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A two-way protocol for defeating passive eavesdropping is proposed. For each information bit, Alice sends

Bob T sec of signal-beam output from a spontaneous parametric down-converter over a pure-loss channel

while retaining the idler beam with which it is maximally entangled. Bob imposes a single information bit on

the light he receives from Alice via binary phase-shift keying. He then amplifies the modulated beam and sends

the resulting light back to Alice over the same pure-loss channel. Even though the loss and amplifier noise

destroy any entanglement between the light that Alice receives from Bob and the idler she has retained, she can

decode Bob’s bit with an error probability that can be orders of magnitude lower than what is achieved by a

passive eavesdropper who receives all the photons that are lost en route from Alice to Bob and from Bob to

Alice. In particular, Alice and Bob can communicate at 50 Mbit/s over 50 km of low-loss fiber with an error

probability of less than 10−6 while the passive eavesdropper’s error probability must exceed 0.28.

DOI: 10.1103/PhysRevA.80.022320 PACS number�s�: 03.67.Hk, 03.67.Mn, 42.50.Dv

The use of quantum key distribution �QKD� to ensure the
security of classical information transmission has moved
from its theoretical roots �1–3� to a major network demon-
stration �4�. The objective of QKD is for two geographically
separated users—Alice and Bob—to create a shared set of

completely random key bits in a manner that precludes an

eavesdropper �Eve� from having anything more than an in-

consequentially small amount of information about the entire

set of key bits. That such a goal is possible arises from a

fundamental quantum mechanical principle: Eve cannot tap

the Alice-to-Bob channel without creating a disturbance on

that channel. By ascribing all errors encountered to Eve’s

intrusion, Alice and Bob can either abort their QKD

protocol—if this intrusion is too severe—or distill a final key

about which Eve has a vanishingly small amount of informa-

tion. QKD, however, is extremely lossy. In recent work �5�,
the Bennett-Brassard 1984 �BB84� protocol with a gigahertz

transmitter pulse rate led to a distilled key rate of

�250 kbit /s over a 50-km-long fiber. So, although QKD

systems can provide shared secret bits, they do not them-

selves afford a viable means for transmitting the random bit

stream derived from source coding �lossless data compres-

sion� of an information-bearing message to its Shannon limit

�6�. Indeed, for the 50 km system from �5�, only �0.4% of

the transmitted bits were detected, and �3% of them were

received in error.

In this paper we present an optical communication proto-

col that defeats passive eavesdropping, in which Eve merely

listens to Alice and Bob’s transmissions. Our system is vul-

nerable to active attacks, in which Eve injects her own light

to probe Alice and Bob’s communication apparatus. Never-

theless, the enormous disparity between the bit error prob-

abilities of a passive eavesdropper and the intended receiver

make this scheme attractive for unencrypted information

transmission when active attacks can be ruled out. In particu-

lar, unlike the BB84 protocol, our scheme is capable of high

data rate, low error-probability transmission of the random

bit stream derived from source coding of an information-
bearing message.

The basis for our protocol is quantum illumination, spe-
cifically the Gaussian-state radar system described in �7�.
There, the entangled signal and idler outputs from spontane-
ous parametric down conversion �SPDC� were shown to af-
ford a substantial error-probability advantage—over a
coherent-state system of the same average transmitted pho-
ton number—when the signal beam is used to irradiate a
target region containing a bright thermal-noise bath in which
a low-reflectivity object might be embedded, and the idler
beam is retained at the transmitter for use in an optimal joint
measurement with the light returned from the target region.
This performance advantage is surprising because the loss
and noise combine to destroy any entanglement between the
return light and the retained idler. The origin of this advan-
tage is the stronger-than-classical phase-sensitive cross cor-
relation between the signal and idler produced by SPDC.
When the source is operated in the low-brightness regime,
this leads to a phase-sensitive cross correlation between the
target return and the retained idler that outstrips any such
correlation produced by a classical-state transmitter of the
same average transmitted photon number �7�. Here, we will
turn that capability to the task of secure communication be-
tween Alice and Bob in the presence of a passive eavesdrop-

per Eve.

The communication system of interest is a two-way pro-

tocol. Alice transmits a light beam to Bob, who modulates

and amplifies the light he receives, and then sends it back to

Alice for detection. To exploit the quantum illumination

paradigm, Alice uses a continuous-wave �cw� SPDC source,

transmitting her signal beam to Bob while retaining �without

loss� her idler beam for subsequent joint measurement with

what she will receive from Bob. Each T-sec-long transmis-

sion from Alice comprises M =WT�1 signal-idler mode

pairs—where W is the source’s phase-matching bandwidth—

with annihilation operators �âSm
, âIm

:1�m�M�. Their joint

density operator �̂SI is the tensor product of independent,

identically distributed �iid� density operators for each mode

pair that are zero-mean, jointly Gaussian states with the com-

mon Wigner-distribution covariance matrix*jhs@mit.edu
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�SI =
1

4�
S 0 Cq 0

0 S 0 − Cq

Cq 0 S 0

0 − Cq 0 S
	 , �1�

where S
2NS+1 and Cq
2�NS�NS+1�, and NS is the aver-

age photon number of each signal �and idler� mode �8�.
Alice-to-Bob transmission occurs over a pure-loss channel

�9�. Hence Bob receives a light beam whose modal annihi-

lation operators are

âBm
= ��âSm

+ �1 − �êBm
, for 1 � m � M , �2�

where the environmental modes, �êBm
�, are in their vacuum

states �10�. Bob first imposes a binary phase-shift keyed

�BPSK� information bit �k=0 or 1� on the light he has re-

ceived. He then employs a phase-insensitive amplifier with

gain G, and transmits the amplified modulated light, with

modal annihilation operators

âBm
� 
 �− 1�k�GâBM

+ �G − 1âNm

† , for 1 � m � M ,

�3�

back to Alice through the same pure-loss channel. Here

the �âNm
� are in iid thermal states with �âNm

âNm

† 
=NB / �G−1��1. Alice thus receives a light beam whose

modal annihilation operators are

âRm
= ��âBm

� + �1 − �êAm
, for 1 � m � M , �4�

where the �êAm
� are in their vacuum states. Given Bob’s in-

formation bit k, we have that �̂RI
�k�, the joint state of Alice’s

�âRm
, âIm

� modes, is the tensor product of iid, zero-mean,

jointly Gaussian states for each mode pair with the common

Wigner-distribution covariance matrix

�RI
�k� =

1

4�
A 0 �− 1�kCa 0

0 A 0 �− 1�k+1Ca

�− 1�kCa 0 S 0

0 �− 1�k+1Ca 0 S
	 ,

�5�

where A
2�2GNS+2�NB+1 and Ca
��GCq �11�. Alice’s

task is to decode Bob’s bit, which is equally likely to be k

=0 or k=1, with minimum error probability.

Eve will be assumed to collect all the photons that are lost

en route from Alice to Bob and from Bob to Alice �12�, i.e.,

she has at her disposal the mode pairs �ĉSm
, ĉRm

:1�m�M�,
where

ĉSm
= �1 − �âSm

− ��êBm
, �6�

ĉRm
= �1 − �âBm

� − ��êAm
. �7�

Given Bob’s bit value, Eve’s joint density operator, �̂cScR

�k� , is

the tensor product of M iid mode-pair density operators that

are zero-mean, jointly Gaussian states with the common

Wigner-distribution covariance matrix

�cScR

�k� =
1

4�
D 0 �− 1�kCe 0

0 D 0 �− 1�kCe

�− 1�kCe 0 E 0

0 �− 1�kCe 0 E
	 ,

�8�

where D
2�1−��NS+1, Ce
2�1−����GNS, and

E
2�1−���GNS+2�1−��NB+1. Eve too is interested in

minimum error-probability decoding of Bob’s bit.

Alice’s minimum error-probability decision rule is to

measure �̂RI
�1�− �̂RI

�0�, and declare that k=1 was sent if and only

if her measurement outcome is non-negative. Similarly,

Eve’s minimum error-probability decision rule is to measure

�̂cScR

�1� − �̂cScR

�0� and declare that k=1 was sent if and only if her

measurement outcome is non-negative. The exact error prob-

abilities for these Gaussian-state hypothesis tests are not easy

to evaluate. Thus, as in �7�, we shall rely on quantum Cher-

noff bounds �13�, which are known to be exponentially tight

for iid M mode-pair problems, i.e., with

Pr�e� � e−M max0�s�1 E�s�
/2, �9�

for

E�s� 
 − ln�tr���̂m
�0��s��̂m

�1��1−s�� , �10�

giving the Chernoff bound �in terms of the conditional mode-

pair density operators �̂m
�k�� on the exact error probability, we

have

lim
M→�

− ln�2 Pr�e��/M = max
0�s�1

E�s� . �11�

The BPSK symmetry in �̂RI
�k� and �̂cScR

�k� implies that s=1 /2

optimizes the Chernoff bound exponents for both Alice and

Eve. The following lower bound on the error probability of

any receiver �7� will also be of use,

Pr�e� �
1 − �1 − e−2ME�1/2�

2
; �12�

it is not exponentially tight for the problems at hand.

Because all our conditional density operators are zero-

mean Gaussian states, we can use the results of �14� to evalu-

ate E�1 /2� for Alice and Eve’s receivers. To do so we need

the symplectic diagonalizations of their conditional Wigner-

distribution covariance matrices. The symplectic diagonal-

ization of a 4�4 dimensional covariance matrix � consists

of a 4�4 dimensional symplectic matrix S and a symplectic

spectrum ��n :1�n�2� that satisfy

S�S
T = � 
 �

0 1 0 0

− 1 0 0 0

0 0 0 1

0 0 − 1 0
	 , �13�

� = S diag��1,�1,�2,�2�ST, �14�

where diag �· , · , · , ·� denotes a diagonal matrix with the

given diagonal elements.

For our quantum-illumination �Alice-to-Bob-to-Alice�
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communication, the symplectic matrices needed for the di-

agonalization of �RI
�k� are

S
�k� = � X+ �− 1�kX−

�− 1�kX− X+

� , �15�

for k=0,1. Here, X	
diag�x	 , 	x	� with

x	 
�A + S 	 ��A + S�2 − 4Ca
2

2��A + S�2 − 4Ca
2

. �16�

The associated symplectic spectra are identical for k=0 and

1, i.e., for n=1,2 we have

�n
�k� = ��− 1�n�S − A� + ��A + S�2 − 4Ca

2�/8. �17�

For Eve’s attempt to listen in, the symplectic matrices

needed for the diagonalization of �cScR

�k� are

S
�k� = � Y �− 1�k+1Z

�− 1�kZ Y
� , �18�

for k=0,1. Here, Y
diag(cos�
� , cos�
�) and Z


diag(sin�
� , sin�
�) with

cos�2
� =
D − E

��D − E�2 + 4Ce
2

. �19�

The associated symplectic spectra are identical for k=0 and

1, i.e., for n=1,2 we have

�n
�k� = ��D + E� − �− 1�n��D − E�2 + 4Ce

2�/8. �20�

The preceding diagonalizations lead to Chernoff bound

expressions that are far too long to exhibit here. In Fig. 1 we

compare the Chernoff bounds for Alice and Eve’s optimum

quantum receivers when �=0.1, NS=0.004, and G=NB

=104. Also included in this figure is the error-probability

lower bound from Eq. �12� on Eve’s optimum quantum re-

ceiver. We see that Alice’s error probability upper bound—at

a given M value—can be orders of magnitude lower than

Eve’s error-probability lower bound when both use optimum

quantum reception. This occurs despite Eve’s getting nine

times more of Alice’s transmission than Bob does and nine

times more of Bob’s transmission than Alice does. Note that

Alice’s performance advantage may be better assessed from

comparing her error-probability upper bound with that of

Eve’s receiver, in that both are exponentially tight Chernoff

bounds.

To show that the advantage afforded by quantum illumi-

nation extends well beyond the specific example chosen for

Fig. 1, we have used an algebraic computation program to

obtain the following approximate forms for the Chernoff

bounds on the error probabilities of Alice and Eve’s optimum

quantum receivers:

Pr�e�Alice �
exp�− 4M�GNS/NB�

2
, �21�

Pr�e�Eve �
exp�− 4M��1 − ��GNS

2
/NB�

2
, �22�

which apply in the low-brightness, high-noise regime, viz.,

when NS�1 and �NB�1. We see that Alice’s Chernoff

bound error exponent will be orders of magnitude higher

than that of Eve in this regime, because

EAlice�1/2�/EEve�1/2� = 1/�1 − ��Ns � 1. �23�

Thus the advantageous quantum illumination behavior

shown in Fig. 1 is typical for this regime.

As yet we have not identified specific implementations for

Alice or Eve’s optimum quantum receivers. So, while we

will accord Eve an optimum quantum receiver, let us show

that Alice can still enjoy an enormous advantage in error

probability when she uses a version of Guha’s optical para-

metric amplifier �OPA� receiver for the quantum-illumination

radar �15�. Here Alice uses an OPA to obtain a light beam

whose modal annihilation operators are given by

âm� 
 �GOPAâIm
+ �GOPA − 1âRm

† , for 1 � m � M ,

�24�

where GOPA=1+NS /��NB. She then makes a minimum

error-probability decision based on the results of the photon-

counting measurement �m=1
M âm�

†âm� �16�. The Bhattacharyya

bound �17� on this receiver’s error probability in the NS�1,

�NB�1 regime turns out to be

Pr�e�OPA �
exp�− 2M�NS/NB�

2
, �25�

which is only 3dB inferior, in error exponent, to Alice’s op-

timum quantum receiver. We have included the numerically

evaluated Bhattacharyya bound for Alice’s OPA receiver in

Fig. 1, for the case NS=0.004, �=0.1, and G=NB=104.

Some additional points are worth noting. BPSK commu-

nication is intrinsically phase sensitive, so Alice’s receiver

will require phase coherence that must be established

through a tracking system. More importantly, there is the

path-length versus bit-rate tradeoff. Operation must occur in

the low-brightness regime. So, as channel loss increases, Al-

���

���

���

��

�

� ��� � ��� � ��� �

log
10

(M)

lo
g
1
0
[P

r(
e
)

b
ou

n
d
s]

Eve’s opt rcvr

Alice’s opt rcvr

Alice’s OPA rcvr

FIG. 1. �Color online� Error-probability bounds for NS=0.004,

�=0.1, and G=NB=104. Solid curves: Chernoff bounds for Alice

and Eve’s optimum quantum receivers. Dashed curve: error-

probability lower bound for Eve’s optimum quantum receiver. Dot-

dashed curve: Bhattacharyya bound for Alice’s OPA receiver.
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ice must increase her mode-pair number M at constant NS

and G to maintain a sufficiently low error probability and

immunity to passive eavesdropping. For a T-sec-long bit in-

terval and W Hz SPDC phase-matching bandwidth, M =WT

implies that her bit rate will go down as loss increases at

constant error probability. With W=1 THz and T=20 ns, so

that M =2�104, the case shown in Fig. 1 will yield 50

Mbit/s communication with

Pr�e�OPA � 5.09 � 10−7 �26�

and

0.285 � Pr�e�Eve � 0.451 �27�

when Alice and Bob are linked by 50 km of 0.2 dB/km loss

fiber, assuming that the rest of their equipment is ideal. In

fact, almost all of the equipment needed for realizing this

performance is within reach of available technology. Com-

mercial modulators and erbium-doped fiber amplifiers can

fulfill Bob’s needs. It is Alice who faces the more difficult

equipment requirements. However, the periodically poled

magnesium-oxide-doped lithium niobate �PP-MgO:LN�
down-converter employed in �18� has a 17 THz phase-

matching bandwidth and is capable of NS=0.004 with 250

mW of cw pump power. Likewise, the PP-MgO:LN OPA

employed in that same work can achieve

GOPA−1=0.00013—the gain value needed for NS=0.004, �

=0.1, and NB=104—with only 8 mW of cw pump power.

Furthermore, Alice’s OPA receiver does not require single-

photon sensitivity. The average number of photons imping-

ing on her photodetector under the two bit-value possibilities

are N̄k=2.90�103 for k=0, and 2.33�103 for k=1, imply-

ing that Alice may approach the photon-counting perfor-
mance assumed in our analysis with a high quantum effi-
ciency linear-mode avalanche photodiode. There is, however,
one major technical difficulty Alice must face: lossless stor-
age of her idler beam. Any loss in idler storage will degrade
Alice’s error-probability advantage over the ideal Eve. That
loss of error-probability advantage could be ameliorated by a
more realistic assessment of Eve’s capabilities. In particular,
is it reasonable to assume that a passive eavesdropper can
collect all of Alice’s light that does not reach Bob and all of
Bob’s light that does not reach Alice? For a free-space opti-
cal link, it should be easy to verify that Eve can only collect
a fraction of the light that does not reach its intended desti-
nation. With optical time-domain reflectometry on a fiber
link, it should be possible to estimate localized propagation
losses that should be ascribed to an eavesdropper.

In conclusion, we have shown that quantum illumination
can provide immunity to passive eavesdropping in a lossy,
noisy environment despite that environment’s destroying the
entanglement produced by the source. To ward off active
attacks, Alice and Bob must take measures to detect and
defeat Eve’s use of impersonation attacks, man-in-the-middle
attacks, and optical probing of Bob’s BPSK modulator.
These attacks might be identified and dealt with if Alice and
Bob employ authentication, monitor the physical integrity of

the communication channel, check the received power level

and its frequency spectrum at Bob’s station, and verify the

error probability at Alice’s station.
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