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Abstract. Defeasible reasoning has been studied extensively in the last
two decades and many different and dissimilar approaches are currently
on the table. This multitude of ideas has made the field hard to navi-
gate and the different techniques hard to compare. Our earlier work on
Logic Programming with Defaults and Argumentation Theories (LPDA)
introduced a degree of unification into the approaches that rely on the
well-founded semantics. The present work takes this idea further and in-
troduces ASPDA—a unifying framework for defeasibility of disjunctive
logic programs under the Answer Set Programming (ASP). Since the
well-founded and the answer set semantics underlie almost all existing
approaches to defeasible reasoning in Logic Programming, LPDA and
ASPDA together capture most of those approaches. In addition to AS-
PDA, we obtained a number of interesting and non-trivial results. First,
we show that ASPDA is reducible to ordinary ASP programs, albeit
at the cost of exponential blowup in the number of rules. Second, we
study reducibility of ASPDA to the non-disjunctive case and show that
head-cycle-free ASPDA programs reduce to the non-disjunctive case—
similarly to head-cycle-free ASP programs, but through a more complex
transformation. The blowup in the program size is linear in this case.

1 Introduction

Defeasible reasoning is a form of non-monotonic reasoning where logical axioms
are true “by default” but their truth status may be undercut or even negated by
other, conflicting axioms. This type of reasoning has been an important applica-
tion of logic programming. It was successfully used to model policies, regulations,
and law; actions, change, and process causality; Web services; aspects of induc-
tive/scientific learning and natural language understanding. However, there is a
bewildering multitude of dissimilar and incompatible approaches to defeasibility
based on a wide variety of intuitions and techniques. The difficulties in relat-
ing and comparing the different approaches have been discussed in [13,3] and
other works. Combining the various theories of defeasible reasoning with other
advances in logic-based knowledge representation, such as HiLog [4] and F-logic
[16], has also been a problem.
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sponsored by Vulcan, Inc. It was also partially supported by the NSF grant 0964196.
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Our earlier work [20] addressed some of these issues by introducing a general
framework for defeasible reasoning, called LPDA, which abstracts the intuitions
about defeasibility into what we call argumentation theories. This enabled a uni-
form syntax and semantics for a wide variety of defeasible theories, which could
be used in harmony and simultaneously in the same knowledge base. LPDA, as
defined in [20], was developed on the basis of the well-founded models [9] and
was able to unify a number of approaches to defeasible reasoning that are based
on the well-founded semantics. However, a large number of works on defeasible
reasoning are based on the stable model semantics [11], which has very different
properties and is not capturable by well-founded models. Furthermore, defea-
sible reasoning in the presence of disjunctive information, which to the best of
our knowledge has not been considered hitherto, appears to require even more
general semantics, the answer set semantics [10].

The present work takes the idea of LPDA further and introduces ASPDA—an
analogous framework for defeasibility of disjunctive logic rules through argumen-
tation theories based on Answer Set Programming (ASP). In this way, LPDA
and ASPDA together unify and extend most of the existing theories of defeasible
reasoning in Logic Programming.

Extension of the semantics of LPDA to ASP with head-disjunctions turned
out to be elegant but not straightforward. The relationship between ASPDA and
the regular ASP also proved to be non-obvious. First, we show that ASPDA can
be expressed by regular ASP programs, albeit at the cost of exponential blowup
in the number of rules. Then we study the class of head-cycle-free programs with
disjunctive heads and show that a related notion exists for ASPDA. By analogy
with the classical case, such programs can be reduced to non-disjunctive pro-
grams under the defeasible stable model semantics, although the transformation
is more complicated than in the case of the regular ASP. The blowup in the
program size is still linear, however.

The rest of this paper is organized as follows. Section 2 illustrates defeasible
reasoning under the answer-set semantics using the well-known Turkey Shoot
example [19]. Section 3 defines the syntax and semantics of defeasible disjunctive
logic programs and presents a number of interesting results about reducibility to
the regular logic programming and to the non-disjunctive case. Section 4 gives
two examples of argumentation theories for ASPDA. One is an adaptation of
GCLP [14,20] to ASPDA, a theory that is used in all examples throughout this
paper. Another is an argumentation theory that captures Defeasible Logic [1].
Although Defeasible Logic (as all other theories of defeasible reasoning up until
now) does not support head-disjuncts in the rules, it is an apt illustration of
ASPDA as a unifying framework that is capable of capturing much of the prior
work. Sections 5 and 6 discuss related work and conclude the paper.

2 Motivating Example

The following example is adapted from the Texas Turkey Shoot game example
in [19]. We use the usual syntax of logic programming with the only difference
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that rules are tagged with @tag symbols and disjunctions are allowed. Variables
are prefixed with the symbol ?. Initially one of the guns is known to be loaded,
but it is not known which. The objective is to find a plan to kill the turkey
by shooting one or both guns assuming that the shooter can observe the effects
of his actions. Let g1 and g2 be the constants representing the guns. Numerals
are used in the example to represent time points, and the initial time point is
assumed to be 1. For instance, shoot(g1,1) and shoot(g1,2) represent the
actions of shooting the gun g1 at time points 1 and 2.

@kpld loaded(?Gun,?Time+1) :- loaded(?Gun,?Time). // Frame axiom 1.

@kpunld neg loaded(?Gun,?T+1) :- neg loaded(?Gun,?T). // Frame axiom 2.

@dd neg alive(?Time+1) :- neg alive(?Time). // Frame axiom 3.

@liv alive(?Time+1) :- alive(?Time). // Frame axiom 4.

// A gun becomes unloaded after being fired

@sht1 neg loaded(?Gun,?Time+1) :- shoot(?Gun,?Time).

// The turkey becomes dead after a loaded gun is fired at it

@sht2 neg alive(?Time+1) :- shoot(?Gun,?Time), loaded(?Gun,?Time).

// Axioms for the initial state

alive(1). // The turkey is alive initially

@unld neg loaded(g1,1) ∨ neg loaded(g2,1). // One gun is unloaded initially

@ld loaded(g1,1) ∨ loaded(g2,1). // One gun is loaded initially

shoot(g1,1). // Fire g1 at time 1

// If g1 is unloaded at time 1, fire g2 at time 2.

shoot(g2,2) :- not loaded(g1,1).

// axioms for contradiction and rule priorities

#opposes(alive(?Time), neg alive(?Time)).

#overrides(sht1, kpld).

#overrides(sht2, liv).

In the above specification, some of the rules have tags, e.g., kpld and sht1,
and the predicate #overrides specifies priorities among some of these tagged
rules. We distinguish between the classical-logic-like explicit negation neg and the
default negation not (which in this paper will have the answer-set semantics).
Literals L and negL are assumed to be incompatible and cannot both appear in
a consistent model. The predicate #opposes specifies additional contradictions,
such as the inability for the turkey to be both dead and alive at the same time.

We can now explain how defeasible reasoning works in the above game. The
rule labeled kpld is a frame persistence axiom stating that a loaded gun stays
loaded unless some other action explicitly changes this state of affairs. The rule
sht1 states that if a gun is fired then it becomes unloaded in the next state.
This rule has a higher priority than the frame axiom kpld due to the axiom
#overrides(sht1,kpld). The rule labeled liv is another frame axiom stating
that a live turkey remains alive by default. This rule is defeated by the higher-
priority rule labeled sht2, which says that if a loaded gun is fired at the turkey,
then the turkey is dead in the next state. Note that our program has disjunctions
in the heads of the rules labeled unld and ld), so the initial state of the game is
uncertain. The problem is to infer that by firing one or both guns in succession
the shooter can kill the turkey despite the uncertainty in the initial state. Note
that due to the disjunctions, the other existing logic programming approaches
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to defeasible reasoning cannot handle the above situation, and this is precisely
the motivation for our current work. We will return to this example at the end
of Section 4.1 after the necessary theory is developed.

3 Defeasible Reasoning with Argumentation Theories

In this section we introduce the syntax and semantics of disjunctive logic pro-
gramming where defeasibility is controlled by argumentation theories. The main
syntactic difference is that rules now have tags, and the main semantic difference
is that these rules can be defeated.

Let L be a logic language with the usual connectives ∧ for conjunction, ∨
for disjunction, and :- for rule implication; and two negation operators: neg
for explicit negation and not for default negation. The alphabet of the language
consists of: an infinite set of variables, which are shown in the examples as
alphanumeric symbols prefixed with the question mark ?; and a set of constant
symbols, which can appear as individuals, function symbols, and predicates.
Constants will be shown as alphanumeric symbols that are not prefixed with a
“?”. We assume that the language includes two special propositional constants, t
and f , which stand for true and false, respectively. We also assume the following
order on these propositions: f < t.

We use the standard notion of terms in logic programming. Atomic for-
mulas, also called atoms, can be quite general in form: they can be the usual
atoms used in ordinary logic programming; or the higher-order expressions of
HiLog [4]; or the frames of F-logic [16]. A literal has one of the following forms:

– An atomic formula.
– negA and notA, where A is an atomic formula.
– not negA, where A is an atomic formula.
– not notL and neg negL, where L is a literal; these are identified with L.

For convenience, the literals not notL and neg negL will be identified with L.
Let A denote an atom. Literals of the form A or negA (or literals that reduce to
these forms after elimination of double negation) are called not -free literals;
literals that reduce to the form notA are called not -literals.

Definition 1 (Tagged rule). A tagged rule in a logic language L is an ex-
pression of the form

@r L1 ∨ ... ∨ Lk :-Body (1)

where r is a term, called the tag of the rule; L1, ..., Lk (k ≥ 0) are literals in L,
called the head literals of the rule; and Body, called the body of the rule, is a
conjunction of literals in L.3 As is common in logic programming, we will often
write A,B to represent the conjunction A∧B. A rule tag is not a rule identifier:
several rules can have the same tag.

A constraint is a special form of rule where f is a single head literal. We
will usually omit f in such rules.

3 This is easy to generalize to allow Lloyd-Topor extensions [18].
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A formula is a literal, a Boolean combination of literals using conjunction
and disjunction, or a rule. �

We will often omit showing rule tags when they are immaterial.

Definition 2 (Rule handle). Given a rule of the form (1), the terms of the
form

handle(r, Li), where i = 1, ..., k

are called the handles for that rule. Here handle is a binary function symbol
specifically reserved for representing rule handles. However, we do not make
further assumptions about this symbol. �

Definition 3 (Ground terms and rules). A ground term is a term that
contains no variables, a ground literal is a variable-free literal, and a ground
rule is a rule that has no variables. �

Definition 4 (ASPDA). An answer-set program with defaults and ar-
gumentation theories (an aspda , for short) in a logic language L is a set of
tagged rules in L, which can be strict or defeasible. Sets or rules that do not
have disjunctions in the head will be called non-disjunctive aspdas. �

Strict rules are used as definite statements about the world. In contrast, defea-
sible rules represent defeasible defaults whose instances can be “defeated” by
other rules. Inferences produced by the defeated rules are “overridden.”

We assume that the distinction between strict and defeasible rules is specified
in some way: either syntactically or by means of a predicate. For instance, in
Section 4, we use the predicate #strict for that purpose.

Aspda s are used in conjunction with argumentation theories, which are sets
of rules that defines conditions under which some rule instances may be defeated
by other rules.

Definition 5 (Argumentation theory). Let L be a logic language. An argu-
mentation theory is a set, AT, of strict rules in L of the form (1). We also
assume that the language L includes a unary predicate, $defeatedAT, which
may appear in the heads of some rules in AT.4 When confusion does not arise,
we will omit the subscript AT.
An aspda P is said to be compatible with AT if $defeatedAT does not appear
in the rule heads in P. �

In argumentation theory all rules are strict, by definition.5 The rules in AT
will normally contain other predicates, besides $defeatedAT, that are used to
specify how the rules in P get defeated.

4 If $defeated does not occur in the head of any rule then the semantics of aspda s
reduce to ordinary logic programming.

5 In principle, we could allow argumentation theories to be defeasible, but we will not
do so in this paper.
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Usually argumentation theories employ the concepts of rule priority and con-
tradictions among facts. Priorities are often specified via a predicate, such as
#overrides, which tell that some rules (or rule instances) have higher prior-
ities than other rules (e.g., #overrides(rule tag1, rule tag2)). Contradictions
are commonly expressed via predicates such as #opposes, which tell that certain
facts cannot be true together (e.g., #opposes(price(ball1, 20), price(ball1, 30)).
The $defeated predicate is then defined in terms of these and other predicates.
In this paper, we adopt the convention that the predicates defined only by argu-
mentation theories will be prefixed with the $-sign, the predicates used and/or
defined both by the argumentation theories and user programs will be prefixed
with the #-sign, and the predicates defined only by user programs will not be
marked in any special way: they will be denoted by alphanumeric symbols.

In defining the semantics, we assume that the argumentation theories are
ground. A grounded version of AT with respect to a compatible aspda P is
obtained by appropriately instantiating the variables and meta-predicates.

Note that the theory developed here permits different subsets of the overall
aspda to have different argumentation theories AT with different $defeatedAT

predicates. For instance, our implementation of the logic programming frame-
work with argumentation theories for the well-founded semantics in an extended
version of FLORA-2 [15] supports multiple argumentation theories.

3.1 Interpretations and Models

Definition 6 (Herbrand universe). Let P be an aspda and AT an argumen-
tation theory over language L.

– The Herbrand universe of P, denoted UL, is the set of all ground terms
built using the constants and function symbols that appear in L. When con-
fusion does not arise, we will simply write U .

– The Herbrand base of P, denoted BL (or simply B, when no ambiguity
arises), is the set of all ground not -free literals that can be constructed using
the predicates in L. �

Definition 7 (Herbrand interpretation). A Herbrand interpretation, I,
is a subset of B. It is simply a set of ground not -free literals. In addition, I
must contain t and it must not contain f .
An interpretation is inconsistent relative to an atom A if both A and negA
are in I. Otherwise, I is consistent relative to A. An interpretation is con-
sistent if it is consistent relative to every atom and inconsistent if it is incon-
sistent relative to some atom. �

Note that all interpretations considered in this paper are Herbrand, so we will
often neglect to mention Herbrandness explicitly.

Next we introduce the notion of satisfaction of defeasible rules and strict
rules by interpretations.

Definition 8 (Truth valuation). Let I be a Herbrand interpretation, L a
ground not -free literal, and let F , G be ground formulas. We define truth val-
uations that map formulas to {t,f} as follows:
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– I(L) = t iff L ∈ I, I(L) = f iff otherwise.
– I(notL) =∼ I(L), where ∼ t = f and ∼ f = t.
– I(F ∧G) = min(I(F ), I(G)). Recall that f < t.
– I(F ∨G) = max(I(F ), I(G)).
– For a strict rule @r F :-G, we define I(F :-G) = t if and only if I(F ) ≥

I(G).
– For a defeasible rule @r F :-G, we define I(@r F :-G) = t if and only if

I(F ) ≥ min(I(G), I(not $defeated(handle(r, F )))).
Here handle(r, F ) is the handle for the rule @r F :-G (Definition 2). �

Definition 9 (Model of formula). If F is a ground formula, I an interpre-
tation, and I(F ) = t, then we write I |= F and say that I is a model of F or
that F is satisfied in I. An interpretation I is a model of an aspda P if all the
rules in P are satisfied in I, i.e., if I |= R for every R ∈ P. �

Definition 10 (Model of ASPDA). Given an aspda P, an argumentation
theory AT, and an interpretation M, we say that M is a model of P with respect
to the argumentation theory AT (or a model of (P,AT), for short), written as
M |= (P,AT), if M |= P and M |= AT. �

Definition 11 (Minimal model). An interpretation M is a minimal model
of (P,AT) iff M is a model of (P,AT) and no proper subset of M is a model of
(P,AT). �

3.2 Stable Model and Answer-set Semantics

In this section, we extend the stable model semantics [11] and the answer-
set semantics [10] to ASPDA. We start with non-disjunctive aspda s and stable
models.

Definition 12 (ASPDA quotient, non-disjunctive case). Let Q be a non-
disjunctive aspda, and let J be a Herbrand interpretation for Q. The ASPDA

quotient of Q by J, written as
Q
J

, is defined by the following sequence of steps:

1. Delete every rule R ∈ Q such that there is a not -literal of the form notA
in R’s body and A ∈ J;

2. Delete every defeasible rule of the form @r L :-Body in Q such that
$defeated(handle(r, L)) ∈ J.

3. Remove all not -literals from the remaining rules.
4. Remove all tags from the remaining tagged rules. �

When dealing with stable models, it is often assumed that interpretations
are consistent [10]. All the definitions and results in this section extend to this
case straightforwardly.

Recall that the minimality of Herbrand models is defined in Definition 11.

Definition 13 (Stable model). A Herbrand interpretation M is a stable
model of a non-disjunctive aspda P with respect to the argumentation theory
AT, if M is a minimal Herbrand model of P∪AT

M . �
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The next theorem shows that non-disjunctive aspda s can be implemented
using ordinary logic programming systems that support the stable model seman-
tics (e.g., DLV [17]).

Theorem 1 (Reduction for the stable model semantics). Let P be a non-
disjunctive aspda and AT an argumentation theory. Then the following two sets
coincide:

– The set of stable models of P with respect to AT.
– The set of stable models of the ordinary logic program P ′ ∪ AT′, where P ′

is obtained from P by converting every defeasible rule (@r L :- Body) ∈ P
into the plain rule of the form L :- Body, not $defeated(handle(r, L)) and
removing all the remaining tags; and AT′ is obtained from AT by simply
removing all the tags. �

For disjunctive rules, stable models are called answer sets and we will now
generalize the above semantics to such rules. In generalizing aspda s to disjunc-
tive rules, the main problem is to define handles for disjunctive rules, to define
quotients, and to find an analog of the reduction theorem.

Example 1. Consider a disjunctive program

@r1 a ∨ b ∨ c.

@r2 d ∨ e.

The ordinary stable models of this program are {a, d}, {a, e}, {b, d}, {b, e},
{c, d}, and {c, e}. Suppose now that a cannot be true when either d or e holds,
and that b, e are also incompatible. We express this with the following facts:

#opposes(a,d). #opposes(a,e). #opposes(b,e).

Suppose, in addition, that rule r1 has a higher priority than r2, i.e.,

#overrides(r1,r2).

Intuitively, {a, d}, {a, e}, and {b, e} can no longer be models due to the incom-
patibility statements above, while the models {b, d}, {c, d}, and {c, e} are still
intuitively fine. At the same time, one might feel that {a} should be viewed as a
suitable model because r1 overrides r2, a makes r1 true, and a is incompatible
with both heads of the rule r2.

As it turns out, {a} may or may not be a defeasible stable model—it all
depends on the associated argumentation theory. It would be a stable model of
our aspda if the argumentation theory had the following rule instances:

$defeated(handle(r2, d)) :- #overrides(r1, r2), #opposes(a, d), a.
$defeated(handle(r2, e)) :- #overrides(r1, r2), #opposes(a, e), a. �

The following definitions generalize Definition 12 to disjunctive aspda s and
make the intuition behind Example 1 precise.
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Definition 14 (ASPDA quotient, disjunctive case). Let Q be a disjunctive
aspda, and let J be a Herbrand interpretation for Q. We define the ASPDA

quotient of Q by J, written as
Q
J

, by the following sequence of steps:

1. Delete every rule R ∈ Q such that there is a not -literal of the form notA
in R’s body and A ∈ J;

2. For every defeasible rule of the form @r L1 ∨ ... ∨ Ln :- Body in Q, delete
every Li such that $defeated(handle(r, Li)) ∈ J. If all the Li’s are deleted,
delete the entire rule.

3. Remove all not -literals from the remaining rules.
4. Remove all tags from the remaining tagged rules. �

Definition 13 carries over in a natural way:

Definition 15 (Answer set). A Herbrand interpretation M is an answer set
of a disjunctive aspda P with respect to the argumentation theory AT, if M is
a minimal Herbrand model of P∪AT

M . �

The analog of Theorem 1 is as follows.

Theorem 2 (Reduction for the answer-set semantics). Let P be a (dis-
junctive) aspda and AT an argumentation theory. Then the following two sets
coincide:

– The set of answer sets for the aspda P with respect to AT.
– The set of answer sets for the ordinary logic program P ′ ∪AT′, where P ′ is

obtained from P by converting every defeasible rule (@r L1∨...∨Ln :- Body) ∈
P into a collection of plain rules of the form

∨i∈KLi :- Body ∧ ∧i∈K not $defeated(handle(r, Li))
∧ ∧j∈N−K $defeated(handle(r, Lj)).

for each subset K ⊆ N = {1, ..., n} and removing all the remaining tags;
and AT′ is obtained from AT by simply removing all the tags. �

With the above definitions, it can now be verified that the answer sets for
the aspda in Example 1 are precisely as described there.

3.3 Reduction to the Non-disjunctive Case

In ordinary answer-set programming, certain disjunctive rules can be reduced to
the non-disjunctive case via the so-called shifting transformation. For example,
this transformation would replace the rule p ∨ q ∨ s :- body with the rules

p :- body, not q, not s.
q :- body, not p, not s.
s :- body, not q, not p.

Ben-Eliyahu and Dechter [2] have shown that this is an equivalence transforma-
tion for so called head-cycle free programs.6 We reproduce that definition below
adjusting it for disjunctive aspda s.

6 The works [7,12] developed similar shifting techniques.
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Definition 16. [2] The dependency graph GP , of an aspda P, is a directed
graph where nodes are literals. An edge from L to L′ goes iff there is a rule in
which L appears positive in the body and L′ is a head literal. An aspda is head-
cycle free (HCF) iff its dependency graph does not contain directed cycles that
connect literals that belong to the head of the same rule. �

An interesting question is whether an analogous shifting transformation and
an equivalence result holds for disjunctive aspda s.

Definition 17. Let P be a disjunctive aspda. The (ordinary) shifting of P,
written as shift(P), is a non-disjunctive aspda obtained from P by replacing
each defeasible rule of the form (@r L1∨...∨Ln :- Body) ∈ P with n new defeasible
rules

@r L1 :- Body ∧ not L2 ∧ ... ∧ not Ln
. . . . . . . . .
@r Ln :- Body ∧ not L1 ∧ ... ∧ not Ln−1 �

Surprisingly, it turns out that shift(P) is not equivalent to P even for HCF
aspda s. To see this, consider the following rule set, which we will denote P1

@r1 a ∨ b ∨ c. @r2 d. @r3 c.

Suppose that the associated argumentation theory implies $defeated(handle(r1,
c)) and does not imply any other $defeated facts that involve the above rules.
Then P1 would have the following answer sets: {a, d, c} and {b, d, c}. In contrast,
the ordinary shifting transformation yields the non-disjunctive aspda shift(P1)

@r1 a :- not b ∧ not c. @r2 d.

@r1 b :- not a ∧ not c. @r3 c.

@r1 c :- not a ∧ not b.

which has only one answer set: {d, c} with respect to the argumentation theory.
It turns out, however, that a result similar to Ben-Eliyahu and Dechter’s

holds for disjunctive aspda s, but for a slightly different shifting transformation.

Definition 18. The ASPDA shifting of an aspda P, written as aspda shift(P),
is a non-disjunctive aspda obtained from P by replacing each defeasible rule of
the form (@r L1 ∨ ... ∨ Ln :- Body) ∈ P with n new defeasible rules of the form

@r L1 :- Body ∧
(
not L2 ∨ $defeated(handle(r, L2))

)
∧ ...
∧
(
not Ln ∨ $defeated(handle(r, L2))

)
. . . . . . . . .

@r Ln :- Body ∧
(
not L1 ∨ $defeated(handle(r, L1))

)
∧ ...
∧
(
not Ln−1 ∨ $defeated(handle(r, Ln−1))

)
(2)

Theorem 3. Let P be an HCF aspda and let AT be an argumentation theory.
Then S is an answer set of P with respect to AT iff S is an answer set of
aspda shift(P) with respect to AT. �
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Corollary 1. Let P be an HCF aspda. Let AT be an argumentation theory
such that, for each literal L, whenever $defeated(handle(r, L)) is true for some
rule tag r, $defeated(handle(r′, L)) is true for every tag r′ such that there
is a rule with the tag r′ and L as a head-literal. Then S is an answer set of
aspda shift(P) with respect to AT iff S is an answer set of shift(P). In other
words, aspda shift(P) is equivalent to shift(P) with respect to AT.

4 Examples of Argumentation Theories

4.1 A-GCLP [14,20]

Our first example is an ASPDA counterpart for the argumentation theory pro-
posed in [20], which captures generalized courteous logic programs [14] (under
the well-founded semantics). We will call this theory A-GCLP and will denote
it by ATAGCLP . It is this argumentation theory that was used in all the earlier
examples in this paper.

In ATAGCLP , the predicate $defeated, which plays a key role in the seman-
tics of aspdas, is defined in terms of the predicates #opposes and #overrides.
These predicates are defined by the knowledge engineer within the knowledge
base via sets of facts and rules. The argumentation theory only imposes some
constraints on #opposes.

The $defeated predicate is now defined as follows. A rule handle is defeated
if it is refuted by some other not defeated rule or if it transitively defeats itself.

$defeated(?R) :- $defeats(?S, ?R).
$defeated(?R) :- $trans defeats(?R, ?R).

The auxiliary predicates used above are defined as follows:

$defeats(?R, ?S) :- $refutes(?R, ?S), not $defeated(?R), not #strict(?S).
$trans defeats(?X, ?Y ) :- $defeats(?X, ?Y ).
$trans defeats(?X, ?Y ) :- $defeats(?X, ?Z), $trans defeats(?Z, ?Y ).

The predicate #strict is used here to distinguish strict rules from the defeasible
ones. The predicate $refutes indicates when one rule handle refutes another.
Refutation of a rule handle, r, means that a higher-priority rule implies a con-
clusion that is incompatible with the conclusion implied by the rule with the
handle r. This is defined as follows:

$refutes(?R, ?S) :-
$conflict(?R, ?S), #overrides(?R, ?S), ?R = handle(?T, ?L), ?L.

The definition of the concept of a conflict between two rules, represented by
the predicate $conflict above, relies in turn on the notion of a candidate. A
candidate rule-instance is one whose body is true in the knowledge base:

$candidate(?R) :- body(?R, ?B), ?B.
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Here the meta-predicates body binds ?B to the body of a rule with handle ?R.
Conflicting rules are now defined as follows: two rule handles are in conflict

if they are both candidates and the literals in them are incompatible:

$conflict(?R1, ?R2) :-
?R1 = handle(?T1, L1), ?R2 = handle(?T2, L2),
$candidate(?R1), $candidate(?R2), #opposes(?L1, ?L2).

(3)

Finally, the argumentation theory provides the following self-explanatory
background axioms for #opposes, and the axiom of preference for strict rules:

#opposes(?L1, ?L2) :- #opposes(?L2, ?L1).
#opposes(?L, neg ?L).
:- ?L1, ?L2, #opposes(?L1, ?L2).
#overrides(?R, ?S) :- #strict(?R), not #strict(?S).

With this argumentation theory, we can now come back to the turkey-shoot
example in Section 2 and to Example 1. It can be verified that the turkey-shoot
example has two answer sets. In one, {neg loaded(g1, 1), loaded(g2, 1), neg alive(3)}
is true and in another {loaded(g1, 1), neg loaded(g2, 1), neg alive(3)}. This
shows that the sequence of actions in the example produces the expected result
and ATAGCLP allows us to reason by cases.

As to Example 1, one can verify that this aspda has four answer sets:
{a}, {b, d}, {c, d}, {c, f}, as claimed.

4.2 Defeasible Logic [1]

As yet another example, this section develops an argumentation theory that
captures the reasoning in Defeasible Logic of [1].

Defeasible Logic partitions all rules into strict, defeasible, and defeaters. The
defeater rules are used only to defeat other rules, but they themselves do not
produce any inferences. In our terms, this means that defeater rules are defeated
defeasible rules whose only purpose is to block inferences produced by other rules.
Strict and defeater rules are specified via the predicates #strict and #defeater.
Other key restrictions in that logic are that it does not support disjunctions in
the rule heads; opposition among literals is limited to p and neg p, for each p;
does not use default negation, i.e., all literals in that logic are not -free; and the
rule tags are also rule identifiers. This implies that each tag uniquely determines
the rule head and body and this restriction lets us simplify the argumentation
theory by omitting handle from most literals.

With this, we can now formulate the argumentation theory for Defeasible
Logic, denoted ATDL, as follows.

$defeated(handle(?T, ?L)) :- #defeated aux(?T ). // no handles in ATDL

#defeated aux(?T ) :- $conflict(?T, ?S), head(?S, ?L), $definitely(?L).
#defeated aux(?T ) :- #defeater(?T ). // defeaters make no inferences
#defeated aux(?T ) :- $overruled(?T ).
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Here head is a meta-predicate that binds ?L to the head of a rule with Id ?S.
The predicate $definitely is defined as follows:

$definitely(?L) :-

#strict(?T ), head(?T, ?L), body(?T, ?B), each definite(?B).

As before, body is a meta-predicate that binds ?B to the body of a rule with tag
?T ; each definite(?B) is a meta predicate that is true when $definitely(?B)
is true or when ?B is bound to a conjunction, conj, and $definitely(c) is true
for every conjunct c ∈ conj.

It remains to define $overruled, which relies on the notion of candidacy and
conflict, like in ATAGCLP . The predicate $candidate is defined as in (3) except
that the handles are dropped and only the rule tags are retained.

$overruled(?T ) :- $conflict(?T, ?S), $candidate(?S), not $refuted(?S).
$refuted(?S) :- $conflict(?T, ?S), $candidate(?T ),

#overrides(?T, ?S), not #defeater(?T ).
$conflict(?T, ?S) :- head(?T, ?L), head(?S, neg ?L),

$candidate(?T ), $candidate(?S).

5 Comparison with Other Work

Although a great deal of work has been devoted to various theories of defeasible
reasoning, only a few dealt with unifying frameworks for such reasoning. The
notable exceptions are the works [13,5,8], which had goals similar to ours. Due
to the large volume of literature on defeasible reasoning, we will focus on the
above works, which are related to our work most closely. We refer the reader to a
recent survey [6] for a discussion of the various individual theories of defeasibility.

The logic of prioritized defaults [13] does not use the notion of argumentation
theories, but it allows for multiple theories of defaults for different application
domains. This is analogous to allowing argumentation theories to vary. How-
ever, defaults are defined via meta-theories and the semantics in [13] is given
by meta-interpretation. What we call an “argumentation theory” is implicit in
the meta-interpreters, and no independent model theory is given. In contrast,
our approach abstracts all the differences between the different theories for de-
faults to the notion of an argumentation theory with a simple interface to the
user-provided domain description, the predicate $defeated. Our approach is
model-theoretic and it covers both the well-founded semantics [20] and answer
sets (this work). It unifies the theories of Courteous Logic Programming, Defea-
sible Logic, Prioritized Defaults, and more.

Delgrande et. al. [5] propose a framework of ordered logic programming,
which can use a variety of preference handling strategies. For each strategy, this
approach devises a transformation from ordered logic programs to ordinary logic
programs. Each transformation is custom-made for the particular preference-
handling strategy, and the approach was illustrated by showing transformations
for several strategies, including two described in earlier works [21,8].
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Unlike ASPDA, Delgrande’s framework does not come with a unifying model-
theoretic semantics. Instead, the definition of preferred answer sets differs from
one preference-handling strategy to another. One of the more important con-
ceptual differences between our work and [5] has to do with the nature of the
variable parts of the two approaches. In our case, the variable part is the argu-
mentation theory, which is a set of definitions for concepts that a human reasoner
might use to argue why certain conclusions are to be defeated. In case of [5], the
variable part is the transformation, which encodes a fairly low-level mechanism:
the order of rule applications required to generate the preferred answer set.7 It is
also important to note that each program transformation in [5] needs a compiler
that contains hundreds of lines of Prolog code, while our approach requires no
new software, and each argumentation theory typically contains 20-30 rules.

Leone et. al. [8] set out to unify approaches to defeasible reasoning. Specifi-
cally, they present an adaptable meta-interpreter, which can be made to simulate
the approaches described in [3,21] among others. However, this framework lacks
a model theoretic semantics and is not as flexible as ASPDA.

Finally, to the best of our knowledge, the present paper is the only work that
studies the semantics of defeasibility for disjunctive logic programs.

6 Conclusions

This paper developed a novel theory of defeasible disjunctive logic programming
under the answer-set semantics. It is a companion to our earlier work which
developed a general theory of defaults and defeasibility through argumentation
theories and was based on the well-founded semantics. Apart from the model
theoretic semantics, we have shown that head-cycle free disjunctive defeasible
programs can be reduced to non-disjunctive ones, which mirrors an analogous
result for non-defeasible disjunctive rules with default negation. To illustrate the
power of the proposed framework, we have given two examples of argumentation
theories. One is an adaptation for stable models of the generalized courteous
argumentation theory, which was presented in [20] for well-founded models. This
theory was used in all the examples in this paper. The other argumentation
theory was intended to show how ASPDA can capture other approaches to
defeasible reasoning; in this case the defeasible logic of [1].
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