are priced as discounted expected values, as in equations (11) and

(12). In a finite economy, the existence of such a measure precludes arbitrage. In the setup here

with an infinite collection of assets it clearly excludes arbitrage in any finite sub-economy, but as

we shall see, it also rules out asymptotic arbitrage as defined in Kabanov and Kramkov (1998).

Our assumption of a complete and arbitrage-free market in claims depending only on X implies

the existence of an FXt -predictable process g such that

dXt = (µ (t) + g (t)σ (t))dt+ σ (t) dfWt, (34)

where fWt =Wt −
R t
0 g (u)du is a Wiener process under Q. The process g (t) is assumed to satisfy

EP

Ã
exp

ÃZ T ∗

0
g (u) dWu − 1

2

Z T∗

0
g2 (u) du

!!
= 1. (35)

We are concerned with the form of the intensities under an equivalent measure Q. We make no

assumption of a complete market for defaultable claims, but the presence of infinitely many assets

still imposes an “asymptotic” structure on the intensities under Q.

To characterize the ways in which the intensities can be modified under the equivalent measure,

we need the concept of a predictable function. The predictable field on Ω × [0, T ∗] is the field
P generated by sets of the form A × {0} with A ∈ F0 and A × (s, t] with A ∈ Fs. A function

Y : Ω× [0, T ∗]×N→ R is called a predictable function if it is measurable with respect to the sigma
field P × E where E is the set of all subsets of positive integers N. We are now able to state our
result which is an application of Jacod and Mémin (1976).

In the setup of our economy, we have the following:

Proposition 4 Under an equivalent measure Q, the intensities of the one-jump processes are given

as

eλit = Y (t,ω, i)λit, (36)

for a strictly positive, predictable function Y which satisfiesZ T ∗

0

∞X
i=1

³
1−

p
Y (u,ω, i)

´2
λiudu <∞. (37)
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Proof: Let ai = 1/2i, i ≥ 1. The infinite economy can be embedded into a one-dimensional
semimartingale

St = Xt +
∞X
i=1

ai1{τ i≤t}. (38)

Let µ denote the (random) jump measure associated with this process, i.e.,

µ ([0, t]× i) = 1{τ ı̂≤t}, i ≥ 1, (39)

and let ν be the compensating measure of µ (i.e., the third characteristic of S) as defined for example

in Jacod and Mémin (1976). Clearly, St is a locally bounded (hence special) semimartingale with

characteristics under P given as

dαt = µ (t)dt+
∞X
i=1

aiλ
i
tdt,

dβt = σ2 (t) dt, (40)

and ν (dt, {i}) = aiλ
i
tdt.

Here, and in what follows, we will omit ω from our notation. We can recover the jump processes

and the state variable from S by defining

Xt = St −
X
u≤t
∆Su, (41)

and N i
t = 1{∆Su=ai for some u≤t}. (42)

Now assume that Q is equivalent to P. The semimartingale S also has bounded jumps under

an equivalent measure and hence it is special under Q as well. Since S is also quasi-left continuous

[see Jacod and Mémin (1976)], we have that the characteristics under Q are given as

deαt = dαt + g (t)σ (t)dt+
∞X
i=1

ai (Y (t, i)− 1)λitdt,

deβt = dβt, (43)

and eν (dt, {i}) = Y (t, i) ν (dt, {i}) .

This follows from Theorem 3.3 of Jacod and Mémin (1976).

Since we know exactly the form of the measure change on the diffusion part, we have automat-

ically that
R T ∗
0 g2 (u)σ2 (u) du <∞, P -a.s., and hence we see that the condition in Theorem 4.1 of

Jacod and Mémin (1976) is equivalent to the condition that

∞X
i=1

Z T ∗

0
|Y (u, i)− 1| 1{Y >2}λiudu+

Z T ∗

0
(Y (u, i)− 1)2 1{Y≤2}λiudu <∞, P -a.s. (44)
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But using the inequality

(1−√y)2 ≤ (y − 1)2 1{y≤2} + |y − 1| 1{y>2} ≤
1¡

1−√2¢2 (1−√y)2 (45)

which holds for positive y we see that this is equivalent to
∞X
i=1

Z T ∗

0

³
1−

p
Y (u, i)

´2
λiudu <∞, (46)

as was to be proved. ¥
Expression (37) is similar, in spirit, to the sufficient condition for diversification given in the

original Ross (1976) diversification result. One should think of it as follows. If the intensities λi

are uniformly bounded away from zero by a positive constant, then for the above condition to hold,

only a finite number of default processes can have martingale intensities that deviate by more than

a factor of 1 + ² from the empirical intensities. In a finite sub-economy there can be perturbations

in risk premia due to defaults of other firms [as in Jarrow and Yu (2001) and Kusuoka (1998)]

since the process Y (·, ·, i) may depend on the jump times of firms other than the ith. However,
such a counterparty dependence must “die out” asymptotically in the infinite economy if default

risk is conditionally diversifiable under the empirical measure. Stated differently, the change in risk

premium induced by one firm’s default may only have an effect (over a certain value) on a finite

segment of the economy.

The conditional diversification construction is used for two reasons: First, it facilitates the

construction of and calculations related to jump processes which are driven by exogenous state

variables. Violating this condition quickly leads to complications as demonstrated by the looping

default example in Jarrow and Yu (2001).

Second, it ensures that there are no simultaneous jumps under P of the infinite collection of

jump times, thus playing a role similar to the assumption of independent noise terms in the classical

formulation of APT. We could set up a model where finite clusters of defaults were interlinked under

P just as we can have non-diagonal covariance matrices in APT. But the model is very messy to

write out then. We have chosen a simple starting point with conditional independence, and the

equivalence result then shows us the degree of perturbation of this property that is possible under

an equivalent change of measure. It is clear that under an equivalent change of measure we cannot

introduce simultaneous defaults. Hence the direct contagion cannot exist under Q if it does not

exist under P already. If we want a jump triggering an infinite collection of defaults under P, then

we need to let that jump be part of the state variable process X, and it will be possible to change

the intensity of this state variable (thus affecting an infinite collection of intensities simultaneously

but through the effect of only one intensity).

We have chosen to work with the pricing measure directly on a space with infinitely many

firms. The definition of asymptotic arbitrage proposed in Kabanov and Kramkov (1998) uses sub-
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economies constructed on a sequence of filtered probability spaces to define notions of asymptotic

arbitrage. In “asymptotic arbitrage of the first kind,” a sequence of trading strategies is constructed

such that the initial cost of the strategies approaches zero while the gains process is always non-

negative and in fact becomes strictly greater than 1 at the terminal date with positive probability.12

In their setting, the absence of asymptotic arbitrage is then linked to the notion of contiguity of

a sequence of measures. They show that if each sub-economy has a unique equivalent martingale

measure Qn, then the absence of asymptotic arbitrage of the first kind is equivalent to the condition

that the sequence (Pn) of empirical measures be contiguous to the sequence (Qn). Klein and

Schachermayer (1997) extend this result to the incomplete market case where Qn is not necessarily

unique.

Note that in the general setting, there is not necessarily any connection between the individual

sub-economies in the sequence. Indeed, they can be constructed on different probability spaces

altogether. However, working with this construction in our setting does not produce intuitive

results unless very special structures are imposed, since the structure of risk premia in the (n+ 1)th

economy can be completely unrelated to that of the nth economy. Nevertheless, one could link our

construction with the theory of asymptotic arbitrage by including the first n default processes in

the nth economy and assuming that there is a large N with the following property: for n > N ,

the predictable function Y n+1 defined on Ω × [0, T ∗] × {1, 2, . . . , n+ 1} is equal to Y n on the
restriction to Ω × [0, T ∗] × {1, 2, . . . , n}. Using this construction, we are able to view element n
of the sequence of sub-economies as a restriction of the infinite economy used in our proof to the

economy generated by the first n default processes and the state variable process. This simplifies

the proof of no asymptotic arbitrage considerably, since the critical condition of contiguity merely

becomes a condition of absolute continuity of the unrestricted measures. We are then back to the

condition in Proposition 4.

4 Applications

Turning to applications of diversifiable default risk, we focus on the modeling of corporate bonds.

We use numerical examples and estimates given in the recent empirical literature to illustrate some

empirical implications of conditionally diversifiable default risk. Notably, we show that the risk

adjustment through the state variable is able to produce upward-sloping yield spread curves even

if the underlying credit class has decreasing conditional default probabilities.13 We also show how

to infer the physical default rates from corporate bond prices. We complement this discussion by

12The significance of the value being strictly greater than “one” is unimportant. Due to rescaling the terminal
value by an arbitrary constant, the essence of this condition is that the value is bounded above zero by a strictly
positive, albeit small constant.
13While this feature does not specifically rule out the existence of compensation for jump risk, it would be difficult

to obtain this feature with jump risk premia as the primary risk adjustment.
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showing that the diversifiable risk argument is already implicitly used in empirical prepayment

models for pricing mortgage-backed securities. We conclude this section by briefly discussing a

potential application to credit derivatives.

4.1 Corporate Bonds

4.1.1 From Empirical Intensity to Bond Prices

The equivalence result established in the previous section creates a link between the empirically

estimated intensity from historical default data and the prices of defaultable securities. This is

the first important application of diversifiable default risk. This underscores, for example, the

pricing of the short rate note with a step-up provision discussed informally in Section 1. We use

the framework of Duffee (1999) to illustrate this procedure.

In Duffee (1999), the default intensity is assumed to be

ht = α+ h∗t + β1s1t + β2s2t, (47)

where α, β1, and β2 are constants, s1t and s2t are factors driving the short rate (the former is related

to the term structure slope and the latter to its level). Under P , h∗t is a square-root diffusion

dh∗t = κ (θ − h∗t )dt+ σ
p
h∗tdZt, (48)

with κ, θ, and σ constants and Zt a Wiener process under P . To complete the specification, Duffee

assumes that under the equivalent measure Q, the process for h∗t is

dh∗t = (κθ − (κ+ λ)h∗t )dt+ σ
p
h∗td eZt, (49)

where λ is a constant and eZt = Zt + R t0 λ
σ

p
h∗udu is a Wiener process under Q.

Since Duffee uses the ht process for pricing, it is the intensity of the default indicator under Q.

Duffee does say that the P -evolution of this process is not necessarily the intensity of the default

indicator under P. However, the risk adjustment parameter λ is interpreted as a risk premium for

variations in default risk. If this is the only compensation for default risk, then the analysis in

the preceding section shows that this is a case of diversifiable default risk where the martingale

intensity ht can be interpreted as the empirical intensity.

Along with the risk premia for the term structure factors s1t and s2t, λ determines the way the

market prices systematic variations in the default intensity. Viewed in this light, the factor h∗t that

Duffee (1999) alludes to as a firm-specific variation of default risk probably has its origin in some

common risk factor.14 For example, Elton et. al. (2001) show that a large part of credit spreads

14The way Duffee (1999) conducts the estimation (firm by firm) suggests that the h∗t terms are assumed to be
independent across firms. While a robustness check is not done to check whether this is indeed the case, we suspect
(based on current empirical evidence on credit spreads) that they contain a large common component if, say, we apply
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can be explained by factors considered systematic in the stock market. Similarly, Pedrosa and Roll

(1998) and Collin-Dufresne, Goldstein and Martin (2001) show that the movements in firm-level

credit spreads have a dominant common source related to a “market spread factor” that perhaps

proxies for credit market conditions. In the examples below we follow a “naive” interpretation that

h∗t and its risk premium arise from a linear relation with this factor.

The practical implication of having conditionally diversifiable default risk is now easily illus-

trated. Given historical data on default rates, Treasury yields, and (say) the spread index of Aa

to Treasury, one may estimate, using well-established procedures in survival analysis, an affine em-

pirical default intensity with these macroeconomic factors as time-varying covariates. We can then

price corporate bonds using this estimated affine intensity function along with information on the

factor evolution under the equivalent martingale measure, which can be obtained from the prices

of Treasury securities and interest rate swaps.

For the purpose of illustrating this methodology, we assume in this section that the evolution

under P of the default intensity process estimated by Duffee is the empirical default intensity

of the default event. This allows us to illustrate two points: First, in a world with diversifiable

default risk and in the absence of other market imperfections for the spread, the drift change in the

intensity is capable of producing a large gap between empirical and martingale (implied) default

probabilities. Hence, the gap between these probabilities is not a reason for ruling out the relevance

of estimating default intensities empirically and using them for pricing. Second, the default risk

premium is capable of explaining the well-documented empirical feature that lower-grade issuers

have downward-sloping conditional default probabilities while their yield spreads may be upward-

sloping.

We consider the example of a generic Baa-rated issuer with an empirical intensity given in Table

4 of Duffee (1999).15 The parameters specified according to equations (47)-(49) are: α = 0.00961,

β1 = −0.171, β2 = −0.006, κ = 0.212, θ = 0.00628, σ = 0.059. We take the risk adjustment

parameter for the h∗t process as a free parameter in a range bracketing the estimated value of

λ = −0.307. The parameters for the two short rate factors can be found in Duffee’s Table 2.
Furthermore, we assume that the initial values for the short rate factors and their averages (s̄1,t

and s̄2,t) are set to their long-run mean values under P , and the current value for h∗t is set equal

to the mean fitted value over Duffee’s sample, 0.00864.

[Insert Figure 1 here]

a principal component decomposition to the estimated values of h∗t . Another way to see that it is unreasonable to
assume independence is through a diversification argument: with a portfolio consisting of 100 bonds with identical
credit quality, for example, the variance of the spread attributed to h∗t has to decrease 100-fold. This would imply
an incredibly large reward-to-risk ratio for the portfolio.
15Note that the estimates in Table 4 of Duffee (1999) are given for the martingale intensity. However, under the

maintained diversifiability assumption, they also are the parameters for the empirical intensity.
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Figure 1 shows the term structure of default probabilities, both under the physical measure

and under risk-adjusted measures, for maturities up to 30 years. The λ = 0 series represents

a case with no risk adjustment (risk-neutrality) on the h∗t factor and no risk adjustment on the

Treasury rate factors s1t and s2t. This represents the empirical default probabilities if the intensity

process under the physical measure P in Duffee (1999) is the intensity of the default event under

P . The λ = −0.307 series is the intensity under the risk-neutral measure estimated from data, and
the λ = −0.5 series is a case with roughly a one standard deviation change in the risk premium
parameter. It is apparent that the risk adjustment produces large differences in long-term actual

and implied default probabilities. For the extreme short-end there are no such differences, but this

is due to the structure of the intensity that we assume. This is discussed further in Section 4.1.2.

[Insert Figure 2 here]

The second, and more important, insight can be gleaned from Figure 2, in which we plot the

term structure of yield spreads given different values of λ. Following Duffee’s assumptions, we use

a constant recovery rate δ = 0.44 with equation (13) to compute the spreads. In the case of risk

neutrality on the intensity factor (a case which closely approximates overall risk neutrality, since

the influence from the Treasury factors is very small), we have a downward-sloping yield spread

curve consistent with the fact that given survival up to time t, the conditional probability of default

is decreasing as t becomes larger.16 This is consistent with the pattern observed in Jarrow, Lando

and Turnbull (1997) for lower-rated firms under risk neutrality and zero recovery assumptions.

However, Figure 2 also shows that for the other two cases of non-trivial default risk premium, we

obtain either an upward-sloping or a hump-shaped yield spread curve, consistent with the evidence

reported in Helwege and Turner (1999).17 While it is still a controversial issue whether the curve

for lower rated issuers is truly upward-sloping, what we see here is that the existing evidence is

consistent with the assumption of diversifiable default risk.

4.1.2 From martingale intensity to empirical default probabilities

The second important application of diversifiable default risk is the link between the martingale

intensity estimated from market prices and the default probabilities needed for computing VaR

measures in risk management. To illustrate this computation, we again compute the term structure

16Disregarding the short rate factors for the moment, since the initial value of h∗t is higher than its long-run mean,
under the physical measure spreads will become narrower over time. Thus under risk-neutrality we would obtain a
downward sloping credit spread curve for Baa issuers according to Duffee’s estimates.
17The reason for this, mathematically, is that given our parameter values the martingale intensity becomes an

explosive process after the drift adjustment. The interpretation is that investors seem to consider the conditional
default probability as increasing over time whereas it actually has exactly the opposite behavior. This feature, which
manifests itself in a negative but close to zero mean reversion parameter for the martingale intensity, is confirmed
by other studies such as Liu, Longstaff and Mandell (2001). In terms of data, this is dictated by the need to fit a
gradually increasing yield spread curve for investment-grade issuers.
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of default probabilities based on the estimates from Duffee, but this time for different rating classes

(Aa, A, and Baa).18 The interpretation is that the estimated martingale intensity is equivalent to

the empirical intensity, which we then integrate over time under the physical measure P to obtain

the default probabilities. These results are shown in Figure 3, where we compare the survival

probabilities implied from prices with those obtained by using a one-year transition matrix from

Moody’s (as reported on the CreditMetrics home page, November 1999) to estimate empirical

survival probabilities.

[Insert Figure 3 here]

In Figure 3, the discrepancy between the implied survival probabilities and the empirical ones

is significant. Besides this broad observation, we note several distinctive patterns. First, Moody’s

estimates are consistently higher than those implied from prices under the notion of diversifiable

default risk. Second, the differences are more pronounced at the short-end of the term structure

and decrease in relative terms as one moves to longer maturities. Third, our method seems to

perform better for lower-rated issuers.

Since any error in the survival probabilities in the short-end will manifest itself through the entire

time horizon, to get a more precise picture we consider instead conditional default probabilities.

The conditional default probability qn that we use is the one-year default rate given that the issuer

has survived for the first n − 1 years. If the survival probability for the first n years is pn, the
conditional default probability is then equal to 1− pn/pn−1. This is presented in Figure 4 below.

[Insert Figure 4 here]

From Figure 4, we can see that the conditional default probabilities are still significantly different

in the short-end of the maturity spectrum, and the difference is more pronounced for higher-rated

debt. In addition, unlike the “actual” series that are upward-sloping throughout the range of

maturities, our “JLY” series are quite flat, eventually matching the “actual” series at the mid- to

long-end. This flatness is partly due to the fact that we set the initial value of the h∗ process equal

to its mean fitted value over Duffee’s sample period, which is quite close to the long-run mean

value θ. However, even if we set the initial value close to zero, the upward-sloping shape cannot

be reproduced. This is because under the empirical measure the state variables mean-revert “too

quickly” (for example, for an Aa issuer the half life of the h∗ factor is less than 4 years).

An important reason for this discrepancy is likely to be non-default related reasons for spreads–

effects which will have a proportionally greater impact for higher-quality debt and for the short-end

of the term structure. These may include liquidity differences between on-the-run and off-the-run

18We drop the Aaa estimates since they seem to suffer instability problems and are unable to match the Aaa credit
spread curve according to Duffee (1999).
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Treasury securities, liquidity and tax differentials across Treasury and corporate securities, a “non-

transparency spread” as in Duffie and Lando (2001), and so on.19 There is limited empirical

evidence on the size of these market imperfections, which reduces our ability to interpret the short-

end. Duffee (1999) shows that for Aa-rated issuers the short-term spread is about 60 bps. Of

this, Elton et. al. (2000) estimate that state taxes may account for as much as 30 to 50 bps. The

specialness premium (between on- and off-the-run Treasury securities) is on the order of 10 bps.

Add to these the potential corporate bond liquidity and non-transparency premia, it is not clear

that the actual and implied conditional default probabilities differ at the short-end.

[Insert Figure 5 here]

We make a crude attempt to control this problem by treating the yield on Aaa as the default-free

yield. In the short-end, any yield difference between Aaa and Treasury bonds is much more likely

to be explained by the market imperfections alluded to above than by default risk. If the effect of

these market imperfections is of the same order of magnitude for Aaa-rated bonds as for lower-rated

bonds, we may in principle filter out these effects by using Aaa as the default-free benchmark. This

comes at the cost of approximating Aaa to be default-free in the short-end, but that seems like

a harmless assumption in comparison with the size of the aforementioned market imperfections.

Since the estimates of the parameters of the spread process for Aaa bonds are noted to be unstable

by Duffee, we use the overall sample average of the intensity factor, 0.00931, as a measure for the

Aaa spread.20 By subtracting this number from the intensity processes used to construct Figure

4, this would clearly bring the implied and actual conditional default probabilities more or less in

line with each other in the short-end (see Figure 5). Note, however, that this simple procedure

will still not match the shape of the two series because a constant adjustment such as the above is

likely to overcompensate for the effect of non-default factors in the long-end. It is a first priority,

then, for future empirical credit research to quantify the effect of non-default factors on the term

structure of yield spreads and to extract a default intensity function that is “uncontaminated” by

these factors.

We conclude this discussion by noting a number of estimation issues, all of which might make

it difficult to formally reject the diversification hypothesis.

First, the martingale intensity is estimated using corporate bonds with maturities typically in

the mid-range. For Duffee’s sample the median of the mean number of years to maturity for fitted

19Evaluated as an impact on spreads, tax differentials may have a constant effect and liquidity differences will have
a declining effect as maturity increases (if, say, liquidity generates a proportional discount on the price of the bond).
Duffie and Lando (2001) show, in a structural framework, that accounting imprecision may generate a non-zero
short-term spread while having negligible impact for long-term spreads.
20We assume that the sample means of the two Treasury rate factors are equal to their long-run means under P .

As a result, the sample mean of the Aaa intensity is the sum of Duffee’s α estimate, 0.00594, and his mean fitted h∗,
0.00337.
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bonds is 7.22. This suggests that our computed default probabilities will be most accurate within

this range as well. It also suggests that our computed default probabilities for the very short-term

will have to be based on extrapolations from the empirical data and that their accuracy is a subtle

issue.

Second, Duffee’s estimation tracks the time-series of bond prices for a median period of 96

months. Within this period, the credit rating of some of the highest quality (say, investment-grade)

issuers will have declined. Since Duffee shows that his intensity parameters change systematically

across rating categories, the term structure of default probabilities computed from his estimates

will be upward biased even after accounting for the non-default part of the spread.21

Third, another reason why computed probabilities may be inflated is that recovery rates are

assumed to be constant in Duffee’s estimation, whereas empirical evidence shows that they are

procyclical. Under the pricing measure, recovery rates may have a lower mean value than the

historical estimates given by Moody’s. Dividing by the historical loss rate will then bias the

estimated intensity upwards.

Fourth, Figures 3 and 4 are based on estimates with very high standard errors. For example,

the α estimates alone have standard errors on the order of 30 bps (judging from the quartile figures

in Duffee’s Table 3). The mean-reversion parameter and the long-run mean values have similar if

not larger estimation errors. These sampling errors suggest that it will be difficult to reject the

diversifiability assumption.

Finally, we note that with diversifiable default risk and affine diffusion state variables, spreads

must be exactly equal to the empirical expected loss rate in the short-end since the drift adjustments

do not have enough time to take effect. This is the sense in which observed spreads are “too large”

for the empirical hazard rates of default. Instead of assuming a risk premium for the default event,

which implies the breakdown of the diversification assumption, an alternative solution to this puzzle

that preserves the invariance of the intensity is to have state variables with jumps. Conditional

on these systematic jump diffusions, default risks could still be diversifiable and no risk premium

for the default event needs to be assumed, yet the gap in the short-end may be accounted for

by the systematic jump risk premia. This is a case that is distinct from the one with an explicit

risk premium for the default event. Obviously, a detailed empirical analysis using both prices and

default data is the only way to determine the “correct” framework.

4.2 Mortgage-Backed Securities

In the literature on mortgage-backed securities, it is common to deviate from an assumption of

“rational” prepayment (based on American bond option techniques) and include an empirically

21 In other words, the empirical default probabilities thus computed will be unbiased if the intensity parameters stay
the same across ratings, i.e. if rating changes are entirely captured through changes in the intensity’s state variables.
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estimated prepayment function. This empirical prepayment function captures the stochastic na-

ture of prepayments stemming from differences in transactions costs and individual circumstances.

Since there is some (but not perfect) rationality in prepayment behavior, the specified empirical

prepayment function often depends on both the level of interest rates and the history of interest

rates to quantify a “burnout factor.” In both Schwartz and Torous (1989) and Stanton (1995), an

empirical prepayment function is specified and the functional form of the prepayment intensity is

the same under both the “physical” and the “risk-neutral” measure.

To be concrete, let us consider for example the model of Stanton (1995). In this model, the

(Treasury) bond market is controlled by a short rate CIR process r whose behavior differs under

the physical measure and the pricing measure by a market price of risk parameter (which Stanton

denotes as q). From this risk-neutral evolution of r, Stanton obtains the value M l
u(rt, t) at time t

of the mortgage liability conditional on the prepayment option remaining unexercised. Denoting

the exercise price of the mortgage (including transactions costs) Ft(1 +Xt), Stanton then specifies

the prepayment intensity as

λ+ ρ1{M l
u(rt,t)≥Ft(1+Xt)} (50)

where λ is an intensity of prepayment which is unrelated to changes in interest rates and ρ is an

increase in the prepayment intensity which kicks in when the value, conditional on no exercise, of

the liability exceeds the cost of prepaying. This intensity specification is then used for pricing the

mortgage-backed security and the parameters λ and ρ for assessing the empirical prepayment rates.

This is an implicit conditional diversification condition. Note, however, that in the model there

are risk adjustments through the interest rate process. This implies that prepayment frequencies

are actually different under the two measures, despite the invariant prepayment function. With

systematic prepayment risk, a risk premium would multiply the empirical prepayment function by

a positive factor, and in this case the prepayment function would not be the same under the two

measures.

4.3 Credit Derivatives

To summarize the importance of Proposition 4 for the credit derivatives markets, note that condi-

tional diversification implies that idiosyncratic risk (due to factors other than the state variables

X) is diversifiable in large loan portfolios. Consequently, in the market’s pricing of risky debt, there

would be no risk premium for idiosyncratic default risk. Risk premia would only enter the loan’s

return process through the state variables and their influence on the return.22

Thus, only large loan portfolios would be “efficient” in the sense that their expected returns

compensate for the risk borne. Small bond portfolios would be “inefficient,” bearing idiosyncratic

22This is evident, for example, if the assumptions underlying equations (27) and (28) hold.
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default risk that is not priced in higher expected returns. Unfortunately, holding a large diversified

loan portfolio may require that the portfolio satisfy significant geographical and industry diversifi-

cation that, because of market and origination frictions (discreteness in the face value of a bond,

limited information, and limited supply), may be difficult to obtain.

This difficulty provides one rationale for the existence and use of credit derivatives (e.g. de-

fault swaps). For small and undiversified loan portfolios, credit derivatives provide the vehicle for

obtaining this diversification without the direct purchase or sales of the individual loans themselves.

5 Conclusion

In this paper we examine the general specification of default risk premium in the context of an

intensity-based model. We argue that the “drift change of the intensity” used in the empirical

literature constitutes a restriction on the set of possible default risk premia. We show that this

restriction can be justified through a suitably defined notion of conditional diversifiable default risk,

which leads to the equivalence between the empirical and martingale intensities, either exactly or

in an asymptotic sense. We stress that this does not imply the equivalence between implied and

actual default probabilities. Indeed, if the intensities are sensitive to the factors carrying a risk

premium, the deviations in the long-end between implied and actual default probabilities can be

substantial. It does, however, imply the equivalence of actual and implied default probabilities in

the very short-end. If one believes that this equivalence does not hold, even after adjusting for

taxes, liquidity risk or informational asymmetries, then a risk premium on the jump event itself

should be included, introducing a risk adjustment which is different from the frequently used drift

change of the default intensity. The test of such a component requires a simultaneous estimation

of empirical and martingale default intensities from default data and prices of corporate bonds, an

investigation which we leave for future research.

An important application of our equivalence result is that it integrates pricing and risk manage-

ment for defaultable securities. This has two meanings. First, when the diversifiability conditions

holds, we can estimate an empirical default intensity from historical default data and use it to price

defaultable bonds. This provides a link from empirical default prediction models such as Altman

(1968, 1993) and Shumway (2001) to pricing models. Second, we can imply out a martingale default

intensity from defaultable bond prices and use it to construct actual default probabilities. A set

of estimated systematic risk premia enables us to go back and forth between the two worlds. We

demonstrate the use of this methodology in the context of existing empirical studies on corporate

bonds.

For further applications, we observe that exactly the same methodology can be applied to

mortgage-backed securities. In this case, the relevant quantities are the prepayment functions and

the prepayment frequencies. We also show that conditional diversification imparts a sense in which

28



credit derivatives can be used to achieve a more “efficient” credit risk portfolio.
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