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ABSTRACT 

This is the first study that uses Merton’s (1974) option pricing model to compute default 

measures for individual firms and assess the effect of default risk on equity returns. The size 

effect is a default effect, and this is also largely true for the book-to-market (BM) effect. Both 

exist only in segments of the market with high default risk. Default risk is systematic risk. The 

Fama-French (FF) factors SMB and HML contain some default-related information, but this is 

not the main reason that the FF model can explain the cross-section of equity returns. 
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 A firm defaults when it fails to service its debt obligations. Therefore, default risk induces 

lenders to require from borrowers a spread over the risk-free rate of interest. This spread is an 

increasing function of the probability of default of the individual firm.  

Although considerable research effort has been put toward modeling default risk for the 

purpose of valuing corporate debt and derivative products written on it, little attention has been 

paid to the effects of default risk on equity returns.
1
 The effect that default risk may have on 

equity returns is not obvious, since equity holders are the residual claimants on a firm’s cash 

flows and there is no promised nominal return in equities.  

Previous studies that examine the effect of default risk on equities focus on the ability of 

the default spread to explain or predict returns. The default spread is usually defined as the yield 

or return differential between long-term BAA corporate bonds and long-term AAA or U.S. 

Treasury bonds.
2
 However, as Elton et al. (2001) show, much of the information in the default 

spread is unrelated to default risk. In fact, as much as 85 percent of the spread can be explained 

as reward for bearing systematic risk, unrelated to default. Furthermore, differential taxes seem 

to have a more important influence on spreads than expected loss from default. These results lead 

us to conclude that, independently of whether the default spread can explain, predict, or 

otherwise relate to equity returns, such a relation cannot be attributed to the effects that default 

risk may have on equities. In other words, we still know very little about how default risk affects 

equity returns. 

 The purpose of this paper is to address precisely this question. Instead of relying on 

information about default obtained from the bonds market, we estimate default likelihood 

indicators for individual firms using equity data. These default likelihood indicators are 

nonlinear functions of the default probabilities of the individual firms. They are calculated using 
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the contingent claims methodology of Black and Scholes (BS) (1973) and Merton (1974). 

Consistent with the Elton et al. (2001) study, we find that our measure of default risk contains 

very different information from the commonly used aggregate default spreads. This occurs 

despite the fact that our default likelihood indicators can indeed predict actual defaults.  

We find that default risk is intimately related to the size and book-to-market (BM) 

characteristics of a firm. Our results point to the conclusion that both the size and BM effects can 

be viewed as default effects. This is particularly the case for the size effect.  

The size effect exists only within the quintile with the highest default risk. In that 

segment of the market, the return difference between small and big firms is of the order of 45 

percent per annum (p.a.). The small stocks in the high default risk quintile are typically among 

the smallest of the small firms and have the highest BM ratios. Furthermore, even within the high 

default risk quintile, small firms have much higher default risk than big firms, and default risk 

decreases monotonically as size increases.  

A similar result is obtained for the BM effect. The BM effect exists only in the two 

quintiles with the highest default risk. Within the highest default risk quintile, the return 

difference between value (high BM) and growth (low BM) stocks is around 30 percent p.a., and 

goes down to 12.7 percent for the stocks in the second highest default risk quintile. There is no 

BM effect in the remaining stocks of the market. Again, the value stocks in these categories have 

the highest BMs of all stocks in the market, and the smallest size. Value stocks have much higher 

default risk than growth stocks, and there is a monotonic relation between BM and default risk.  

We also find that high default risk firms earn higher returns than low default risk firms, 

only to the extent that they are small in size and high BM. If these firm characteristics are not 
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met, they do not earn higher returns than low default risk firms, even if their risk of default is 

actually very high.  

We finally examine whether default risk is systematic. We find that it is indeed 

systematic and therefore priced in the cross-section of equity returns. 

Fama and French (1996) argue that the SMB and HML factors of the Fama-French (1993) 

(FF) model proxy for financial distress. Our asset pricing results show that, although SMB and 

HML contain default-related information, this is not the reason that the FF model can explain the 

cross-section. SMB and HML appear to contain important priced information, unrelated to default 

risk. 

Several studies in the corporate finance literature examine whether default risk is 

systematic, but their results are often conflicting. Denis and Denis (1995), for example, show that 

default risk is related to macroeconomic factors and that it varies with the business cycle. This 

result is consistent with ours since our measure of default risk also varies with the business cycle. 

Opler and Titman (1994) and Asquith, Gertner, and Sharfstein (1994), on the other hand, find 

that bankruptcy is related to idiosyncratic factors and therefore does not represent systematic 

risk. The asset pricing results of the current study show that default risk is systematic.  

Contrary to the current study, previous research has used either accounting models or 

bond market information to estimate a firm’s default risk and in some cases has produced 

different results from ours. 

Examples of papers that use accounting models include those of Dichev (1998) and 

Griffin and Lemmon (2002). Dichev examines the relation between bankruptcy risk and 

systematic risk. Using Altman’s (1968) Z-score model and Ohlson’s (1980) conditional logit 

model, he computes measures of financial distress and finds that bankruptcy risk is not rewarded 
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by higher returns. He concludes that the size and BM effects are unlikely to proxy for a distress 

factor related to bankruptcy. A similar conclusion is reached in the case of the BM effect by 

Griffin and Lemmon (2002), who use Olson’s model and conclude that the BM effect must be 

due to mispricing. 

There are several concerns about the use of accounting models in estimating the default 

risk of equities. Accounting models use information derived from financial statements. Such 

information is inherently backward-looking, since financial statements aim to report a firm’s past 

performance, rather than its future prospects. In contrast, Merton’s (1974) model uses the market 

value of a firm’s equity in calculating its default risk. It also estimates its market value of debt, 

rather than using the book value of debt, as accounting models do. Market prices reflect 

investors’ expectations about a firm’s future performance. As a result, they contain forward-

looking information, which is better suited for calculating the likelihood that a firm may default 

in the future. 

In addition, and most importantly, accounting models do not take into account the 

volatility of a firm’s assets in estimating its risk of default. Accounting models imply that firms 

with similar financial ratios will have similar likelihoods of default. This is not the case in 

Merton’s model, where firms may have similar levels of equity and debt, but very different 

likelihoods to default, if the volatilities of their assets differ. Clearly, the volatility of a firm’s 

assets provides crucial information about the firm’s probability to default. Campbell et al. (2001) 

demonstrate that firm level volatility has trended upwards since the mid-1970s. Furthermore, 

using data from 1995 to 1999, Campbell and Taksler (2003) show that firm level volatility and 

credit ratings can explain equally well the cross-sectional variation in corporate bond yields. 

Clearly, a firm’s volatility is a key input in the Black-Scholes option-pricing formula.  
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As mentioned, an alternative source of information for calculating default risk measures 

is the bonds market. One may use bond ratings or individual spreads between a firm’s debt issues 

and an aggregate yield measure to deduce the firm’s risk of default. When a study uses bond 

downgrades and upgrades as a measure of default risk, it usually relies implicitly on the 

following assumptions: That all assets within a rating category share the same default risk and 

that this default risk is equal to the historical average default risk. Furthermore, it assumes that it 

is impossible for a firm to experience a change in its default probability, without also 

experiencing a rating change.
3
  

Typically, however, a firm experiences a substantial change in its default risk prior to its 

rating change. This change in its probability of default is observed only with a lag, and measured 

crudely through the rating change. Bond ratings may also represent a relatively noisy estimate of 

a firm’s likelihood to default because equity and bond markets may not be perfectly integrated, 

and because the corporate bond market is much less liquid than the equity market.
4
 Merton’s 

model does not require any assumptions about the integration of bond and equity markets or their 

efficiencies, since all information needed to calculate the default risk measures is obtained from 

equities.  

Examples of studies that use bond ratings to examine the effect of upgrades and 

downgrades on equity returns include those of Holthausen and Leftwich (1986), Hand, 

Holthausen, and Leftwich (1992), and Dichev and Piotroski (2001), among others. The general 

finding is that bond downgrades are followed by negative equity returns. The effect of an 

increase in default risk on the subsequent equity returns is not examined in the current study.  

The remainder of the paper is organized as follows. Section I discusses the methodology 

used to compute default likelihood indicators for individual firms. Section II describes the data 
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and provides summary statistics. Section III examines the ability of the default likelihood 

indicators to predict actual defaults. In Section IV we report results on the performance of 

portfolios constructed on the basis of default-risk information. In Section V, we provide asset 

pricing tests that examine whether default risk is priced. We conclude in Section VI with a 

summary of our results.  

 

I. Measuring Default Risk 

A. Theoretical Model 

In Merton’s (1974) model, the equity of a firm is viewed as a call option on the firm’s 

assets. The reason is that equity-holders are residual claimants on the firm’s assets after all other 

obligations have been met. The strike price of the call option is the book value of the firm’s 

liabilities. When the value of the firm’s assets is less than the strike price, the value of equity is 

zero.  

Our approach in calculating default risk measures using Merton’s model is very similar to 

the one used by KMV and outlined in Crosbie (1999).
5
 We assume that the capital structure of 

the firm includes both equity and debt. The market value of a firm’s underlying assets follows a 

Geometric Brownian Motion (GBM) of the form: 

                                                dWVdtVdV AAAA σµ += ,     (1) 

where V  is the firm’s assets value, with an instantaneous driftA µ , and an instantaneous volatility  

Aσ . A standard Wiener process is W.  

 We denote by tX  the book value of the debt at time , that has maturity equal to t T . As 

noted earlier,  plays the role of the strike price of the call, since the market value of equity can tX
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be thought of as a call option on V  with time to expiration equal to A T . The market value of 

equity, V , will then be given by the Black and Scholes (1973) formula for call options: E

V=

VA

N
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 and r  is the risk-free rate and  is the cumulative density function of the standard normal 

distribution. 

 To calculate 
A

σ  we adopt an iterative procedure. We use daily data from the past 12 

months to obtain an estimate of the volatility of equity, Eσ , which is then used as an initial value 

for the estimation of 
A

σ . Using the Black-Scholes formula, and for each trading day of the past 

12 months, we compute V  using as V  the market value of equity of that day. In this manner, 

we obtain daily values for V . We then compute the standard deviation of those V s, which is 

used as the value of 

A E

A A

A
σ , for the next iteration. This procedure is repeated until the values of 

A
σ  

from two consecutive iterations converge. Our tolerance level for convergence is 10E-4. For 

most firms, it takes only a few iterations for 
A

σ  to converge. Once the converged value of 
A

σ  is 

obtained, we use it to back out V  through equation (2). A

 The above process is repeated every end of the month, resulting in the estimation of 

monthly values of 
A

σ . The estimation window is always kept equal to 12 months. The risk-free 

rate used for each monthly iterative process is the one-year T-bill rate observed at the end of the 

month. 
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Once daily values of V  are estimated, we can compute the drift, 
A

µ , by calculating the 

mean of the change in lnVA.     

The default probability is the probability that the firm’s assets will be less than the book 

value of the firm’s liabilities. In other words,  

 ( ) ( ) ( )( )tAtTtAtAtTtAtdef VXVobVXVobP ,,,,, |lnlnPr|Pr ≤=≤= ++ .   (4) 

Since the value of the assets follows the GBM of equation (1), the value of the assets at any time 

t is given by: 
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Therefore, we can rewrite the default probability as follows: 
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We can then define the distance to default (DD) as follows: 
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Default occurs when the ratio of the value of assets to debt is less than one, or its log is negative.  

The DD tells us by how many standard deviations the log of this ratio needs to deviate from its 

mean in order for default to occur. Notice that although the value of the call option in (2) does 

not depend on µ, DD does. This is because DD depends on the future value of assets which is 

given in equation (3). 

We use the theoretical distribution implied by Merton’s model, which is the normal 

distribution. In that case, the theoretical probability of default will be given by:  
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Strictly speaking, Pdef  is not a default probability, because it does not correspond to the 

true probability of default in large samples. In contrast, the default probabilities calculated by 

KMV are indeed default probabilities because they are calculated using the empirical distribution 

of defaults. For instance, in the KMV database, the number of companies times the years of data 

is over 100,000, and includes more than 2,000 incidents of default. We have a much more 

limited database. For that reason, we do not call our measure default probability, but rather 

default likelihood indicator (DLI). 
6
  

It is important to note that the difference between our measure of default risk and that 

produced by KMV is not material for the purpose of our study. The default likelihood indicator 

of a firm is a positive nonlinear function of its default probability. Since we use our measure of 

default risk to examine the relation between default risk and equity returns rather than price debt 

or credit risk derivatives, this nonlinear transformation cannot affect the substance of our results. 
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II. Data and Summary Statistics 

 We use the COMPUSTAT annual files to get the firm’s “Debt in One Year” and “Long- 

Term Debt” series for all companies. COMPUSTAT starts reporting annual financial data in 

1963. However, prior to 1971, only a few hundred firms have debt data available. Therefore, we 

start our analysis in 1971.  

As book value of debt we use the “Debt in One Year” plus half the “Long-Term Debt.” It 

is important to include long-term debt in our calculations for two reasons. First, firms need to 

service their long-term debt, and these interest payments are part of their short-term liabilities. 

Second, the size of the long-term debt affects the ability of a firm to roll over its short-term debt, 

and therefore reduce its risk of default. How much of the long-term debt should enter our 

calculations is arbitrary, since we do not observe the coupon payments of the individual firms. 

KMV uses 50 percent and argues that this choice is sensible, and captures adequately the 

financing constraints of firms.
7
 We do the same.  

 We use annual data for the book value of debt. To avoid problems related to reporting 

delays, we do not use the book value of debt of the new fiscal year, until four months have 

elapsed from the end of the previous fiscal year.
8
 This is done in order to ensure that all 

information used to calculate our default measures was available to the investors at the time of 

the calculation.  

We get the daily market values for firms from the CRSP daily files. The book value of 

equity information is extracted from COMPUSTAT. Each month, the book-to-market (BM) ratio 

of a firm is the six-month prior book value of equity divided by the current month’s market value 

of equity. Firms with negative BM ratios are excluded from our sample. 

  10  



As risk-free rate for the computation of DLI, we use monthly observations of the one-

year Treasury Bill rate obtained from the Federal Reserve Board Statistics. 

Table I reports the number of firms per year for which DLI could be calculated, as well as 

the number of firms that filed for bankruptcy (Chapter 11) or were liquidated.  

   [Insert Table I approximately here ] 

 The aggregate default likelihood measure P(D) is defined as a simple average of the 

default likelihood indicators of all firms. A graph of the P(D) is provided in Figure 1 for the 

whole sample period (1971:1 to 1999:12). The shaded areas represent recession periods as 

defined by the NBER. The graph shows that default probabilities vary greatly with the business 

cycle and increase substantially during recessions. 

[Insert Figure 1 approximately here] 

We define the aggregate survival rate, SV as one minus P(D). The change in aggregate 

survival rate ∆(SV) at time t is given by 1−− tt SVSV . Summary statistics for SV and ∆(SV) are 

presented in Panel A of Table II. 

   [Insert Table II approximately here] 

The default return spread is from Ibbotson Associates, and it is defined as the return 

difference between BAA Moody’s-rated bonds and AAA Moody’s–rated bonds. Similarly, the 

default yield spread is defined as the yield difference between Moody’s BAA bonds and 

Moody’s AAA bonds. The series is obtained from the Federal Reserve Bank of St. Louis. The 

change in spread ∆  is obtained from Hahn and Lee (2001). The spread in Hahn and Lee 

is defined as the difference in the yields between Moody’s BAA bonds and 10-year government 

bonds.  is the change in that spread.  

)(spread

)(spread∆
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Panel B of Table II provides the correlation coefficients between the above-defined 

default spreads and . The correlations are very low and reveal that the information 

captured by our measure is markedly different from that captured by the commonly used default 

spreads. This is consistent with the findings in Elton et al. (2001). 

)(SV∆

The Fama-French factors HML and SMB, and the market factor EMKT are obtained from 

Kenneth French’s Web page.
9
 From the same Web page we also obtain data for the one-month 

T-Bill rate used in our asset pricing tests. Panel C of Table II reports the correlation coefficients 

between  and the Fama-French factors. The correlations of )(SV∆ )(SV∆  with EMKT and SMB 

are positive and of the order of 0.5 whereas that with HML is negative and equal to –0.18. This 

suggests that EMKT and SMB contain potentially significant default-related information. The 

regressions of Panel D in Table II show that )(SV∆ can explain a substantial portion of the time-

variation in EMKT and SMB. This does not mean, however, that the priced information in EMKT 

and SMB is related to default risk. The default-related content of the priced information in SMB 

and HML will be examined in Section V. 

Finally, given that the need to compute default likelihood indicators for each stock 

constrains us to use only a subset of the U.S. equity market as presented in Table I, it is 

important to verify that our results are representative of the U.S. market as a whole. To this end, 

we construct the Fama-French factors HML and SMB within our sample, and compare them with 

those constructed by Fama and French using a much larger cross-section of U.S. equities. The 

results are reported in Panel E of Table II. The distributional characteristics of the HML and SMB 

factors constructed within our sample are similar to those of the HML and SMB factors provided 

by Fama and French. Furthermore, their correlations are quite large and of the order of 0.95 for 
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SMB and 0.86 for HML. The above comparisons reveal that the subsample we use in our study is 

largely representative of the U.S. equity samples used in other studies of equity returns.  

 

III. Measuring Model Accuracy 

In this section, we evaluate the ability of our default measure to capture default risk. To 

do that, we employ Moody’s Accuracy Ratio. In addition, we compare the default likelihood 

indicators of actually defaulted firms with those of a control group that did not default. 

 

A. Accuracy Ratio 

The accuracy ratio (AR) proposed by Moody’s reveals the ability of a model to predict 

actual defaults over a five-year horizon.
10

  

Let us suppose a model ranks the firms according to some measure of default risk. 

Suppose there are N firms in total in our sample and M  of those actually default in the next five 

years. Let 
N

M
=θ  be the  percentage of firms that default. For every integer λ  between zero and 

100, we look at how many firms actually defaulted within the %λ  of firms with the highest 

default risk. Of course, this number of defaults cannot be more than  We divide the number 

of firms that actually defaulted within the first 

.M

λ  percent of firms by M  and denote the result 

by )(λf . Then )(λf  takes values between zero and one, and is an increasing function of λ . 

Moreover,  and 0)0( =f 1)100( =f .  

 Suppose we had the “perfect measure” of future default likelihood, and we were ranking 

stocks according to that. We would then have been able to capture all defaults for each integer 

λ , and )(λf would be given by 
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θ
λλ =)(f  for θλ <  and 1)( =λf  for θλ ≥ .         (10)       

Suppose we also calculate the average )(λf  for all months covered by the sample. The 

graph of this function of average )(λf is shown as the kinked line in Figure 2, graph B.       

[Insert Figure 2 approximately here] 

At the other extreme, suppose we had zero information about future default likelihoods, 

and we were ranking the stocks randomly. If we did that a large number of times, )(λf would be 

equal to λ . Graphically, the average )(λf  would correspond to the 45 degree line in the graphs 

of Figure 2. 

We measure the amount of information in a model by how far the graph of the average 

)(λf  function lies above the 45 degree line. Specifically, we measure it by the area between the 

45-degree line and the graph of average )(λf . The accuracy ratio of a model is then defined as 

the ratio between the area associated with that model’s average )(λf function and the one 

associated with the “perfect” model’s average )(λf  function. Under this definition, the “perfect” 

model has accuracy ratio of one, and the zero-information model has an accuracy ratio of zero.  

The measure implied by Merton’s model is the distance-to-default (DD). Therefore, if we 

rank stocks according to DD, the accuracy ratio we obtain is equal to 0.592. This means that our 

measure contains substantial information about future defaults.  

By construction, our measure of default risk is related to size. It is therefore tempting to 

conclude that it contains virtually the same information as the market value of equity. This is not 

the case, however. If we rank stocks on the basis of their market value of equity and compute the 

corresponding accuracy ratio, this will be equal to only 0.089. Therefore, DD contains much 

more information than that conveyed by the size of the firms. This is an important point, since 

  14  



part of our analysis in Section IV provides an interpretation of the size effect, based on the 

information contained in DLI. 

Finally, an important parameter in the DD measure is the volatility of assets. Therefore, 

one may conjecture that what we capture with our default measure is simply the volatility of 

assets. This is again not the case. If we rank stocks on the basis of their volatility of assets, the 

accuracy ratio we obtain is 0.290, which is much lower than that based on DD (0.592). In other 

words, our measure of default risk captures important default information beyond what is 

conveyed by the market value of equity or the volatility of the firm’s assets alone. 

  

B. Comparison Between Defaulted Firms and Non-Defaulted Firms 

As a further test of the ability of our measure to capture default risk, we compare the 

default likelihood indicators of firms that actually defaulted with those of a control group of 

firms that did not default. Similar comparisons have been performed in the past in Altman (1968) 

and Aharony, Jones, and Swary (1980). To make the comparison meaningful, we choose firms in 

the control group that have similar size and industry characteristics as those in the experimental 

group. In particular, for every firm that defaults, we select a firm with a market capitalization 

similar to that of the firm in the experimental group before it defaulted. In addition, the firm in 

the control group shares the same two-digit industry code as the one in the experimental group. 

 We compute the average default likelihood indicator for each group. Figure 3 presents the 

results. We find that the average default likelihood indicator of the experimental group goes up 

sharply in the five years prior to default. In contrast, the average default likelihood indicator of 

the control group stays at the same level throughout the five-year period. Note that in the graph, 

t=0 corresponds to about two to three years prior to default, since the database does not provide 
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data up to the date of default. Therefore, an average default likelihood indicator of 0.57 for the 

experimental group can be considered high. The results of this test provide further assurance that 

our default likelihood indicators do indeed capture default risk.  

[Insert Figure 3 approximately here] 

IV. Default Risk and Variation in Equity Returns 

We start our analysis of the relation between default risk and equity returns by examining 

whether portfolios with different default risk characteristics provide significantly different 

returns. A significant difference in the returns would indicate that default risk may be important 

for the pricing of equities. 

Table III reports simple sorts of stocks based on their default likelihood indicators. At the 

end of each month from 1970:12 to 1999:11, we use the most recent monthly default probability 

for each firm to sort all stocks into portfolios. We first sort stocks into five portfolios. We 

examine their returns when the portfolios are equally weighted or value-weighted and report the 

average default likelihood indicator for each one of them. Evidently, the lower the average 

default likelihood indicator, the lower the risk of default. 

[Insert Table III approximately here]  

Note that in calculating the returns of portfolios in Section IV, we use the following 

procedure. Every time a stock gets delisted due to default, we set the return of the portion of the 

portfolio invested in that stock equal to -100 percent. In other words, we assume that the 

recovery rate for equity-holders is zero. In this way, we fully take into account the cost of default 

in our calculations of average portfolio returns. In fact, the returns we report may be considered 

as the lower bounds of returns (before transaction costs) earned by equity-holders. The reason is 

that often, the recovery rate is not zero. 
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The t-values of all tests in Section IV are computed from Newey-West (1987) standard 

errors. In particular, they are corrected for White (1980) heteroskedasticity and serial correlation 

up to the number of lags that are statistically significant at the five percent level. 

 The return difference between the equally weighted high-default-risk portfolio and low-

default-risk portfolio is 53 basis points (bps) per month or 6.36 percent per annum (p.a.). The 

difference is statistically significant at the five percent level. This is not the case for the value-

weighted portfolios whose difference in returns is only 14 bps per month.  

When we sort stocks into 10 portfolios, the results we obtain are similar. The difference 

in returns between the high-default risk portfolio and the low-default risk portfolio is statistically 

significant for the equally weighted portfolios but not for the value-weighted portfolios. The 

return differential for the equally weighted portfolios is 98 bps per month or 11.76 percent p.a.  

Notice though that the aggregate default measure for the equally weighted portfolios 

assumes bigger values than it does for the value-weighted portfolios. It appears that small-

capitalization stocks have on average higher default risk, and as a result, they earn higher returns 

than big-capitalization stocks do. In addition, both in the case of default quintiles and deciles, the 

average market capitalization of a portfolio (size) and its book-to-market (BM) ratio vary 

monotonically with the average default risk of the portfolio. In particular, the average size 

increases as the default risk of the portfolio decreases, whereas the opposite is true for BM. These 

results suggest that the size and BM effects may be linked to the default risk of stocks. Recall 

that both effects are considered stock market anomalies according to the literature of the Capital 

Asset Pricing Model (CAPM). The reason for their existence remains unknown.  The remainder 

of the paper investigates further the possible link between default risk and those effects. Our 

analysis will focus on equally weighted portfolios, since this is the weighting scheme typically 
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employed in studies that consider the size and BM effects.
11

 However, all the results of the paper 

remain qualitatively the same when portfolios are value-weighted. 

 

A. Size, BM, and Default Risk  

To examine the extent to which the size and BM effects can be interpreted as default 

effects, we perform two-way sorts and examine each of the two effects within different default 

risk portfolios.  

 

     A.1. The Size Effect 

Table IV presents results from sequential sorts. Stocks are first sorted into five quintiles 

according to their default risk. Subsequently, the stocks within each default quintile are sorted 

into five size portfolios. This procedure produces 25 portfolios in total. In what follows, we 

examine whether the size effect exists in all default risk quintiles, as well as in the whole sample.  

[Insert Table IV approximately here] 

The results of Panel A show that the size effect is present only within the quintile that 

contains the stocks with the highest default risk (DLI 1). The effect is very strong with an 

average return difference between small and big firms of 3.82 percent per month or a staggering 

45.84 percent p.a. Notice that the difference in returns drops to close to zero for the remaining 

default-sorted portfolios. There is a statistically significant size effect in the whole sample, but 

the return difference between small and big firms is more than four times smaller than in DLI 1.  

The results of Panel A suggest that the size effect exists only within the segment of the 

market that contains the stocks with the highest default risk. To what extent, however, are we 

truly capturing the size effect? Is there really substantial variation in the market capitalizations of 
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stocks within the DLI 1 portfolio? Panel B addresses this question. We see that there is indeed 

large variation in the market caps of stocks within the highest default risk portfolio. But in terms 

of the average market caps for the size quintiles formed using the whole sample, the biggest 

firms in DLI 1 are rather medium to large firms. On the other hand, the DLI 1–Small portfolio 

contains the smallest of the small firms compared to the small size quintile formed on the basis 

of the whole sample. These results imply that the size effect is concentrated in the smallest of the 

small firms, which also happen to be among those with the highest default risk. 

 How much riskier are the stocks in DLI 1 compared to the other default risk quintiles? 

Panel C of Table IV shows that they are a lot riskier. The small firms in DLI 1 are almost 14 

times riskier in terms of likelihood of default than the small firms in DLI 2. They are also on 

average more than twice as risky in terms of default than the stocks in the small size quintile 

constructed using the whole sample. Therefore, the large average returns that small high default 

stocks earn compared to the rest of the market can be considered to be compensation for the 

large default risk they have.  

To see that, notice also that in the high DLI quintile, DLI decreases monotonically as size 

increases. In other words, the large difference in returns between small and big stocks in the DLI 

1 quintile can be explained by the large difference in the default risk of those portfolios. In the 

remaining default quintiles where there is no evidence of a size effect, the difference in default 

risk between small and big stocks is also very small.  

Panel D reports the average BM of the default- and size-sorted portfolios. These results 

are useful in order to understand the extent to which size, default risk, and BM are interrelated. 

Panel D shows that the average BMs in the size-sorted portfolios of DLI 1 are the highest in the 
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sample. The BM decreases monotonically with DLI, which suggests that the BM effect may also 

be related to default risk.  

The conclusion that emerges from Table IV is that the size effect is in fact a default 

effect. There is a size effect only in the segment of the market with the highest default risk. 

Within that segment, the difference in returns between small and big stocks can be explained by 

the difference in their default risk. In the remaining stocks in the market, where there is no 

significant size effect, the difference in default risk between small and big stocks is minimal. 

Book-to-market seems also to be related to default risk and size, and we will examine these 

relations in the following section.  

 

     A.2. The BM Effect 

Table V presents results from portfolio sortings in the same spirit as those of Table IV. 

Stocks are first sorted into five default risk quintiles, and then each of the five default quintiles is 

sorted into five BM portfolios. In what follows, we will examine the BM effect within each 

default quintile, as well as for the market as a whole. 

[Insert Table V approximately here] 

 Panel A shows that the BM effect is prominent only in the two quintiles with the highest 

default risk, with the return differential between value (high BM) and growth (low BM) stocks 

being almost two and a half times bigger in DLI 1 than in DLI 2. There is a BM effect in the 

whole sample, but the return differential is about half as big as that found in DLI 1.  

  Notice that within DLI 1, the average DLI is much higher for value stocks than it is for 

growth stocks. In DLI 2, where the BM effect is weaker, the difference in default risk between 

value and growth stocks is also small. These results imply that, similarly to the size effect, the 
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BM effect seems to be due to default risk. The only difference is that the BM effect is significant 

within the two-fifths of the stocks with the highest default risk, whereas the size effect is present 

only in the one-fifth of stocks with the highest default risk. In other words, the interrelation 

between size and default risk seems to be a bit tighter. This is confirmed in Section IV. C. using 

regression analysis. 

 There is a lot of dispersion in the average BM ratios within the DLI portfolios. This is 

particularly true for DLI 1 and 2, which means that indeed the return differential we examine 

captures a BM effect. In fact, the average BM ratio varies more across portfolios in DLI 1 than it 

does across BM portfolios formed using the whole sample. In DLI 1 and 2 where default risk is 

higher than in the other quintiles and the market as a whole, the average BM ratios of the BM–

sorted portfolios are also higher. This result underlines again the interrelation between BM and 

default risk discussed above. Furthermore, the average DLIs in Panel C exhibit a monotonic 

relation with BM only in the DLI 1 and 2 quintiles, that is, the two quintiles with the highest 

default risk, where the BM effect is significant. For the rest of the sample, the relation between 

default risk and BM ratios does not appear to be linear. A similar result emerges from Table IV, 

Panel C. Default risk varies monotonically with size only within the two highest default risk 

quintiles. It seems that there are linear relations between default risk and size, and default risk 

and BM, only to the extent that that default risk is sizeable. When the risk of default of a 

company is very small, the linearity in the relation between default and size and default and BM 

disappears, probably because defaults are very unlikely to occur in those cases.  

 Panel D shows again that DLI 1 contains mainly small firms. However, size does not vary 

monotonically with BM, except within the two highest default risk quintiles. The same 

  21  



conclusion can be reached from Panel D of Table IV. The average BM ratios vary monotonically 

with size only within the two highest default risk quintiles. In both cases the variation is small.  

It seems that size and BM proxy to some extent for each other only within the segment of 

the market with the highest default risk. This implies that they are not identical phenomena. 

Furthermore, the return premium of small firms over big firms is more than one percent larger 

than that of high BM stocks over low BM stocks. In addition, the size effect is present in a subset 

of the segment of the market in which the BM effect exists. Both are linked, however, to a 

common risk measure, which is default risk.   

 

B. The Default Effect 

Tables IV and V show that size and BM are intimately related to default risk. But does 

this mean that there is also a default risk in the data? And if there is, is it confined only within 

certain size and BM quintiles? In other words, is default risk rewarded differently depending on 

the size and BM characteristics of the stock? These are the questions we address in this section. 

We define the default effect as a positive average return differential between high and low 

default risk firms. 

 

    B.1. The Default Effect in Size-Sorted Portfolios 

Table VI examines whether there is a default effect in size-sorted portfolios by reversing 

the sorting procedure of Table IV. In particular, we first sort stocks into five size quintiles, and 

then sort each size quintile into five default portfolios. As we will see below, this exercise also 

allows us to obtain a better understanding of small firms as an asset class. 

[Insert Table VI approximately here] 
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 Panel A shows that there is a statistically significant default effect only within the small 

size quintile. The average monthly return is 2.2 percent or 26.4 percent p.a. In most of the 

remaining size quintiles, the difference in returns between high and low default risk portfolios is 

in fact negative. This means that high default risk firms earn a higher return than low default risk 

firms only if they are also small in size. 

 To verify this point, see Panel B of Table VI. All high-DLI portfolios have substantial 

default risk, independently of the market capitalization of the stocks. Similarly, all low-DLI 

portfolios have virtually no default risk. However, only small high default risk stocks earn higher 

returns than low default risk stocks.  

This result may indicate that firms differ in their ability to re-emerge from Chapter 11, 

depending on their size. If small firms, for instance, are less likely to emerge from the 

restructuring process as public firms, investors may require a bigger risk premium to hold them, 

compared to what they require for bigger size-high default risk firms. This will induce the 

average returns of small high-DLI firms to be higher than those of bigger high-DLI firms.
12

 

Empirical evidence from the corporate bankruptcy literature shows that indeed large firms are 

more likely to survive Chapter 11 than small firms.
13

  

Panel B of Table VI provides also insights into the profile of small firms as an asset class. 

Notice that within the small size quintile, DLI varies between 41.53 percent and 0.09 percent. 

This implies that small firms can differ a lot with respect to their (default) risk characteristics. 

They can also differ significantly with respect to their returns, as Panel A reveals. These results 

suggest that small firms do not constitute a homogenous asset class, as is commonly believed. 

 Finally, Panel B shows that default risk decreases monotonically as size increases, 

confirming the close relation between size and default risk observed in Table IV. Panels C and D 
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show that the small - high DLI portfolio contains the smallest of the small stocks and those with 

the highest BM ratio.  

Two important conclusions emerge from this table. First, default risk is rewarded only in 

small, value stocks. Firms that have high default risk, but are not categorized as small and high 

BM, will not earn higher returns than firms with low default risk and similar size and BM 

characteristics. This result further underlines the close link among size, default risk, and BM.  

Second, small firms are not made equal. They differ substantially in terms of both their return 

and (default) risk characteristics. This result reveals that small firms do not constitute a 

homogeneous asset class.  

 

    B.2. The Default Effect in BM-Sorted Portfolios 

To further examine the link between default risk and BM, Table VII examines the 

presence of a default effect in BM-sorted portfolios. Assets are first sorted in five BM quintiles, 

and subsequently, each BM-sorted quintile is subdivided into five default-sorted portfolios.  

    [Insert Table VII approximately here] 

 Panel A reveals that the default effect is again present only within the high BM quintile. 

This result is consistent with that of Table VI. Since the smallest high-DLI firms are also 

typically the highest BM firms, the same interpretation applies here. Specifically, default risk is 

rewarded only for small, value stocks, and not for any other stocks in the market, independently 

of their risk of default. This is confirmed in Panels C and D. 

 Once again, Panel B shows that value stocks can differ a lot with respect to their default 

risk characteristics. Given that they also differ significantly in terms of their returns, Panels A 

  24  



and B suggest that, similarly to small firms, value stocks do not constitute a homogeneous asset 

class either. 

 The results of Table VII are consistent and analogous to those of Table VI. High default 

risk stocks earn a higher return than low default risk stocks, only to the extent that they are small 

and high BM. If the size and BM criteria are not fulfilled, they will not earn higher returns than 

low default risk stocks, even if their default risk is very high. Furthermore, our analysis implies 

that small firms and value stocks do not constitute homogeneous asset classes.
14

 

 

C. Examining the Interaction of Size and Default, and BM and Default Using Regression 

Analysis 

In this section, we summarize and quantify the degree of interaction between size and 

default, and BM and default using regression analysis. Two different methodologies are 

employed. The first one is a portfolio-based regression approach developed in Nijman, Swinkels, 

and Verbeek (2002). The second one uses the Fama-MacBeth (1973) methodology on individual 

stock returns.  

 

C.1. The Portfolio-based Regression Approach 

The regression methodology in Nijman, Swinkels, and Verbeek (2002) is an extension of 

the methodology in Heston and Rouwenhorst (1994) which allows for the presence of interaction 

terms between the variables of interest. In the current application, we analyze average returns of 

portfolios grouped on the basis of DLI, size, and BM, and examine the relative magnitudes of the 

individual effects, as well as their interactions. 
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Similarly to Daniel and Titman (1997), Nijman, Swinkels, and Verbeek (2002) assume 

that the conditional expected return of a stock can be decomposed into several effects. In other 

words, 
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of the stock in a particular portfolio, and α  the expected return of a stock with characteristics a 

and b. In our application, a and b are either size and default risk, or BM and default risk. 

Therefore, equation (7) simply states the conditional expected return of a stock, given its size/BM 

and default risk characteristics that grant it membership to a particular portfolio.
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The conditional expected return on a portfolio p of N stocks with weights , can then 

be written as:  
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where . Since the portfolios we will use for our tests are all equally-

weighted and sorted on the basis of the characteristics a and b, we can simplify the above 

equation as follows: 
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The regression equation implied can be written as: 
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where , which is by construction orthogonal to the regressors. The only 

assumption made is that the cross-autocorrelation structure is zero, i.e., 
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However, equation (10) can be written in a more parsimonious way by imposing an additive 

structure similar to that in Roll (1992) and Heston and Rouwenhorst (1994). In that case, the 

conditional expected return of portfolio p will be given by: 
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where , for instance, denotes that only the argument b is considered. In that case, all 

stocks in group b are considered, irrespectively of their a characteristic. The constant 

( bX t .,

1,1α  

denotes the return on the reference portfolio. The reference portfolio is arbitrarily chosen and is 

used to avoid the dummy trap. When we examine the interaction of size and default effects, the 

reference portfolio we use is the portfolio that contains big cap and low-DLI stocks. In the tests 

of the interaction of BM and default effects, the reference portfolio is the one that contains stocks 

with low BM and low DLI.  

The estimated coefficients φ  can be interpreted as denoting the difference in return 

between portfolio p and the reference portfolio attributed to a particular effect. Similarly, the 

coefficients α denote the additional expected return for portfolio p due to the interaction of two 

effects. The total expected return on portfolio p is given by the sum of the returns of the 

reference portfolio, the individual effects, and the interaction effects.  

 Each set of estimations uses 15 left-hand-side portfolios. In the case of the size-default 

effects test, they are comprised of three size portfolios, three default-sorted (DLI) portfolios, and 

nine portfolios created from the intersection of two independent sorts on three size and three DLI 

portfolios. In the case of the BM-default effects test, the portfolios include three BM portfolios, 
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three default-sorted portfolios, and nine portfolios from the intersection of two independent sorts 

on three BM portfolios and three DLI portfolios. In both sets of tests, there are eight parameters 

to be estimated. 

  The results are reported in Table VIII. The first panel refers to the tests of the size-default 

effects, whereas the second panel contains the results for the BM-default effects.  

[Insert Table VIII approximately here] 

 Panel A shows that the economically and statistically most important coefficients for the 

individual effects are for small size and high DLI. In addition, the strongest interaction effect 

refers to the interaction of small size and high DLI. In other words, a portfolio will earn higher 

return, the smaller its market cap, and the higher its default risk. It will also earn an additional 

return from the interaction of high default risk and small size. This additional return is zero if the 

small firms have medium default risk. These results are consistent with our earlier finding that 

the size effect exists only among high default risk stocks. Note also that the coefficient on the 

interaction term between high DLI and medium size is negative and statistically insignificant. 

This is again in line with our previous result that the default effect exists only within small firms.  

 The return on the reference portfolio (big firms, low DLI) is 1.1363 percent per month 

(p.m.) This means that a portfolio of small firms with high DLI will earn 

(1.136+0.4287+0.50+0.31) 2.37 percent per month, compared to 1.79 percent p.m that a 

portfolio of small firms of medium DLI will earn. Similarly, a portfolio of medium firms of high 

DLI will earn 1.62 percent per month, whereas a portfolio of medium size firms of medium DLI 

will earn only 1.37 percent per month.  

 Notice that the returns above are smaller than those in Tables IV and VI. The reason is 

that stocks here are classified into tertiles of size and DLI portfolios rather than quintiles as in 
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Table IV to VII. The pattern of returns and the conclusions remain the same: The highest returns 

are earned by stocks with the highest DLI and smallest size. 

Similar conclusions emerge for the BM-DLI portfolios in Panel B. The stocks that earn 

the highest returns are stocks that are both high BM and high DLI. The return of the reference 

portfolio here (low BM, low DLI) is 1.05 percent p.m. Therefore, the high BM, high DLI 

portfolio will earn a total return of 2.38 percent p.m. as opposed to the 1.84 percent earned by the 

high BM, medium DLI portfolio. Medium default risk firms earn an extra return for default risk, 

but it is smaller than that earned by high default risk firms. In addition, the only positive and 

statistically significant interaction coefficient is the one referring to high BM and high DLI 

stocks. By the same token, a portfolio of medium BM and high DLI stocks will earn 1.58 percent 

per month compared to 1.45 percent per month earned by a portfolio of medium BM and medium 

DLI firms. In both cases, the interaction term is economically and statistically equal to zero.   

 

  C.2. The Fama-MacBeth Regression Approach on Individual Stock Returns 

Table IX presents results from Fama-MacBeth regressions of individual stocks on their 

past month’s size, BM, and DLI characteristics. The regressions consider both a linear relation 

between stock returns and characteristics, as well as a nonlinear relation by including the 

characteristics squared (size2, BM2, DLI2). In addition, there are interaction terms proxied by 

the product of size with DLI (sizeDLI) and BM with DLI (BMDLI). We render size and BM 

orthogonal to DLI before performing the tests, in order to avoid possible problems in the 

interpretation of the results.  

[Insert Table IX approximately here] 
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 The results show that what explains next month’s equity returns is the current default risk 

of securities, their BM, and the interaction of default risk and size. Size per se does not appear to 

play any role. This is confirmed in tests where only the DLI and size variables are considered. 

Indeed, only DLI, DLI2, and sizeDLI are important for explaining the next period’s equity 

returns. In contrast, BM seems to contain incremental information about next period’s returns, 

over and above that contained in DLI. The regressions that consider only DLI and BM variables 

show that the BM variables and DLI2, in addition to the interaction term, are important for 

explaining next period’s equity returns. The regression results in Table IX also highlight the 

importance of the squared terms, and therefore, the nonlinearity in the relations between equity 

returns, DLI, and BM.  

The bottom line from these tests is the following. The observed relation in the literature 

between size and equity returns is completely due to default risk. Size proxies for default risk 

and this is why small caps earn higher returns than big caps. They do so, because small caps have 

higher default risk than big caps. BM also proxies partially for default risk. Default risk is not 

however all the information included in BM.  

 

 

D. Conclusions About the size, BM, and Default Effects 

The results in Section IV point to the following conclusions. The size effect is a default 

effect as it exists only within the quintile of firms with the highest default risk. The BM effect is 

also related to default risk, but it exists among firms with both high and medium default risk. 

Default risk is rewarded only to the extent that high default risk firms are also small and high BM 

and in no other case. In other words, default risk and size share a nonlinear relation, and the same 
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is true for default risk and BM. The exact functional form of these relations is not completely 

mapped out here. Rather, we highlight some of the principle characteristics of these relations. It 

is clear that the highest returns are earned by stocks that are either both small in size and high 

DLI, or both high DLI and high BM. It is also clear though that default risk is a variable worth 

considering above and beyond size and BM, and the asset pricing tests of the following section 

confirm that. 

 

V. The Pricing of Default Risk 

The results of the previous section imply that the size and BM effects are compensations 

for the high default risk that small and high BM stocks exhibit. But does this mean that default 

risk is systematic? The answer to this question is not obvious, since defaults are rare events and 

seem to affect only a small number of firms. However, the default of a firm may have ripple 

effects on other firms, which may give rise to a systematic component in default risk. 

 The purpose of this section is to investigate through asset pricing tests, whether default 

risk is systematic, and therefore whether it is priced in the cross-section of equity returns. 

 

A. The Tested Hypotheses 

Two hypotheses are examined as part of our asset pricing tests. First, we test whether 

default risk is priced. To do so, we need to consider a plausible empirical asset pricing 

specification in which default risk appears as a factor.  

It is clear that an asset pricing model that includes only default as a risk factor would 

most certainly be mis-specified, since even if default risk is priced, it is unlikely to be the only 

risk factor that affects equity returns. For that reason, we consider an asset pricing model that 

  31  



includes as factors the excess return on the market portfolio (EMKT) and the aggregate survival 

measure . The empirical asset pricing specification is given below. )(SV∆

  tttt SVdbEMKTaR ε+∆++= )(       (16) 

where Rt represents the return at time t of a stock in excess of the risk-free rate.  

Such a model can be understood in the context of an Intertemporal Capital Asset Pricing 

Model (ICAPM) as in Merton (1974). One can postulate a version of ICAPM where default risk 

affects the investment opportunity set, and therefore, investors want to hedge against this source 

of risk. 

The second hypothesis examined is whether the Fama-French (1993) (FF) factors SMB 

and HML proxy for default risk. Recall that the FF model is empirical in nature, and includes 

apart from the market factor, a factor related to size (SMB) and a factor related to BM (HML). 

Fama and French (1996) argue that SMB and HML proxy for financial distress.  We test this 

hypothesis here, by including in the FF model. In other words, we test the following 

empirical specification: 

)(SV∆

      (17) 
tttttt SVdhHMLsSMBbEMKTaR ε+∆++++= )(

If indeed all the priced information in SMB and HML is related to financial distress, we 

would expect to find that in the presence of )(SV∆ , SMB and HML lose all their ability to 

explain equity returns.   

To get a sense of the performance of the two empirical specifications examined, we also 

present results from tests of the CAPM and FF model. These two models act as benchmarks for 

comparison purposes. 

 

B. The Test Assets 
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As previously mentioned, two hypotheses are examined in our asset pricing tests. First, 

whether default risk is priced, and second, whether SMB and HML proxy for default risk. This 

implies that there are three variables against which the test assets have to exhibit maximum 

dispersion: , size, and BM. By test assets we mean the portfolios whose returns the asset 

pricing models will be called upon to explain. 

)(SV∆

 To obtain maximum dispersion against all three variables, we perform a three-way 

independent sort. All equities in our sample are sorted in three portfolios according to )(SV∆ . 

They are also sorted in three portfolios according to size. Finally, they are sorted in three 

portfolios according to BM. Twenty-seven equally weighted portfolios are formed from the 

intersection of the three independent sorts. Summary statistics of the 27 portfolios are provided 

in Table X.  

[Insert Table X approximately here] 

  

C. Empirical Methodology of the Asset Pricing Tests 

To test the asset pricing models of Section V. A., we use the Generalized Methods of 

Moments (GMM) methodology of Hansen (1982), and employ the asymptotically optimal 

weighting matrix. For each model considered, we also compute Hansen’s J-statistic on its 

overidentifying restrictions. In addition, we report a Wald test (Wald(b)) on the joint significance 

of the coefficients of the pricing kernel implied by each model. 

To compare the alternative models, we use the Hansen and Jagannathan (1997) (HJ) 

distance measure. To calculate the p-value of the HJ-distance, we simulate the weighted sum of 

n-k  random variables 100,000 times, where n is the number of test assets, and k is the 

number of factors in the model examined.

)1(2χ
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D. Asset Pricing Results 

The results from the asset pricing tests are reported in Table XI. The rows labeled 

“coefficient” refer to the coefficient(s) of the factor(s) in the pricing kernel, whereas the rows 

labeled “premium” refer to the risk premium(s) implied for the factor(s).  

[Insert Table XI approximately here] 

The first panel shows the results of the model that includes the market and )(SV∆ as 

factors. We see that commands a positive and statistically significant risk premium. This 

implies that default risk is systematic and it is priced in the cross-section of equity returns. As 

expected, the J-test, and the HJ-distance measure have both very small p-values, which means 

that the model cannot price assets correctly. Even though both the EMKT and are priced, 

it appears that there are other factors that may be important for explaining the cross-sectional 

variation in equity returns, and which are not considered here. Despite this implication, the 

model considered has a smaller HJ distance than both the CAPM (Panel B) and the FF model 

(Panel C). This means that, any mis-specification present in this model translates into at least as 

small an annualized pricing error as those resulting from the two standard asset pricing models in 

the literature, the CAPM and FF model.

)(SV∆

)(SV∆
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 Panel D reports the results from testing the hypothesis that SMB and HML proxy for 

default risk. In particular, we test the model of equation (8). The results show that 

continues to receive a positive and statistically significant risk premium, even when it is 

considered part of the augmented model. HML is also priced again, as in Panel C, and SMB is not 

priced either in Panel C or Panel D. 

)(SV∆
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 Notice, however, that the coefficients of SMB and HML are very different in Panel D than 

they are in Panel C, and this is particularly the case for SMB. The fact that the coefficients of 

SMB and HML change in the presence of )(SV∆ suggests that SMB and HML share some 

common information with . The dramatic change in the coefficient of SMB between 

Panels C and D is an indication that SMB shares more common information with 

)(SV∆

)(SV∆  than 

HML does. In general, we expect the coefficients to change when the factors in the pricing kernel 

are not orthogonal. Table II shows that )(SV∆ is positively and highly correlated with EMKT and 

SMB, but has a small and negative correlation with HML. 

Recall that statistically significant coefficients in the pricing kernel imply that the 

corresponding factors help price the test assets, whereas a statistically significant premium 

means that the corresponding factor is priced.
18

 The results in Panel D show that although all 

factors help price the test assets, SMB is not a priced factor.  

Notice also that the coefficient on SMB is not statistically significant in Panel C, whereas 

it is in Panel D. This may be the case if the FF model is more mis-specified than the model in 

Panel D. It seems that SMB needs the presence of )(SV∆ in the pricing kernel in order for its 

coefficient to become significant. The fact that the coefficient of SMB becomes significant in this 

case further shows that although there is some common information between SMB and )(SV∆ , 

there is also residual information in both factors which is important for pricing the test assets.  

This interpretation is also supported by the values of the HJ-distance measures for the 

models of Panels C and D. The HJ distance for the FF model is larger in value than that of the 

model in Panel D. This suggests that the FF model may be more mis-specified than the model in 

Panel D. An implication of this result is that although there is some common information 
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between and the FF factors, there is also a lot of additional important information in SMB 

and HML which helps explain the test assets, but which is unrelated to default risk.

)(SV∆

19
 

 Figure 4 plots the loadings of the 27 portfolios on )(SV∆ from the models of Panels A 

and D. The portfolios are ordered in the same way as in Table X. It is interesting to note that the 

loadings on ∆ for the model of Panel A are equal or larger than one, for 20 of the 27 

portfolios. This means that default risk is important for a large segment of the cross-section that 

includes not just small firms but also medium-sized and big firms. In other words, the pricing of 

default risk is not driven by only a handful of portfolios. 

)(SV

[Insert Figure 4 approximately here] 

 Once SMB and HML are included in the pricing kernel, the loadings of )(SV∆ are 

reduced substantially for all portfolios. For the two portfolios that include small, high BM stocks 

with high or medium level of default risk, the loadings are also significantly reduced, but they 

remain around one. The fact that the loadings of )(SV∆ are so drastically reduced for all 27 

portfolios suggests again that SMB and HML include important default-related information.  

 The conclusion that emerges from the asset pricing tests is that default risk is priced, and 

it is priced even when is included in the FF model.  SMB and HML contain some default-

related information. However, this information does not appear to be the reason that the FF 

model is able to explain the cross section of equity returns.  

)(SV∆

 

VI. Conclusions 

This paper uses for the first time the Merton (1974) model to compute monthly default 

likelihood indicators for individual firms, and examine the effect that default risk may have on 

equity returns. 
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 Our analysis provides a risk-based interpretation for the size and book-to-market (BM) 

effects. It shows that both effects are intimately related to default risk. Small firms earn higher 

returns than big firms, only if they also have high default risk. Similarly, value stocks earn higher 

returns than growth stocks, if their risk of default is high. In addition, high default risk firms earn 

higher returns than low default risk firms, only if they are small in size and/or high BM. In all 

other cases, there is no significant difference in the returns of high and low default risk stocks.  

 We also examine through asset pricing tests whether default risk is systematic, and we 

find that it is indeed. Fama and French (1996) argue that their factors SMB and HML proxy for 

default risk. Our results show that, although SMB and HML contain some default-related 

information, this is not the reason that the Fama-French model is able to explain the cross-section 

of equity returns.  SMB and HML appear to contain other significant price information, unrelated 

to default risk. Risk-based explanations for this information are provided in Vassalou (2003) and 

Li, Vassalou, and Xing (2000). Our results show that default is a variable worth considering in 

asset pricing tests, above and beyond size and BM. 
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Footnotes 
 

 1 For papers that model default risk see for instance, Madan and Unal (1994), Duffie and Singleton (1995, 

1997), Jarrow and Turnbull (1995), Longstaff and Schwartz (1995), Zhou (1997), Lando (1998) and Duffee (1999), 

among others. 

 

 2 For instance, many studies have shown that the yield spread between BAA and AAA corporate bond 

spread can predict expected returns in stocks and bonds. Such studies include those of Fama and Schwert (1977), 

Keim and Stambaugh (1986), Campbell (1987), and Fama and French (1989), among others.  In addition, Chen, 

Roll, and Ross (1986), Fama and French (1993), Jagannathan and Wang (1996), and Hahn and Lee (2001) consider 

variations of the default spread in asset pricing tests. 

 

 

 3 See also, Kealhofer, Kwok, and Weng (1998). 

 

 4 For instance, Kwan (1996) shows that lagged stock returns can predict current bond yield changes. 

However, Hotchkiss and Ronen (2001) find that although the correlation between bond and stock returns is positive 

and significant, there is no causal relation between the two markets. 

 

 5 There are two main differences between our approach and the one used by KMV. They use a more 

complicated method to assess the asset volatility than we do, which incorporates Bayesian adjustments for the 

country, industry, and size of the firm. They also allow for convertibles and preferred stocks in the capital structure 

of the firm, whereas we allow only equity, as well as short- and long-term debt. 

 

 6 Our procedure also differs from the one used in KMV with respect to the way we calculate the distance to 

default. Whereas we use the formula that follows from the Black-Scholes model, KMV uses the one below: 

DD = (Market value of Assets – Default Point)/(Market value of Assets * Asset Volatility). 
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 7 To obtain an idea of how sensitive our results would be to our choice about the proportion of long-term 

debt included in our calculations of DLI, we performed the following test. We examined the variation of the ratio of 

long-term debt to total debt across size and BM quintiles. If there is no substantial variation, our results should not 

be influenced by the choice we make. We find that there is virtually no variation across BM portfolios. There is a 

small variation across size portfolios, with the small firms having a somewhat smaller ratio than the big firms. 

However, the small firms have also a larger standard deviation than the big firms. Overall, the difference in the 

ratios is not deemed large enough to alter the qualitative results of the paper.  

  

 8 The SEC requires firms to report 10K within three months after the end of the fiscal year, but a small  

percentage of firms report it with a longer delay. 

  

 9 We thank Ken French for making the data available. Details about the data, as well as the actual data 

series, can be obtained from http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/ 

 

 10 See, “Rating Methodology: Moody’s Public Firm Risk Model: A Hybrid Approach to Modeling Short 

Term Default Risk,” Moody’s Investors Service, March 2000. The AC ratio is somewhat related to the Kolmogorov-

Smirnov test. 

 

 11 For recent references, see for instance Chan, Hamao, and Lakonishok (1991) and Fama and French 

(1992). 

 

 12 This interpretation assumes that default risk is systematic, and therefore, not diversifiable. In Section V 

we test whether default risk is priced in the cross-section of equity returns. Our results show that default risk is 

indeed priced, and therefore, it constitutes a systematic source of risk.  

 

 13 See for instance, Moulton and Thomas (1993) and Hotchkiss (1995). 
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 14 The results presented in Section IV based on sequential sorts hold also when independent sorts are 

performed. To conserve space, we do not report those results here. The main insight offered by the independent sorts 

is that most small stocks are also high-DLI stocks, whereas most big stocks are low-DLI stocks. Similarly, most 

value stocks are high default risk stocks, whereas most growth stocks have low risk of default. 

  

 15 Note that, in principle, we could examine all three effects simultaneously, that is the size, BM, and 

default effects. This, however, would increase the parameters to be estimated considerably, at the expense of 

efficiency. For that reason, we concentrate on two effects at a time. 

 

 

 16  See Jagannathan and Wang (1996). 

 

 

 17 For an interpretation of the HJ-distance as the maximum annualized pricing error, see Campbell and 

Cochrane (2000). 

 

 18 See Cochrane (2001), Section 13.5. 

 

 19 Vassalou (2003) shows, for instance, that a model which includes the market factor along with news 

about future GDP growth absorbs most of the priced information in SMB and HML. In the presence of news about 

future GDP growth in the pricing kernel, SMB and HML lose virtually all their ability to explain the cross-section. 

Furthermore, Li, Vassalou, and Xing (2000) show that the investment component of GDP growth can price equity 

returns very well, and can completely explain the priced information in the Fama-French factors.  
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Table I:  

Firm Data 

The second column of the table reports the number of firms each year for which default 

likelihood indicators could be calculated. The third column reports the number of firms that filed 

for bankruptcy (Chapter 11), while the fourth reports the number of liquidations. 

 

Year # of Stocks in Sample 

# of 

Bankruptcy 

# of 

Liquidations 

1971 1355 13 1 

1972 1532 8 4 

1973 2347 15 4 

1974 2490 13 4 

1975 2612 13 6 

1976 2885 18 8 

1977 2952 12 9 

1978 2957 17 10 

1979 2956 14 26 

1980 2928 18 23 

1981 2958 8 22 

1982 3054 13 23 

1983 3083 24 13 

1984 3311 12 17 

1985 3386 19 16 

1986 3343 60 29 

1987 3425 24 16 

1988 3577 45 16 

1989 3515 42 8 

1990 3408 11 6 

1991 3379 52 20 

1992 3461 42 31 

1993 3570 70 37 

1994 3830 48 24 

1995 4004 48 14 

1996 4177 41 11 

1997 4462 33 17 

1998 4495 54 11 

1999 4250 67 13 
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Table II:                                                                                   

Summary Statistics 

In this table, SV denotes the survival rate and it is equal to one minus the aggregate default 

likelihood indicator. The variable ∆(SV) is the change in the survival rate. Mean, Std, Skew, Kurt 

and Auto refer to the mean, standard deviation, skewness, kurtosis and autocorrelation at lag one 

respectively. The variable RDEF is the return difference between Moody’s BAA corporate bonds 

and AAA corporate bonds. The variable  YDEF is the yield difference between Moody’s  BAA 

bonds and Moody AAA corporate bonds. The variable  ∆(spread) is the default measure used in 

Hahn and Lee (2001) which is defined as: ( ) ( ) ( )TB

t

BAA

t

TB

t

BAA

t yyyyspread 11 ++ −−−=
TB

ty

∆ , where 

 is the yield of the Moody’s BAA corporate bonds, and  is yield on 10-year 

government bonds. The variable EMKT denotes the value-weighted excess return on the stock 

market portfolio over the risk-free rate; SMB and HML are the Fama French (1993) factors. Size 

denotes the firm’s market capitalization and B/M its book-to-market ratio. DLI is the firm’s 

default likelihood indicator. T-values are calculated from Newey-West (1987) standard errors, 

which are corrected for heteroskedasticity and serial correlation up to three lags. The 

BAA

ty

2R ’s are 

adjusted for degrees of freedom. In Panel F, SMB and HML are the Fama-French factors. When 

the expression (within Sample) appears next to SMB and HML, it means that these factors are 

calculated using the data in the current study and following exactly the same methodology as in 

Fama and French. “Auto” refers to the first-order autocorrelation. 

            

Panel A: Summary Statistics on Aggregate Survival Indicator (SV) 

 Mean Std Skew Kurt Auto 

SV 0.9579 0.0292 -1.8956 7.9054 0.9384 

∆(SV) -0.0004 1.0472 -0.1785 13.2094 0.1657 

      

Panel B: Correlation Between ∆(SV) and Other Default Measures 

  ∆(SV) RDEF YDEF ∆(Spread)   

∆(SV) 1     

RDEF 0.0758 1    

YDEF 0.1424 0.0702 1   

∆(Spread) 0.0998 0.1416 -0.113 1   

      

Panel C: Correlation Between ∆(SV) and Other Factors   

  ∆(SV) EMKT SMB HML   

∆(SV) 1     

EMKT 0.5375 1    

SMB 0.5214 0.2839 1   

HML -0.1709 -0.4382 -0.1422 1   

      

Panel D: Time-Series Regression of Fama-French Factors on ∆(SV) 

factor   constant ∆(SV) R-squared   

EMKT coef 0.0064 2.321 0.2869  

 t-value -3.4197 -6.0689   

SMB coef 0.0009 1.4331 0.2697  

 t-value -0.6299 -5.0854   
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HML coef 0.0031 -0.4509 0.0264  

  t-value -1.815 (-2.0671)      

      

Panel E: Firm Characteristic and Default Risk   

Average Cross-sectional Correlation between firm characteristics 

 SIZE BM DLI   

Size 1     

BM -0.3165 1    

DLI -0.3084 0.4332 1     

Average time-series Correlation between firm characteristics 

 SIZE BM DLI   

SIZE 1     

BM -0.7155 1    

DLI -0.4119 0.432 1     

 
Panel F: SMB and HML within Sample 

  Mean t-value Std Auto 

SMB 0.0864 (0.5600) 2.8783 0.1374 

SMB within Sample 0.0730 (0.4763) 2.8634 0.1451 

HML 0.3076 (2.0770) 2.7627 0.1850 

HML within Sample 0.3345 (2.4816) 2.5181 0.2000 
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Table III:  

Portfolios Sorted on the Basis of Default Likelihood Indicators (DLI) 

From 1970:12 to 1999:11, at each month end, we use the most recent monthly default likelihood 

indicator of each firm to sort all portfolios into quintiles and deciles. We then compute the 

equally- and value-weighted returns over the next month. “Return” denotes the average portfolio 

return and “ADLI” the average portfolio default likelihood indicator. Portfolio 1 is the portfolio 

with the highest default risk and portfolio 10 is the portfolio with the lowest default risk. When 

stocks are sorted in quintiles, Portfolio 5 contains the stocks with the lowest default risk. “High-

Low” is the difference in the returns between the high and low default risk portfolios. T-values 

are calculated from Newey-West standard errors. The value of the truncation parameter q was 

selected in each case to be equal to the number of autocorrelations in returns that are significant 

at the five percent level. 

 

  High 1 2 3 4 5 6 7 8 9 Low 10 High-Low t-value 

Equally Weighted            

Return 1.72 1.29 1.41 1.38 1.19           0.53 (1.96) 

ADLI 19.38 1.61 0.24 0.04 0.01           19.37   

             

Value-weighted            

Return 1.26 1.27 1.28 1.36 1.12           0.14 (0.46) 

ADLI 14.92 1.38 0.21 0.03 0.03           14.89   

                   

Average size 2.56 3.52 4.24 4.89 5.59              

Average BM 1.64 0.99 0.82 0.74 0.64               

             

Equally Weighted            

Return 2.12 1.32 1.25 1.32 1.44 1.39 1.37 1.39 1.24 1.14 0.98 (2.71) 

ADLI 31.74 7.25 2.35 0.86 0.34 0.14 0.06 0.03 0.01 0.01 31.73   

             

Value-weighted                       

Return 1.20 1.21 1.19 1.30 1.19 1.37 1.29 1.41 1.31 1.04 0.16 (0.44) 

ADLI 29.18 6.44 2.12 0.86 0.33 0.11 0.06 0.02 0.01 0.04 29.15   

                          

Average size 2.24 2.87 3.32 3.71 4.08 4.40 4.73 5.06 5.40 5.78     

Average BM 2.01 1.27 1.05 0.92 0.84 0.79 0.75 0.72 0.68 0.61     
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TABLE IV:  

Size Effect Controlled by Default Risk 

From 1971:1-1999:12, at the beginning of each month, stocks are sorted into five portfolios on 

the basis of their default likelihood indicators (DLI) in the previous month. Within each 

portfolio, stocks are then sorted into five size portfolios, based on their past month’s market 

capitalization. The equally weighted average returns of the portfolios are reported in  percentage 

terms. “Small-Big” is the return difference between the smallest and biggest size portfolios 

within each default quintile. “BM” stands for book-to-market ratio. The rows labeled “Whole 

Sample” report results using all stocks in our sample. T-values are calculated from Newey-West 

standard errors. The value of the truncation parameter q was selected in each case to be equal to 

the number of autocorrelations in returns that are significant at the five percent level. 
     

Panel A: Average Return 

 Small 1 2 3 4 Big 5 Small-Big t-stat 

High DLI 1 4.6256 1.7233 1.1105 0.7801 0.8048 3.8208 (9.5953) 

2 1.5333 1.2293 1.0915 1.2269 1.2865 0.2468 (1.0464) 

3 1.4725 1.4583 1.2988 1.3268 1.3978 0.0747 (0.3481) 

4 1.2973 1.3970 1.4683 1.3446 1.2946 0.0027 (0.0129) 

Low DLI 5 1.2755 1.2216 1.1997 1.0520 1.1286 0.1469 (0.5730) 

Whole Sample 2.1207 1.1591 1.2032 1.2837 1.2238 0.8969 (3.2146) 

Panel B: Average Size 

 Small 1 2 3 4 Big 5   

High DLI 1 0.6883 1.6858 2.3936 3.1619 4.7013   

2 1.4885 2.5637 3.3076 4.1511 5.7973   

3 2.0103 3.2055 4.0250 4.9553 6.6873   

4 2.4612 3.7715 4.6935 5.7503 7.4202   

Low DLI 5 2.9161 4.4122 5.4394 6.5299 8.2456   

Whole Sample 1.5312 2.9019 3.9120 5.0684 7.0886     

Panel C: Average DLI 

 Small 1 2 3 4 Big 5   

High DLI 1 27.4500 20.6530 17.8550 16.0280 14.2960   

2 2.0050 1.7930 1.6770 1.5870 1.4260   

3 0.3170 0.2670 0.2510 0.2600 0.2200   

4 0.0590 0.0510 0.0420 0.0380 0.0380   

Low DLI 5 0.0140 0.0110 0.0090 0.0060 0.0070   

Whole Sample 11.6100 4.9351 2.5953 1.3932 0.6141     

Panel D: Average BM 

 Small 1 2 3 4 Big 5   

High DLI 1 2.2378 1.6810 1.5307 1.5022 1.3275   

2 1.2604 1.0476 0.9803 0.9191 0.8581   

3 1.0365 0.8571 0.7971 0.7426 0.7462   

4 0.9507 0.7476 0.6963 0.6698 0.6952   

Low DLI 5 0.9150 0.6977 0.5991 0.5498 0.5059   

Whole Sample 1.5111 1.0802 0.8994 0.7490 0.6646     
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       Table V:  

BM Effect Controlled by Default Risk 

From 1971:1-1999:12, at the beginning of each month, stocks are sorted into five portfolios on 

the basis of their default likelihood indicators (DLI) in the previous month. Within each 

portfolio, stocks are then sorted into five book-to-market (BM) portfolios, based on their past 

month’s BM ratio. The equally weighted average returns of the portfolios are reported in  

percentage terms. “High-Low” is the return difference between the highest BM and lowest BM 

portfolios within each default quintile. The rows labeled “Whole Sample” report results using all 

stocks in our sample. T-values are calculated from Newey-West standard errors. The value of the 

truncation parameter q was selected in each case to be equal to the number of autocorrelations in 

returns that are significant at the five percent level.  

 
Panel A: Average Returns 

 High BM  2 3 4 Low BM High-Low t-stat 

High DLI 1 3.3636 2.0412 1.5164 1.2047 0.8170 2.5466 (9.8984) 

2 1.7981 1.5438 1.2955 0.9946 0.7282 1.0699 (3.4716) 

3 1.7420 1.4287 1.3053 1.2381 1.2338 0.5083 (1.5026) 

4 1.6284 1.4604 1.1840 1.1864 1.3414 0.2870 (0.9575) 

Low DLI 5 1.4415 1.2669 1.0932 1.0688 1.0074 0.4341 (1.5134) 

Whole Sample 2.1572 1.4893 1.2267 1.0963 1.0128 1.1445 (4.5879) 

Panel B: Average BM 

 High BM  2 3 4 Low BM   

High DLI 1 3.7233 1.8967 1.3310 0.9007 0.4191   

  2.0395 1.2307 0.8848 0.6070 0.2949   

3 1.6616 1.0184 0.7399 0.5065 0.2462   

4 1.4547 0.9154 0.6782 0.4705 0.2339   

Low DLI 5 1.2970 0.8052 0.5733 0.3858 0.2009   

Whole Sample 2.2137 1.1258 0.7861 0.5243 0.2472     

Panel C: Average DLI 

 High BM  2 3 4 Low BM   

High DLI 1 30.9210 19.4650 16.2910 14.7660 14.6620   

2 2.0460 1.7450 1.6340 1.5400 1.5180   

3 0.3150 0.2580 0.2500 0.2590 0.2320   

4 0.0510 0.0470 0.0420 0.0460 0.0410   

Low DLI 5 0.0130 0.0070 0.0110 0.0080 0.0080   

Whole Sample 12.0360 3.6598 2.2206 1.6334 1.5062     

Panel D: Average Size 

 High BM  2 3 4 Low BM   

High DLI 1 2.0112 2.4445 2.6701 2.7970 2.7742   

2 2.9754 3.4027 3.5753 3.6821 3.6893   

3 3.6649 4.1947 4.3284 4.4044 4.3099   

4 4.2412 4.8918 5.0060 5.0645 4.9220   

Low DLI 5 4.4908 5.3668 5.6338 6.0028 6.0942   

Whole Sample 2.8680 3.9437 4.3643 4.6518 4.7197     
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TABLE VI:  

Default Effect Controlled by Size 
From 1971:1-1999:12, at the beginning of each month, stocks are sorted into five portfolios on 

the basis of their market capitalization (size) in the previous month. Within each portfolio, stocks 

are then sorted into five portfolios, based on past month’s default likelihood indicator (DLI). 

Equally weighted average portfolio returns are reported in percentage terms. “HDLI-LDLI” is the 

return difference between the highest and lowest default risk portfolios within each size quintile. 

T-values are calculated from Newey-West standard errors. The value of the truncation parameter 

q was selected in each case to be equal to the number of autocorrelations in returns that are 

significant at the five percent level. 

 
Panel A: Average Returns 

 High DLI 2 3 4 Low DLI High -Low t-stat 

Small 3.7315 2.1580 1.8666 1.4127 1.5020 2.2295 (5.9430) 

2 0.7852 1.0599 1.3095 1.3212 1.3200 -0.5348 (-1.8543) 

3 0.8748 1.2387 1.3406 1.3623 1.1947 -0.3198 (-1.7375) 

4 1.1115 1.2662 1.4690 1.3171 1.2542 -0.1427 (-0.8505) 

Big 1.3714 1.2954 1.2391 1.1717 1.0428 0.3286 (1.7074) 

        

Panel B: Average DLI 

 High DLI 2 3 4 Low DLI   

Small 41.5360 12.7980 3.8906 0.8832 0.0955   

2 20.4190 3.4020 0.7731 0.1516 0.0239   

3 11.6090 1.1100 0.2276 0.0528 0.0091   

4 6.3550 0.4880 0.1014 0.0284 0.0096   

Big 2.9220 0.1200 0.0315 0.0075 0.0063     

        

Panel C: Average Size 

 High DLI 2 3 4 Low DLI   

Small 1.2008 1.4570 1.5742 1.6668 1.7450   

2 2.8306 2.8830 2.9113 2.9332 2.9510   

3 3.8612 3.8901 3.9172 3.9374 3.9537   

4 4.9955 5.0381 5.0718 5.1008 5.1357   

Big 6.7779 6.9570 7.0820 7.2114 7.4129     

        

Panel D: Average BM 

 High DLI 2 3 4 Low DLI   

Small 2.4472 1.5668 1.3194 1.1538 1.1031   

2 1.6172 1.1213 0.9548 0.8645 0.8460   

3 1.3290 0.9027 0.8036 0.7345 0.7286   

4 1.0048 0.7531 0.7028 0.6765 0.6087   

Big 0.8774 0.7187 0.6731 0.6013 0.4538     
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TABLE VII:  

Default Effect Controlled by Book-to-Market (BM) 

From 1971:1-1999:12, at the beginning of each month, stocks are sorted into five portfolios on 

the basis of their book-to-market ratio in the previous month. Within each portfolio, stocks are 

then sorted into five portfolios, based on past month’s default likelihood indicator (DLI). Equally 

weighted average portfolio returns are reported in percentage terms. “HDLI-LDLI” is the return 

difference between the highest and lowest default risk portfolios within each size quintile. T-

values are calculated from Newey-West standard errors. The value of the truncation parameter q 

was selected in each case to be equal to the number of autocorrelations in returns that are 

significant at the five percent level. 

 
Panel A: Average Returns 

 High DLI 2 3 4 Low DLI High -Low t-stat 

High BM 3.2285 2.1825 1.9488 1.8361 1.6243 1.6042 (3.9785) 

2 1.3880 1.4370 1.5597 1.5544 1.5098 -0.1218 (-0.4580) 

3 1.1506 1.2602 1.3190 1.1712 1.2307 -0.0802 (-0.3317) 

4 0.9077 1.1734 1.1679 1.1064 1.1246 -0.2169 (-0.8294) 

Low BM 0.7044 0.9765 1.2983 1.1074 0.9711 -0.2667 (-0.8369) 

        

Panel B: Average DLI 

 High DLI 2 3 4 Low DLI   

High BM 42.0930 13.1080 4.4229 1.3284 0.2008   

2 15.6030 2.1510 0.5362 0.1186 0.0149   

3 10.1880 0.7840 0.1623 0.0389 0.0104   

4 7.7070 0.4180 0.0895 0.0244 0.0066   

Low BM 7.3560 0.2140 0.0534 0.0152 0.0063     

        

Panel C: Average BM 

 High DLI 2 3 4 Low DLI   

High BM 3.1427 2.2544 2.0319 1.8890 1.7795   

2 1.1569 1.1390 1.1245 1.1105 1.0985   

3 0.8018 0.7886 0.7854 0.7798 0.7748   

4 0.5375 0.5280 0.5237 0.5219 0.5107   

Low BM 0.2464 0.2473 0.2477 0.2493 0.2453     

        

Panel D: Average Size 

 High DLI 2 3 4 Low DLI   

High BM 1.9664 2.4581 2.8438 3.3376 3.7075   

2 2.7494 3.4317 4.0187 4.5993 4.9060   

3 3.0165 3.8540 4.5044 5.0304 5.4005   

4 3.2014 4.1530 4.7369 5.3104 5.8360   

Low BM 3.1744 4.1586 4.6966 5.2828 6.2550     
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Table VIII:  

A Decomposition of Returns in Size, BM, and DLI Portfolios Using Regression Analysis 

Panel A provides results using 15 size- and DLI-sorted portfolios. Out of these 15 portfolios, 

three are sorted on the basis of size, three on the basis of DLI, and nine portfolios are created 

from the intersection of two independent sorts on three size and three DLI portfolios. The 

reference portfolio contains big firms with low DLI. Its average return is 1.1363 percent per 

month. Panel B provides results based on 15 BM- and DLI-sorted portfolios. The portfolios are 

constructed in an analogous fashion to that of the portfolios of Panel A. The reference portfolio 

contains now low BM and low DLI firms, and has an average return of 1.0529 percent per month. 

The results presented are from Fama-MacBeth regressions. T-values are computed from standard 

errors corrected for White (1980) heteroskedasticity and serial correlation up to three lags using 

the Newey-West estimator. The Wald test examines the hypothesis that the coefficients of each 

individual effect are jointly zero. 

 
Panel A: Size Effect and Default Effect 

     Size(M) Size(M) Size(S) Size(S) 

 Size (M) Size(S) DLI(M) DLI(H) DLI(M) DLI(H) DLI(M) DLI(H) 

Coefficient 0.1069 0.4287 0.2158 0.5003 -0.0939 -0.1201 0.0087 0.3078 

t-value 0.7474 1.8661 2.0895 2.2291 -1.0289 -1.2345 0.1321 2.3895 

         

 Size DLI       

Wald test 5.9102 5.0468       

p-value 0.0151 0.0247             

Panel B: BM Effect and Default Effect 

     BM(M) BM(H) BM(M) BM(H) 

 BM(M) BM(H) DLI(M) DLI(H) DLI(M) DLI(M) DLI(H) DLI(H) 

Coefficient 0.1533 0.7257 0.2512 0.3626 -0.0073 -0.1915 0.0096 0.2427 

t-value 1.3377 4.0523 2.4627 1.5327 -0.0866 -1.5060 0.0678 1.9991 

         

 BM DLI       

Wald Test 48.9252 6.6891       

p-value 0.0000 0.0097             
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Table IX:  

Fama-MacBeth Regressions on the Relative Importance of Size, BM, and DLI 

Characteristics for Subsequent Equity Returns 

The Fama-MacBeth regression tests are performed on individual equity returns. The variables 

size and BM are rendered orthogonal to DLI. The regressions relate individual stock returns to 

their past month’s size, BM, and DLI characteristics. Size2, BM2, DLI2 denote the 

characteristics squared, whereas SizeDLI and BMDLI denote the products of the respective 

variables. Those products aim to capture the interaction effects of each pair of variables. 

 

 Constant DLI DLI2 Size Size2 BM BM2 SizeDLI BMDLI 

Coef 1.3087 -4.8980 17.8748 -0.0030 0.0000 0.5710 -0.0293 -0.6800 0.1071 

t-value 4.4352 -2.7120 4.3832 -0.5061 -0.2406 5.5091 -1.5762 -3.8740 1.9802 

          

Coef 1.3027 -6.2470 19.7108 -0.0072 0.0000     -0.7869   

t-value 4.3906 -3.3818 4.6873 -1.1187 0.2159     -4.2910   

                    

Coef 1.2905 0.7063 2.1471   0.5899 -0.0477  0.1345 

t-value 4.3421 0.5158 3.6537     5.7721 -2.4581   2.1236 
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Table IX:  

Summary Statistics on the  27 Size, BM, and DLI Sorted Portfolios 

The 27 portfolios are constructed from the intersection of three independent sorts of all stocks 

into three size, three book-to-market (BM), and three default risk portfolios. Default risk is 

measured by the default likelihood indicator (DLI). The second, third, and fourth columns 

describe the characteristics of each portfolio in terms of its size, BM, and DLI. Size refers to the 

market value of equity. Equally weighted average returns are reported in percentage terms. 

  SIZE BM  DLI 

Average 

Return size BM DLI 

1 Small High High 2.4229 1.8015 2.2192 18.9380 

2 Small High Medium 1.6977 2.1021 1.6630 0.4960 

3 Small High Low 1.6124 2.0410 1.6420 0.0240 

4 Small Medium High 1.3834 2.0606 0.7734 10.2640 

5 Small Medium Medium 1.4333 2.3183 0.8019 0.4410 

6 Small Medium Low 0.9525 2.2164 0.8777 0.0290 

7 Small Low High 0.8020 2.0956 0.3068 9.4810 

8 Small Low Medium 1.1139 2.4143 0.3099 0.2850 

9 Small Low Low 1.0843 2.3665 0.3453 0.0430 

10 Medium High High 1.1913 3.7834 1.8675 12.0920 

11 Medium High Medium 1.6750 3.9597 1.4046 0.3380 

12 Medium High Low 1.5653 4.0343 1.3088 0.0170 

13 Medium Medium High 0.7646 3.8382 0.8152 5.9680 

14 Medium Medium Medium 1.3332 4.0316 0.7673 0.2930 

15 Medium Medium Low 1.3354 4.1092 0.7711 0.0200 

16 Medium Low High 0.6980 3.8611 0.3363 4.8230 

17 Medium Low Medium 1.0774 4.0249 0.3248 0.2180 

18 Medium Low Low 1.1680 4.1068 0.3315 0.0220 

19 Big High High 1.6955 5.8582 1.7436 10.0360 

20 Big High Medium 1.6261 6.3154 1.3537 0.2530 

21 Big High Low 1.5171 6.7343 1.1435 0.0180 

22 Big Medium High 0.9546 5.8168 0.8355 5.9050 

23 Big Medium Medium 1.3203 6.1914 0.7767 0.2560 

24 Big Medium Low 1.2019 6.5926 0.7227 0.0140 

25 Big Low High 0.8634 5.8207 0.3560 3.5250 

26 Big Low Medium 1.3465 6.1598 0.3510 0.2250 

27 Big Low Low 1.1793 6.7712 0.3373 0.0150 

 

 

 

 

 

 
 
 
 
 
 
 

  52  



 
TABLE X:  

Optimal GMM Estimation of Competing Asset Pricing Models 

The GMM estimations use Hansen’s (1982) optimal weighting matrix. The tests are performed 

on the excess returns of the 27 equally weighted portfolios of Table IX.  EMKT refers to the 

excess return on the stock market portfolio over the risk-free rate.  )(SV∆ is the change in the 

survival rate, which is defined as one minus the aggregate default likelihood indicator.  HML is a 

zero-investment portfolio which is long on high book-to-market (BM) stocks and short on low 

BM stocks. Similarly, SMB is a zero-investment portfolio which is long on small market 

capitalization (size) stocks and short on big size stocks. The J-test is Hansen's test on the 

overidentifying restrictions of the model. The Wald(b) test is a joint significance test of the b 

coefficients in the pricing kernel. The J-test and Wald(b) tests are computed in GMM estimations 

that use the optimal weighting matrix. We denote by "HJ" the Hansen-Jagannathan (1997) 

distance measure. It refers to the least-square distance between the given pricing kernel and the 

closest point in the set of pricing kernels that price the assets correctly. The p-value of the 

measure is obtained from 100,000 simulations. The estimation period is from 1971:1 to 1999:12. 

In Panel A we test the hypothesis that default risk is priced in the context of a model that 

includes the excess return on the market portfolio along with a measure of default risk (∆(SV)). 

Panels B and C present results from tests of the CAPM and Fama-French models, which are used 

as benchmarks for comparison purposes. Finally, in Panel D we test the hypothesis that the 

Fama-French factors SMB and HML include default-related information, by including in the 

Fama-French model our aggregate measure of default risk.  
 

Panel A: The EMKT+∆ (SV) Model 

  Constant EMKT ∆ (SV)     Test: J-test Wald(b) HJ 

Coefficient 1.0200 1.5398 -44.3823   Statistic 63.6054  0.8678 

t-value (39.2795) (0.8804) (-3.8607)   p-value (0.0000) (0.0001) (0.0000) 

Premium  0.0079 0.0043       

t-value   (2.8024) (4.2752)             

Panel B: The CAPM 

  Constant EMKT       Test: J-test Wald(b) HJ 

Coefficient 1.0030 -2.2689    Statistic 69.4761  0.8991 

t-value (85.2437) (-2.0283)    p-value (0.0000) (0.0425) (0.0000) 

Premium  0.0047        

t-value   (2.0283)               

Panel C: The Fama-French Model 

  Constant EMKT SMB HML   Test: J-test Wald(b) HJ 

Coefficient 1.0325 -5.1332 0.0561 -8.2368  Statistic 67.3000  0.8766 

t-value (44.4182) (-4.0217) (0.0270) (-3.4076)  p-value (0.0000) (0.0001) (0.0000) 

Premium  0.0061 0.0009 0.0036      

t-value   (2.5597) (0.5317) (2.0602)           

Panel D: The Fama-French Model Augmented by ∆ (SV)  

 Constant EMKT SMB HML ∆ (SV) Test: J-test Wald(b) HJ 

Coefficient 0.9322 4.6068 24.7941 -12.0076 -135.2905 Statistic 46.8368  0.8032 

t-value (15.7444) (1.6395) (4.0315) (-2.8654) (-4.7691) p-value (0.0024) (0.0000) (0.0000) 

Premium  0.0098 -0.0025 0.0082 0.0097     

t-value   (2.1551) (-0.6916) (2.6620) (4.4788)         
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Figure 1. Aggregate Default Likelihood Indicator. The aggregate default likelihood indicator 

is defined as the simple average of the default likelihood indicators of all firms. The shaded areas 

denote recession periods, as defined by NBER. 
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Figure 2. Accuracy Ratio. 

Accuracy Ratio = 0.59231 (defined as the ratio of Area A over Area B). 
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Figure 3. Average Default Likelihood Indicators of Bankrupt Firms and Firms in a Control 

Group. The control group contains firms with the same size and industry characteristics as those 

in the experimental group, that did not default. Firms are delisted two to three years prior to 

bankruptcy. Numbers in x-axis denote months prior to delisting, and not prior to the actual 

default. 
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Figure 4. Loadings of the 27 Portfolios on ∆ (SV). This graph shows the loadings of the 27 

portfolios of Table IX on the survival indicator ∆(SV). The portfolios are ordered in the same 

way as in Table IX. EMKT+∆(SV) labels the loadings on ∆(SV) from the model that includes the 

market factor and ∆(SV) in the pricing kernel. Similarly, FF3+∆(SV) labels the loadings on ∆(SV) 

from the augmented Fama-French (1993) model by the ∆(SV) factor. The sample period is from 

1971:1-1999:12. 
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