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ABSTRACT Due to the globalization of the design and fabrication process of integrated circuits (ICs), ICs

are becoming vulnerable to hardware Trojans. Most of the existing hardware Trojan detection works assume

that the testing stage is trustworthy. However, testing partiesmay colludewithmalicious attackers andmodify

the results of hardware Trojan detection. In this paper, two attack models for untrustworthy testing parties

are formulated. We further propose an adversarial data generation method for untrustworthy testing parties

to modify the collected test data. Then, we propose a novel hybrid clustering ensemble method to build a

trusted hardware Trojan detection method (clustering ensemble-based hardware Trojan detection method)

against untrustworthy testing parties. To alleviate the impact of process variations and noises on hardware

Trojan detection in the actual measurement, the unsupervised correlation-based feature selection method

is exploited to process the raw test data of ICs for feature selection. The proposed method can eliminate

the need of the fabricated golden chips and the simulated golden models. It can also resist the malicious

modifications on Trojan detection results introduced by untrustworthy testing parties. Besides, the following

problems and questions are also theoretically analyzed and answered: 1) the number of necessary testing

parties; 2) the time overhead and the computational overhead of the proposed method; 3) how to choose the

basic clustering algorithms (by using a proposed diversity analysis algorithm); and 4) the reason why the

proposed clustering ensemble method is superior to the majority voting method. Both the EDA evaluation

on ISCAS89 benchmarks and field-programmable gate array evaluation on Trust-HUB benchmarks are

performed to evaluate the performance of the proposed method. Experimental results demonstrate that the

proposed method can resist malicious modifications robustly and can detect hardware Trojans with high

accuracy (up to 93.75%). Meanwhile, the introduced time overhead is small.

INDEX TERMS Hardware security, hardware Trojan detection, untrustworthy testing parties, unsupervised

learning, clustering ensemble.

I. INTRODUCTION

Currently, the design and fabrication process of integrated cir-

cuits (ICs) is distributed globally. The third-party intellectual

property (IP) cores are also widely used in IC designs [1].

However, this presents serious threats on the security and

reliability of ICs. Recently, themaliciousmodification of ICs,

also known as hardware Trojan, has become an emerging

security problem in many critical communities. Malicious

attackers can alter IC designs or insert hardware Trojans

during IC design and fabrication process [2]. When activated,

these Trojans canmake the system denial-of-service, or create

a backdoor to leak sensitive information [3].

It is generally assumed that the testing service in the IC

supply chain is trustworthy. However, Yasin et al. [4] have

illustrated a HackTest technique which can extract secret

information contained in the test data. This attack indicates
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that the testing stage is no longer secure and reliable. The

testing house plays an important role in the IC supply chain.

Nowadays, the fabricated ICs are only tested by one testing

house in the testing stage. If the only testing house colludes

with attackers, the detection results will be no longer trusted.

In this paper, we assume that the testing house is untrust-

worthy. Traditionally, the testing house collects test data

and performs the hardware Trojan detection process. In this

situation, the testing house can directly modify the results

of hardware Trojan detection. In a special case, the testing

house only collects the test data and transmits the test data

to the designer, then the designer performs the hardware

Trojan detection process. In this situation, the testing house

can modify the collected test data and mislead the designers’

detection of Trojan-inserted ICs.

In the past decade, there are many hardware Trojan

detection works, including the side-channel analysis

based detection approaches [5]–[9] and logic testing

approaches [10], [11]. Some design-for-security approaches

are also proposed to facilitate hardware Trojan detec-

tion or prevent hardware Trojan insertion, e.g., built-in

self-authentication technique to prevent inserting hardware

Trojans [12], redundancy-based protection approach based

on Trojan tolerance that modifies the application mapping

process to provide high-level of protection against Trojans in

FPGA [13], the approach promoting smart employment of

circuit redundancy to counter Trojans in 3PIP cores [14], and

the approach using a selective Triple Modular Redundancy

(TMR) scheme to mask the effect of Trojans along with tran-

sient errors [15]. Most of them require golden chips or golden

models for reference. A few machine learning based hard-

ware Trojan detection methods have been proposed recently.

In general, machine learning can be utilized to provide

automatic layout identification in reverse engineering-based

detection methods, runtime Trojan detection architecture

which is trained by Trojan attack behaviors, feature anal-

ysis for gate-level netlists, and classification based golden

chips-free hardware Trojan detection techniques [16]–[20].

There are only a few works exploiting clustering techniques

to detect hardware Trojans which can eliminate the need

of golden models [21]–[23]. Çakir and Malik [21] present

an information-theoretic approach to evaluate the statistical

correlation among the signals in an IC design [21]. Then, they

use a clustering algorithm to analyze this correlation to reveal

Trojan signals. Salmani [22] computes the controllability and

observability features of the logic gates in an IC design.

k-means clustering algorithm is used to analyze the inter-

cluster distance of these logic gates. It is demonstrated that

Trojan gates have significant inter-cluster distance from the

genuine gates. Ba et al. [23] propose an anomaly detec-

tion based technique to identify suspicious signals in a

netlist. These suspicious signals may be a part of a Trojan.

The above works are focusing on the register-transfer level

(RTL) or gate-level of IC designs, which may not be suitable

for detecting hardware Trojans inserted in the fabrication

stage.

Motivated by the above problems, we have proposed an

unsupervised golden models-free hardware Trojan detection

method using clustering analysis [24] which will be described

in Section II-A as the preliminary. In [24], the major con-

tribution is that we formulate the unsupervised hardware

Trojan detection problem into two types of clustering based

hardware Trojan detection models, the partition-based model

and the density-based model. Then we exploit a clustering

algorithm for unsupervised hardware Trojan detection to

eliminate the need of simulated golden models and fabricated

golden chips. A cluster labeling index (CMI ) is proposed to

identify which cluster is genuine [24]. The test performance

of the method is evaluated with EDA experiments. However,

in existing hardware Trojan detection works, including [24],

the testing party is considered as trustworthy. Therefore,

in the conference version of this work [25], we are the first

to consider that the testing party may be untrustworthy, and

we propose a clustering ensemble based hardware Trojan

detection method to defeat untrustworthy testing parties [25],

which can also improve the test performance of the basic clus-

tering algorithms. Besides, in [25], the number of necessary

testing parties is analyzed, and the test performance of the

proposed method is evaluated with EDA experiments.

This paper is an extended version of the previous confer-

ence paper [25]. The main differences between the journal

and conference versions are summarized as follows:

1) Two attack models for untrustworthy testing parties are

formulated for the first time, and an adversarial test data

modification algorithm for the untrustworthy testing

party to modify the collected data is proposed. Besides,

experiments are performed to evaluate the time over-

head of these two attack models. In the first model

which represents the common situation, the testing

house performs the hardware Trojan detection process,

and thus it can directly modify the results of hardware

Trojan detection. In the secondmodel, the testing house

only collects the test data and the designer performs

the hardware Trojan detection process. In this model,

the untrustworthy testing house can modify the col-

lected test data and mislead the designer’s detection

decision on the ICs.

2) To overcome the issues of the process variations and

noises in the actual measurement, we introduce a pre-

processing step to the method proposed in the con-

ference version [25]. In particular, the unsupervised

correlation-based feature selection (UCFS) method is

modified and exploited to process the raw data of ICs

for feature selection. Comparison experiments with and

without preprocessing are performed, and the results

show that the detection accuracy of the proposed

method is effectively improved.

3) In order to build a clustering ensemble method with

better performance on Trojan detection, we exploit the

disagreement measure to analyze the diversity among

basic clustering algorithms. Based on the disagree-

ment measure, we further propose a diversity-based
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clustering algorithm selection method in Section V-C.

This algorithm can provide a theoretical basis for

ensemble methods to solve the problem of how to

choose basic learners to obtain better performance.

4) In [25], simulated ICs during the IC design flow are

used to evaluate the proposed method. However, there

may be a shift between the SPICE simulation and the

actual silicon fabrication. Therefore, we further eval-

uate the proposed method with FPGA experiments in

this paper to better characterize the effects of process

variations and noises on hardware Trojan detection

in actual measurements. Besides, in the conference

version [25], we only evaluate the method with small

benchmarks (ISCAS89 benchmark circuits), and the

Trojans used in the evaluations are not real Trojans

with meaningful attack functions. In this journal ver-

sion, we use much bigger designs and real Trojans

with meaningful attack functions (Trust-Hub bench-

marks [26]) for evaluations.

5) In [25], we have only theoretically analyzed the number

of necessary testing parties. In Section V-B, we theo-

retically analyze the time and computational overhead

introduced by the increased number of testing parties.

Moreover, we have presented the experimental analysis

of the time overhead of the proposed method in both

EDA evaluation and FPGA evaluation in Section VI-D.

6) In Section V-D, we illustrate the reason why the pro-

posed clustering ensemble method is superior to the

majority voting method. Meanwhile, we also experi-

mentally compare the test performance of the proposed

method with the majority voting method using both

EDA and FPGA evaluations in Section VI.
The rest of this paper is organized as follows. Preliminary

knowledge is described in Section II. The problem formu-

lation and attack models for untrustworthy testing parties

are presented in Section III. The proposed clustering ensem-

ble based hardware Trojan detection method (CE-HTDM) is

elaborated in Section IV. The number of necessary testing

parties, the time and computational overhead of the pro-

posed method, the clustering algorithm selection based on

the proposed diversity-based algorithm, and the reason for

using clustering ensemble rather than majority voting, are

theoretically analyzed in Section V. Both the EDA and FPGA

evaluations are provided in SectionVI.We conclude the paper

in Section VII.

II. PRELIMINARY

A. UNSUPERVISED HARDWARE TROJAN DETECTION

METHOD USING CLUSTERING ANALYSIS

In unsupervised hardware Trojan detection scenario, a clus-

tering technique is used to divide unlabeled ICs into two dis-

joint subsets. Each subset is referred as a cluster [27]. In [24],

we have formulated the unsupervised hardware Trojan detec-

tion problem into two types of clustering based detection

models, i.e., the partition-based model and the density-based

model.

The partition-based hardware Trojan detection model is

illustrated in Fig. 1. It divides unlabeled ICs into twomutually

independent clusters. However, it is unable to determine the

label (Trojan-free or Trojan-inserted) of these two clusters.

Therefore, a cluster labeling index (CMI ) is proposed to iden-

tify which cluster is genuine [24]. Both theoretical analysis

and experimental results demonstrate that the genuine cluster

has a larger CMI than the Trojan-inserted cluster.

FIGURE 1. The partition-based hardware Trojan detection model [24].

FIGURE 2. The density-based hardware Trojan detection model [24].

The density-based hardware Trojan detection model is

illustrated in Fig. 2. Each IC can be represented as a point in

the high-dimensional feature space. The theoretical analysis

shows that genuine ICs are usually grouped together, while

Trojan-inserted ICs are always scattered. The proposed tech-

nique can form a boundary around the population of genuine

ICs [24]. The ICs within the boundary are considered as

Trojan-free ICs, while the others outside the boundary are

considered as Trojan-inserted ICs.

B. CLUSTERING ENSEMBLE

Clustering ensemble is a kind of ensemble method in which

the basic learners are clustering algorithms [28]–[31]. It can

be divided into the following four categories:

1) Similarity-based methods: A similarity-based method

obtains a similarity matrix for each clustering result

first. Then these similarity matrices are averaged to

form the consensus similarity matrix that generates the

ensemble result [28].

2) Graph-based methods: In graph-based clustering

ensemble methods, an undirected graph is constructed

to integrate the clustering information conveyed by all

basic clustering results [29]. Then graph partitioning

of the undirected graph is performed to identify the

ensemble results.
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3) Relabeling-based methods: The basic idea of

relabeling-based methods is to align the cluster labels

of all basic clustering results, so that the same label

denotes similar clusters across the basic clustering

results [30]. Then, for each instance, its ensemble result

is obtained by performing majority voting method on

its basic aligned cluster labels.

4) Transformation-based methods: A transformation-

based method re-represents each instance as an r-tuple,

where r is the number of basic clustering algorithms

and the qth element is its cluster label given by the

qth clustering algorithm [31]. Then it performs meta-

clustering analysis over the transformed r-tuples to

obtain the ensemble result.

Overall, the general process of clustering ensemble meth-

ods can be summarized as follows. Given a data set D =

{d1, d2, . . . , dm}, where the pth instance dp is a n-dimensional

feature vector, the clustering ensemble methods consist of

two steps [28]–[31]:

1) Clustering generation: Given r basic clustering algo-

rithms, each algorithm dividesD into k clusters. For the

qth clustering algorithm ∂ (q)(1 ≤ q ≤ r), its clustering

result can be represented by a label vector λ(q) ∈ Nm,

where the pth element λ
(q)
p ∈ {1, 2, . . . , k

(q)} indicates

the clustering label of the instance dp(1 ≤ p ≤ m).

2) Clustering combination: In this step, a consensus func-

tion is used to consolidate the basic clustering results

into the final ensemble result.

As the calculation and transformation process of

similarity-based methods and graph-based methods are more

complex, we prefer to use the relabeling-based methods

and transformation-based methods. However, the relabeling-

based methods and transformation-based methods have their

own drawbacks. For example, relabeling-based methods

obtain the final ensemble result by performing majority

voting. However, the ensemble result obtained by majority

voting is not as good as the ensemble result obtained by the

ensemble strategy of transformation-based methods. Mean-

while, transformation-based methods do not align the cluster

labels of all basic clustering results before transformation.

As a result, the final ensemble result of transformation-based

methods obtained without the relabeling process is not as

good as the ensemble result obtained with an additional

relabeling process. In summary, the advantages and disadvan-

tages of relabeling-based methods and transformation-based

methods are complementary. Therefore, in this paper, we pro-

pose a novel hybrid clustering ensemble method, which com-

bines relabeling-based methods and transformation-based

methods. The proposed hybrid clustering ensemble method

works as follows. Firstly, each testing party performs a clus-

tering based hardware Trojan detection method on unlabeled

ICs to obtain basic clustering results. After that, each testing

party relabels the cluster labels of these basic clustering

results by calculating the proposed cluster labeling index

(CMI ). Then the label information of basic clustering results

is expressed as features for each IC. Lastly, the ensemble

result is obtained via a categorical clustering technique.

III. PROBLEM FORMULATION AND ATTACK MODELS

OF UNTRUSTWORTHY TESTING PARTIES

A. PROBLEM FORMULATION

During the test-time detection, a batch of unlabeled fabri-

cated ICs are under test. Here, ‘‘unlabel’’ means an IC is

under test and it is still unclear whether the IC contains

Trojans or not, while ‘‘label’’ means the IC is marked as

Trojan-free or Trojan-inserted after Trojan detection [32].

The problems of unsupervised hardware Trojan detection

without and with untrustworthy testing parties can be formu-

lated as follows, respectively:

Definition 1 (Unsupervised hardware Trojan detection):

Given M fabricated ICs under test, denoted as ICp(1 ≤ p ≤

M ), each IC has a few features extracted from its power

traces. These ICs can be represented as points in the high-

dimensional feature space. They can be divided into two

clusters, Trojan-free and Trojan-inserted. The problem is to

identify the correct cluster of ICp using a clustering method.

Definition 2 (Unsupervised hardware Trojan detection

against untrustworthy testing parties): Given R testing par-

ties, denoted as TPq(1 ≤ q ≤ R), each one detects Trojans

with a clustering algorithm. Assume that there are Q untrust-

worthy testing parties (UTPs), where 0 < Q ≤ R. These

untrustworthy testing parties will collude with malicious

attackers andmodify their own detection results. The problem

is to ensure reliable detection results under untrustworthy

testing parties.

B. ATTACK MODELS

Traditionally, the testing house collects test data and then

performs the hardware Trojan detection process. However,

in theory, there can be a special case: the testing house only

collects the test data and transmits the test data to the designer,

and then the designer performs the hardware Trojan detection

process.

If the testing house performs the hardware Trojan detection

process, it can directly modify the results of hardware Trojan

detection. If the testing house only collects test data and

the designer performs the hardware Trojan detection process,

the testing house needs to modify the collected test data and

mislead the designer’s testing results on the ICs. Therefore,

we now formulate the attack models of these two cases.

1) ATTACK MODEL A (MODIFY LABEL)

In this case, the testing house performs the hardware Trojan

detection process, and thus it can directly modify the results

of hardware Trojan detection. The detailed attack process is

shown in Fig. 3.

Given M fabricated ICs under test, denoted as ICp(1 ≤

p ≤ M ), the testing house collects the raw power trace of

each IC, and then extracts some features from raw power

traces. For the ith IC (ICi), the testing house uses a kind
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FIGURE 3. Overall flow of the Attack Model A.

of hardware Trojan detection method to verify the IC and

then labels the IC accordingly. The obtained label can be

represented as yi ∈ {0, 1}, where yi = 0 represents that

the ith IC is Trojan-free, and yi = 1 represents that the ith
IC is Trojan-inserted. In this case, the testing house controls

the hardware Trojan detection method and detection results.

It can directly modify the label of each IC. For the ith IC, if its

corresponding label is yi = 1, the testing house will change

the label from 1 to 0. Finally, the untrustworthy testing house

transmits themodified detection results to the designer. In this

way, the untrustworthy testing house can help Trojan-inserted

ICs to escape detection.

2) ATTACK MODEL B (MODIFY COLLECTED TEST DATA)

In this case, the testing house only collects test data and the

designer performs the hardware Trojan detection process. The

untrustworthy testing house can only modify the collected

test data to mislead the designer’s detection on these ICs.

The detailed attack process is illustrated in Fig. 4. In this

paper, we further propose an algorithm for the untrustworthy

testing house to modify the collected test data, as shown in

Algorithm 1.

FIGURE 4. Overall flow of the Attack Model B.

GivenM fabricated ICs under test, denoted as ICp(1 ≤ p ≤

M ), the testing house collects the raw power trace of each

IC, and then extracts some features from raw power traces

to construct the test set I = {IC1, IC2, . . . , ICm}. In this

case, the untrustworthy testing house can use an iterative

adversarial data generation method to modify the collected

test data, as shown in Algorithm 1. The input of the algorithm

is an IC set I , a pre-detection method k̂ , a desired accuracy τ

on perturbed ICs and a desired perturbation parameter ξ .

The parameter ξ controls the magnitude of the perturbation

Algorithm 1 Adversarial Test Data Modification Algorithm

Input: IC set I , pre-detection method k̂ , desired accuracy τ

on perturbed ICs and desired perturbation parameter ξ .

Output: Modified IC set I

1: Perform pre-detection method k̂ on I .

2: Select the ICs whose detection label is 1 to construct data

set Î .

3: for ICi ∈ Î do

4: Initialize perturbation vector v ← 0 and initialize

minimal perturbation 1vi randomly.

5: v← PP,ξ (v+1vi)

6: Perform pre-detection method k̂ on ICi + v.

7: Obtain Confidence(ICi + v).

8: while Confidence(ICi+v) 6 τ or k̂(ICi+v) = k̂(ICi)

do

9: Compute theminimal perturbation that sends ICi+v

to the decision boundary:

1vi← argmin
r
||r||2s.t.k̂(ICi + v+ r) 6= k̂(ICi)

10: Update the perturbation:

v← PP,ξ (v+1vi)

11: Perform pre-detection method k̂ on ICi + v.

12: Obtain Confidence(ICi + v).

13: ICi = ICi + v

14: end while

15: end for

vector. First, the untrustworthy testing house performs a pre-

detection method on I . Then it selects the ICs whose label

is 1 to construct a new data set Î . The ICs in Î are considered

as Trojan-inserted which need to be modified. The algorithm

modifies the data of the IC by introducing a perturbation

which acts like process variations but aims at covering the

impact of a Trojan.

The algorithm is iteratively performed on Î . For each IC

in Î , it eventually generates one corresponding perturbation.

For the ith IC (ICi), the algorithm initializes a perturbation

vector v = 0 and randomly initializes a minimal perturbation

1vi. At each iteration, the algorithm updates the perturbation

vector v ← PP,ξ (v + 1vi) first. Then it performs the pre-

detection method to obtain the detection label and confidence

level of the perturbed point ICi+v. If the current perturbation

v does not make the perturbed point ICi + v fool the pre-

detection method, the algorithm enters the next round. In

the new round, it updates the minimal perturbation 1vi by

solving the following optimization problem [33]:

1vi← argmin
r
||r||2 s.t.k̂(ICi + v+ r) 6= k̂(ICi) (1)

Then the algorithm updates the perturbation vector v and

examines whether the new perturbed point ICi + v can fool

the pre-detection method or not. For the ith IC in Î , when the

confidence level (obtained from the pre-detection method)

satisfies Confidence(ICi + v) > τ and the detection label of

the perturbed IC has changed from 1 to 0 (indicating that the

Trojan-inserted IC is detected as a Trojan-free IC), it stops
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modifying the test data of the current IC and begins to modify

the test data of the next IC in Î .

Note that, motivated by the adversarial machine learning

technique in the field of artificial intelligence [33], we pro-

pose an adversarial test data modification algorithm for the

untrustworthy testing house in the hardware Trojan detection

scenarios, as shown in Algorithm 1. There are several differ-

ences between the proposed method and the method in [33].

First, the final outputs of these twomethods are different. The

function of the technique proposed in [33] is to generate and

output only a perturbation vector for an input image. Only a

perturbation vector is output. This means it is not a complete

process for modifying the input data. However, the output

of our algorithm is the carefully modified test data of an IC

set. In other words, our algorithm is a complete process for

modifying the input data. Second, the technique proposed

in [33] is an untargeted adversarial perturbation generation

method, while our method is a targeted test data modification

method. The technique proposed in [33] aims at causing a

natural image to be misclassified, but it does not cause the

image to be misclassified into a specific category of images.

However, our method aims at causing the input data to be

misclassified into a specific category of ICs, i.e., a Trojan-

inserted IC to be misclassified as a Trojan-free IC. Third,

the execution process, loop structure, and decision conditions

of these two methods are different. We first add an outermost

loop to implement the modification of each IC. Besides, for

the inner loop, the decision conditions of these two methods

are different. We add a decision condition (Confidence(ICi+

v)) to determine whether the modified IC is identified as a

Trojan-free IC. The only similarity between the two methods

is the optimization equation (Equation (1)). To the best of our

knowledge, this work is the first to propose an adversarial

test data modification algorithm for an untrustworthy testing

house to modify the collected test data of ICs to mislead

hardware Trojan detection.

3) EXPERIMENTAL ANALYSIS

We perform an experiment to evaluate the time overhead of

the two attack models. The process of modifying detection

label (in Attack Model A) and collected data (in Attack

Model B) is executed using PyCharm 2017.2.3. The pre-

detection method used in Attack Model B runs in WEKA

3.6. These experiment tools run on the Intel(R) Core(TM)

i5-4590 CPU. The frequency of the CPU is 3.30GHz. The

log file of Pycharm and WEKA are obtained which record

the time overhead of the processes in Attack Model A and

Attack Model B. For Attack Model B, the time overhead of

the pre-detection method in each round is much larger than

the time overhead of modifying test data. Therefore, in each

round, we use the time overhead of the pre-detection method

to represent the total time overhead of that round.

As shown in Fig. 5, the time overhead of Attack Model

A and Attack Model B are compared when 5% of the test

data is modified. For Attack Model B, it takes several rounds

of iterations to modify the test data in order to successfully

FIGURE 5. The comparison of the time overhead of the two attack models.

mislead the designer’s detection results. It is shown that

the time required for 10 iterations is about 7s. However,

in Attack Model A, the untrustworthy testing party only

needs to perform one modification process of the labels, and

the modification time is 0.17s. Since the Attack Model B

introduces large time overhead and computational overhead

for iteratively modifying the test data, the Attack Model A is

more favored by the attackers.

Overall, the final results of these two attack models are

equivalent. The untrustworthy testing house will eventually

mislead the designer’s Trojan detection results. Therefore,

in the subsequent sections, the theoretical analysis and exper-

imental evaluations are presented under the Attack Model A.

IV. PROPOSED CLUSTERING ENSEMBLE BASED

HARDWARE TROJAN DETECTION METHOD (CE-HTDM)

A. OVERALL FLOW OF THE PROPOSED METHOD

The overall flow of the proposed hybrid clustering ensem-

ble based hardware Trojan detection method (CE-HTDM)

is shown in Fig. 6. We assume that there are three testing

parties and one of them is untrustworthy. Transient power

traces of ICs are collected for testing. CE-HTDM consists

of three phases, namely, preprocessing, clustering generation

and clustering combination, as shown in Algorithm 2. Firstly,

the raw data of power traces is preprocessed to extract pre-

dominant power features of each IC. Then the basic detec-

tion results from each testing party are obtained. Finally,

the hybrid ensemble method is used to consolidate all the

basic detection results, and obtain the final detection results.

B. PREPROCESSING OF CE-HTDM: UNSUPERVISED

CORRELATION-BASED FEATURE SELECTION

The process variations and noises in the actual measurement

can cover the Trojan’s impact on IC’s parameters. Therefore,

we use an advanced signal processing method to preprocess

raw power traces of ICs. In this paper, the unsupervised

correlation-based feature selection (UCFS) method [34] was

modified, and creatively applied in the field of hardware

Trojan detection for the first time. It can filter out noisy and

redundant features, and retain predominant features which

can help to facilitate Trojan detection.

The process of the UCFS method is recapitulated in

Algorithm 3. Given an IC set I = {IC1, IC2, . . . , ICm}
T ,

where ICi = {fi1, fi2, . . . , fin}, 1 ≤ i ≤ m. ICi represents the
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FIGURE 6. Overall flow of the proposed clustering ensemble based hardware Trojan detection method (CE-HTDM) for three testing
parties [25].

ith IC under test which has n features. Since the UCFSmethod

handles features, the IC set I can be further represented

by using its feature vectors, which can be denoted as I =

{f1, f2, . . . , fn}. There are four main parameters in this algo-

rithm, δ, SU , Flist and Fbest . δ is a predefined threshold for

selecting features. SU is the symmetrical uncertainty value

of each feature. SU is a normalized information theoretic

measure which uses entropy and conditional entropy values

to calculate dependencies of features. The features whose SU

value is greater than the threshold δ are stored in Flist . The

final feature selection results are stored in Fbest .

The UCFS process consists of two parts. In the first part,

it calculates the SU value for each feature [34]. After that,

it selects relevant features based on the predefined threshold

δ and puts them into Flist . Then it sorts the selected features in

descending order according to their SU values. In the second

part, it removes redundant features from the ordered list Flist .

The iteration starts from the first element fp in Flist and

continues as follows [34]. For all the remaining features,

the algorithm selects the feature fq which is right next to fp
as the first feature. If fq is a redundant peer to fp [34], fq
will be removed from Flist and the algorithm updates fq with

the feature right next to the current fq. After one round of

filtering based on fp, the algorithm takes the first feature in

the remaining features, which is right next to fp, as the new fp.

Then it repeats the previous filtering process. The algorithm

stops until there are nomore features to be removed fromFlist .

Finally, all selected features are saved in Fbest .

Fig. 7 shows an example of preprocessing results of the

genuine Advanced Encryption Standard (AES) [35] bench-

mark circuit, where Fig. 7(a) is the original power trace and

Fig. 7(b) is the preprocessed features of the power trace. For

each IC, the features extracted from the preprocessing process

are still in the time domain. It is shown that the UCFSmethod

mainly extracts the features on the wave troughs of the raw

power trace, while only few features on the wave crests of

FIGURE 7. Preprocessing results of the genuine AES benchmark circuit.
(a) The original power trace. (b) Preprocessed power features.

the power trace are retained. This indicates that the features

on the wave crests of the power trace are redundant or highly

correlated, which are useful for Trojan detection.

Note that, compared with the original UCFS method, this

method has been modified as follows. First, we divide the

execution phase of the algorithm into two phases. In the first

phase, it calculates the correlation between an IC’s features.

In the second phase, it selects the features which meet the

specific requirements. Second, we have changed the data

object processed by the algorithm. The algorithm is modified

to process raw data of power traces of ICs. Overall, the con-

tribution of the UCFS based IC feature selection method is as

follows. The process variations and measurement noises dur-

ing the actual measurement have significant impacts on the

existing side-channel signal analysis based hardware Trojan

detection methods. We are the first to analyze the correlation

between the features of an IC for feature selection, thus to

alleviate the impact of process variations and noises on hard-

ware Trojan detection in the actual measurement. Besides,

since the UCFS based method is an unsupervised feature

selection method, this work provides a beneficial attempt and

a useful reference for hardware Trojan detection works with-

out the need of golden fabricated chips or golden simulated

models.
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Algorithm 2 Clustering Ensemble Based Hardware Trojan

Detection Method

Input: IC set I = {IC1, IC2, . . . , ICm}
T ;

Basic testing parties 3= {∂ (1),∂ (2), . . . , ∂ (r)}, each

divides I into k clusters.

Process:

1: // Preprocessing

2: UCFS(I )

3: // Clustering Generation

4: for i = 1 to m do

5: for j = 1 to r do

6: ∂
(j)′

i = CMI (∂
(j)
i )

7: yij = ∂
(j)′

i ∈ {0, 1, . . . , k}

8: end for

9: ϕ(ICi) = (yi1, y
i
2, . . . , y

i
r )

10: end for

11: // Clustering Combination

12: I = (ϕ(IC1), ϕ(IC2), . . . , ϕ(ICm))
T

13: Initialize ensemble clusters λ = {λ1, λ2, . . . , λm}

14: for l = 1 to r do

15: for i = 1 to r do

16: E[l][i] = SIM (ϕ(IC)l, ϕ(IC)i)

17: U [l] = 1 (keeps track of active clusters)

18: end for

19: end for

20: for i = 1 to r − 1 do

21: < i, n >= argmax{<i,n>:i6=n∧I [i]=1∧I [n]=1}E[i][n]

22: λ[< i, n >] (stores merge clusters)

23: for j = 1 to m do

24: E[i][j] = SIM (ϕ(IC)i, ϕ(IC)n, ϕ(IC)j)

25: E[j][i] = SIM (ϕ(IC)i, ϕ(IC)n, ϕ(IC)j)

26: end for

27: U [n] = 0 (deactivates cluster)

28: end for

29: return Ensemble hardware Trojan detection result λ.

C. CE-HTDM: CLUSTERING GENERATION

The proposed novel hybrid clustering ensemble method

consists of two phases: clustering generation and cluster-

ing combination. In the clustering generation phase, there

are r testing parties. For the same batch of ICs under

test, each testing party uses a clustering algorithm to per-

form Trojan detection and outputs a set of basic detection

results.

Firstly, the basic clustering result is obtained by each test-

ing party. In a basic clustering result, there are two clusters.

Then, each testing party exploits the cluster labeling index

(CMI ) to determine the cluster label of these two clusters. In

this way, each testing party outputs two clusters, in which,

one cluster is labeled as Trojan-inserted while the another

cluster is labeled as Trojan-free. Lastly, the detection result of

each testing party is transmitted to the clustering combination

phase for further conversion.

Algorithm 3Unsupervised Correlation-Based Feature Selec-

tion (UCFS) [34] Based IC Feature Selection Method

Input: I = {f1, f2, . . . , fn}; // an IC set represented by its

feature vectors;

δ; // a predefined threshold

Output: Fbest ; // an optimal subset

1: // First part

2: for i = 1 to N do

3: calculate SUi for fi
4: if SUi > δ then

5: append fi to Flist
6: end if

7: end for

8: order Flist in descending SUi value

9: // Second part

10: fp = getFirstElement(Flist )

11: for fP 6= NULL do

12: fq = getNextElement(Flist , fp)

13: for fq 6= NULL do

14: fq
′ = fq

15: if SUp ≥ SUq then

16: remove fq from Flist
17: fq = getNextElement(Flist , fq

′)

18: else

19: fq = getNextElement(Flist , fq)

20: end if

21: end for

22: fp = getNextElement(Flist , fp)

23: end for

24: Fbest = Flist

D. CE-HTDM: CLUSTERING COMBINATION

In the combination phase, firstly, each IC is represented as a

r-tuple using the labels of its basic detection results, where r

is the number of testing parties. The qth element in the r-tuple

indicates the cluster label given by the qth testing party. Each

transformed r-tuple ϕ(IC) = (y1, y2, . . . , yr ) can be regarded

as a label vector, where yq ∈ K (q) = {1, 2, . . . , k (q)}(q =

1, . . . , r). Then a categorical clustering technique is exploited

to analyze the set of transformed ICs to obtain the ensemble

hardware Trojan detection result. In this paper, hierarchical

agglomerative clustering (HAC) method [27] is exploited to

partition the set of transformed ICs.

These transformed ICs should be clustered into two

mutually independent clusters. Therefore, the parameter

k is set to be 2. The set of transformed ICs is I =

(ϕ(IC1), ϕ(IC2), . . . , ϕ(ICm))
T , which is the input of the

hierarchical clustering algorithm. In the hierarchical agglom-

erative clustering algorithm [27], λ is a list used to store the

clustering result. U is an array which records the state value

(1 indicates activated cluster while 0 indicates deactivated

cluster) of each cluster. SIM is a function which calculates the

similarity among activated clusters. The algorithm calculates
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the similarity among each clusters to obtain the r× r similar-

ity matrix E first, then r − 1 iterations are executed to merge

the most similar clusters. In each iteration, the most similar

two clusters are merged into one cluster. Then the state value

of these two clusters in U is set to be 0. It means that these

two clusters are no longer activated clusters. In the similarity

matrix E , the similarity values in the rows and columns of

the merged cluster are updated. Then the algorithm proceeds

to the next iteration. When the desired clusters are obtained,

the algorithm terminates. The final clustering result is stored

in λ, which is the ensemble hardware Trojan detection result.

V. THEORETICAL ANALYSIS AND DISCUSSION

In this section, four problems and questions are discussed:

1) the number of necessary testing parties of the CE-HTDM

method; 2) the time and computational overhead of the CE-

HTDM method; 3) the proposed diversity analysis algorithm

to select basic clustering algorithms; 4) the reason why the

proposed hybrid clustering ensemble method is superior to

the majority voting method.

A. THE NUMBER OF NECESSARY TESTING

PARTIES OF CE-HTDM

In this subsection, the number of required testing parties of

the proposed method is analyzed. In general, the number of

testing parties is influenced by the number of untrustworthy

testing parties. In practical detection scenarios, there are two

cases. In the first case, there are no trustworthy testing parties

for cooperation. The total number of required testing parties is

determined based on the majority rule. In other words, if there

are n untrustworthy testing parties, a total of 2n + 1(n ≥ 1)

testing parties are needed in the proposed method.

In the second case, there are trustworthy testing parties for

cooperation. Assuming that there are n testing parties with

unknown trustworthiness. For security purpose, the method

requires that the number of trustworthy testing parties is not

less than the number of testing parties whose trustworthiness

are unknown. Therefore, n trustworthy testing parties are

introduced to build the proposed method. Hence, the total

number of testing parties is 2n(n ≥ 1).

Obviously, the second case is more demanding than the

first case in actual hardware Trojan detection scenarios.

Therefore, in this paper, we analyze the overhead and perform

experimental evaluations based on the first case. In other

words, we assume that the number of untrustworthy test-

ing parties is n, and the number of required testing parties

are 2n+ 1.

B. TIME OVERHEAD AND COMPUTATIONAL

OVERHEAD OF CE-HTDM

In this section, we theoretically analyze the time and com-

putational overhead introduced by the increased number of

testing parties. Besides, the experimental analysis of the time

overhead of the proposed method in both EDA and FPGA

evaluations will be presented in Section VI-D. Overall, both

theoretical analysis and experimental results show that the

CE-HTDM method does not introduce significant overhead.

Firstly, we discuss the time overhead of CE-HTDM.

As shown in Fig. 8, the time overhead of the CE-HTDM

method includes the time of the following five steps: collect-

ing test data, preprocessing, clustering generation, process

of relabeling and transforming, and clustering combination.

We assume that there are M ICs under test. In the phase

of testing data collection, the time of collecting one power

trace of one IC is 5 × 10−6s (obtained from oscilloscope

measurement). Therefore the time overhead of collecting test

data is tc = M × 5 × 10−6s. In the preprocessing phase,

the time overhead is tp which is usually less than 0.1s. As

the testing parties in the CE-HTDM method are indepen-

dent of each other, they can perform the hardware Trojan

detection process in parallel. We define the time overhead

of the ith testing party performing clustering generation as

tpi. The time overhead of the clustering generation phase

is tcg = max{tp1, tp2, . . . , tp2n+1}. The time overhead of

relabeling and transforming the results can be represented as

tR&T which is also less than 0.1s normally. In the clustering

combination phase, since we use the HAC method to obtain

the final ensemble result, the time overhead of the cluster-

ing combination phase can be represented as tcc = tHAC .

Therefore, the overall time overhead of CE-HTDM, denoted

as tCE−HTDM , is tCE−HTDM = tc + tp + tcg + tR&T + tcc. In

particular, experiments show that the time overhead of tcg and

tcc is much larger than the other three parts. Therefore, we can

ignore the time overhead of the other three parts and calculate

the time overhead of CE-HTDM using tCE−HTDM ≈ tcg+ tcc.

FIGURE 8. The analysis of the time overhead of CE-HTDM.

We now discuss the time overhead of the traditional hard-

ware Trojan detection scenario. That is, there is only one

testing house performs a kind of detection method. The time

overhead can be represented by tTra = tc + tp + tcg ≈ tcg.

In conclusion, compared with a traditional hardware Tro-

jan detection method, the CE-HTDM method has mainly

increased the time overhead of tcc. Experimental evaluations

show that tcc is normally in a range of 0.02s to 0.05s. There-

fore, the increased time overhead of the CE-HTDM method

is small and acceptable.

Secondly, we discuss the computational overhead of the

CE-HTDM method. The overall flow for one testing house

to perform one testing process includes the following three

steps: data collection, preprocessing, and clustering gener-

ation. The computational overhead of collecting test data

can be considered as zero. The computational overhead of

the preprocessing and clustering generation can be denoted
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as sp and scg, respectively. As a result, the computational

overhead for one test house to perform one testing process

is s = sp + scg. This is the computational overhead of a

traditional method, i.e., sTra = s.

For the CE-HTDMmethod, each testing party performs the

process of data collection, preprocessing, and clustering gen-

eration, separately. Therefore, the computational overhead

of the ith testing party can be represented by si = sp +

scg = s. Before clustering combination, the time overhead

of relabeling and transforming can be denoted as sR&T . At

last, the computational overhead of clustering combination

can be denoted as scc. Therefore, the computational overhead

of CE-HTDM is sCE−HTDM =
2n+1∑

i=1

si + sR&T + scg ≈

(2n + 1)s + sR&T + scc ≫ sTra. Obviously, compared to a

traditional method, CE-HTDM has increased large compu-

tational overhead. However, the computational overhead of

CE-HTDM is distributed in each testing party. This means

that CE-HTDM does not increase the storage and computing

overhead for each testing party.

C. CLUSTERING ALGORITHM SELECTION BASED ON THE

PROPOSED DIVERSITY ANALYSIS ALGORITHM

In this section, we discuss how to select the basic clustering

algorithms to build the proposed CE-HTDM with good per-

formance on Trojan detection. The disagreement measure is

calculated, which shows the difference between the clustering

results of each clustering algorithm. Based on the disagree-

ment measure metric, we propose a diversity-based clustering

algorithm selection method.

Given an IC set I = {IC1, IC2, . . . , ICm}, where ICi =

{fi1, fi2, . . . , fin}, 1 ≤ i ≤ m. ICi represents the ith IC under

test which has n features. During hardware Trojan detection,

a label for each IC can be obtained after trust verification.

The label is denoted by y ∈ {0, 1}, where Trojan-free is

represented as 0 and Trojan-inserted is represented as 1.

Considering two clustering algorithms, denoted by ∂A and

∂B, a contingency table of these two clustering algorithms

is calculated to obtain the disagreement measure between

them. The contingency table is shown in Table 1, where a

indicates the number of ICs that both clustering algorithms

∂A and ∂B predict as Trojan-free; b indicates the number of

ICs that the clustering algorithm ∂A predicts as Trojan-free

but ∂B predicts as Trojan-inserted; c indicates the number

of ICs that the clustering algorithm ∂A predicts as Trojan-

inserted but ∂B predicts as Trojan-free; d indicates the number

of ICs that both clustering algorithms ∂A and ∂B predict as

Trojan-inserted. Obviously, a + b + c + d = m. Based

on the contingency table, the disagreement measure can be

TABLE 1. The contingency table of clustering algorithms ∂A and ∂B.

calculated as follows:

dis∂A∂B =
b+ c

m
(2)

where dis∂A∂B ∈ [0, 1]. The larger the value of dis∂A∂B is,

the greater the diversity between the two clustering algo-

rithms is. In this way, the basic clustering algorithms with

larger diversity are selected to build the CE-HTDM.

We propose a diversity-based selection algorithm,

as shown in Algorithm 4, where I = [IC1, IC2, . . . , ICm]
T

is a given IC set, ∂ = {∂1, ∂2, . . . , ∂R} is the set of basic

clustering algorithms, r is the predefined number of selected

clustering algorithms, and θ is a predefined accuracy thresh-

old. The final result will be stored in the selected clustering

algorithm set ∂̂ .

The proposed diversity-based selection algorithm mainly

consists of three parts. In the first part, each basic clustering

algorithm is performed on I and the corresponding detection

result is obtained. For the ith clustering algorithm, if its detec-

tion accuracy is larger than a predefined accuracy threshold θ ,

its detection result is stored in Yi = [y1, y2, . . . , ym]
T , where

yj ∈ {0, 1}, 1 6 j 6 m. Otherwise, its detection result is

set to be Yi = NULL, which means, the detection result is

discarded.

In the second part, first, the disagreement measure

matrix DISR×R and the average disagreement measure vector

aver1×R are initialized to be 0. Note that, DISR×R stores the

disagreement measure between arbitrary two basic clustering

algorithms in ∂ . aver1×R stores the average disagreement

measure of each basic clustering algorithm in ∂ . For the ith
basic clustering algorithm ∂i(∂i ∈ ∂, 1 6 i 6 R), the dis-

agreement measure between ∂i and the jth basic clustering

algorithm ∂j(∂j ∈ ∂, 1 6 j 6 R) is calculated and stored

inDISR×R. Then, for the ith basic clustering algorithm ∂i(∂i ∈

∂, 1 6 i 6 R), its average disagreement measure is calculated

by 1
R

R∑

j=1

DIS[i][j] and stored in aver .

In the third part, the selected clustering algorithm set ∂̂

is initialized to be empty. Then, the clustering algorithm in

∂ which has the maximum value in aver is selected. Then

the selected algorithm is removed from ∂ and added to ∂̂ .

After that, there are still r − 1 algorithms waiting to be

selected from ∂ , where r is a predefined number. Then a

greedy strategy is exploited to select r − 1 clustering algo-

rithms from ∂ . The greedy strategy based method works as

follows. In the lth(1 6 l 6 r − 1) round, there will be l

selected algorithms in ∂̂ and R − l basic algorithms in ∂ .

A disagreement measure matrix DIS ′l×(R−l) and an average

disagreement measure vector aver ′1×(R−l) are initialized to

be 0. DIS ′l×(R−l) stores the disagreement measure between

arbitrary one basic algorithm in ∂ and arbitrary one selected

algorithm in ∂̂ . aver ′1×(R−l) stores the average disagreement

measure of each basic clustering algorithm in ∂ . For the jth
basic algorithm ∂j(∂j ∈ ∂, 1 6 j 6 R − l), the disagreement

measure between ∂j and the kth selected algorithm ∂̂k (∂̂k ∈

∂̂, 1 6 k 6 l) is calculated and stored in DIS ′ (denoted as
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Algorithm 4 Diversity Analysis Based Clustering Algo-

rithm Selection Method

Input: I = [IC1, IC2, . . . , ICm]
T ; //IC set

∂ = {∂1, ∂2, . . . , ∂R}; //basic clustering algorithms

r ; //predefined number of selected clustering algorithms

θ ; //predefined accuracy threshold

Output: Selected clustering algorithm set ∂̂

1: // First part

2: for i = 1 to R do

3: perform the ith clustering algorithm on I and obtain its

detection accuracy θi.

4: if θi > θ then

5: Yi = [y1, y2, . . . , ym]
T //recording the ith detection

result

6: else

7: Yi = NULL

8: end if

9: end for

10: Y = [Y1,Y2, . . . ,YR] //obtain basic detection results

11: // Second part

12: initialize the disagreement measure matrix DISR×R and

average disagreement measure vector aver1×R to be 0

13: for i = 1 to R do

14: for j = 1 to R do

15: DIS[i][j] = dis∂i∂j
16: end for

17: averi = Average(∂i) =
1
R

R∑

j=1

DIS[i][j]

18: end for

19: // Third part

20: initialize ∂̂ = ∅

21: select the clustering algorithm which has the maximum

value in aver

22: remove the selected algorithm from ∂ and add it to ∂̂

23: for l = 1 to r − 1 do

24: initialize the disagreement measure matrix DIS ′l×(R−l)
and average disagreement measure vector aver ′1×(R−l)
to be 0

25: for j = 1 to R− l do

26: for k = 1 to l do

27: DIS ′[j][k] = dis
∂j∂̂k

28: end for

29: aver ′l =
1
l

l∑

k=1

DIS ′[j][k]

30: end for

31: remove the basic algorithm which has maximum value

in aver ′ from ∂ and add it to ∂̂

32: end for

DIS ′[j][k]). Then the average disagreement measure of the jth

basic algorithm ∂j is calculated by
1
l

l∑

k=1

DIS ′[j][k] and stored

in aver ′ (denoted as aver ′j ). Then the basic algorithm which

has the maximum value in aver ′ is removed from ∂ and added

to ∂̂ . This process is repeated until the predefined number of

clustering algorithms are selected.

D. CLUSTERING ENSEMBLE VS. MAJORITY VOTING

In this section, the reason why the proposed hybrid clustering

ensemble method is used rather than the majority voting

method, is analyzed. The experimental comparison of these

two methods in terms of detection accuracy and robustness to

malicious modifications, will be presented in Section VI.

Firstly, the proposed hybrid clustering ensemble method

is useful to provide forensics to reveal untrustworthy testing

parties. In the process of integrating basic detection results,

the majority voting method only performs statistical counting

operations. However, the proposed hybrid clustering ensem-

ble method re-represents each IC as a r-tuple using the label

information of all basic detection results, and calculates the

correlation and inter-cluster distance between each IC to

obtain the final detection result. In the detection process of the

proposed hybrid clustering ensemble method, more formal

evidence can be provided to reveal the untrustworthy testing

party.

Secondly, the detection accuracy and robustness of the

proposed hybrid clustering ensemble method are better than

the majority voting method. The proposed hybrid clustering

ensemble method has performed label normalization, IC re-

representation and secondary clustering on basic clustering

results, which can help to improve the robustness and detec-

tion accuracy of the hardware Trojan method. The majority

voting method only performs a simple statistical counting of

all basic detection results.

VI. EXPERIMENTAL RESULTS

In this section, the proposed method is evaluated using

two kinds of experimental evaluations, EDA tools dur-

ing IC design flow and the FPGA evaluation. The

experimental setup of EDA and FPGA evaluations are

described in Section VI-A. The EDA evaluation results of

ISCAS89 benchmark circuits and FPGA evaluation results of

Trust-HUB benchmark circuits are described in Section VI-B

and Section VI-C, respectively. In Section VI-D, the time

overhead of the CE-HTDM method is evaluated.

A. EXPERIMENT SETUP

The proposed technique is evaluated on ISCAS89 benchmark

circuits first. Two basic Trojans, a 4-bit comparator and a

3-bit counter, are designed for the experiment [18]. Several

logic gates are added on these two basic Trojans to generate

other Trojans each time. These Trojans are inserted in the

benchmark circuits separately. The hardware overhead of

these Trojans is varying from 0.005% to 0.2% of the designs.

Note that, the actual Trojans with malicious functions usually

have much bigger sizes. Therefore if the proposed technique

can detect these tiny modifications, it can also detect actual

Trojans.

Synopsys Design Compiler is used to synthesize the

designs with 65nm technology. Both the inter-die and
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intra-die process variation is set to be 10%. HSPICE is used

to perform Monte Carlo simulation to obtain the transient

power supply currents (IDDT ) of each IC. The testing set

of each benchmark circuit includes 100 unlabeled ICs. For

each benchmark circuit, 50 different Trojans are inserted to

the design to generate 50 Trojan-infected samples. Then,

50 Trojan-free traces are collected from the genuine cir-

cuit, and 50 Trojan-inserted traces are collected from the

50 Trojan-infected samples.

Second, the CE-HTDM is also evaluated with FPGA

experiments. The experimental platform is the SAKURA-X

board, as shown in Fig. 9. Two Xilinx FPGAs are

integrated on the board and serve as the main FPGA

(Kintex-7 XC7K160T-1FBGC) and the control FPGA

(Spartan-6 XC6LX45-2FGG484C), respectively. The signals

are captured by a Keysight InfiniiVision DSOX3102A oscil-

loscope for further analysis. Two SAKURA-X boards are

used to model the effect of process variations.

FIGURE 9. FPGA Experimental platform.

In the FPGA evaluation, the benchmark circuit is the

AES [35] circuit. The Trojans are obtained from Trust-HUB

[26]. According to the study in [36], some of the Trojans

will be optimized during the synthesis process. Therefore,

we exclude these Trojan benchmarks from the experiment.

The remaining benchmarks are AES-T100, AES-T200, AES-

T400, AES-T700, AES-T800, AES-T900, AES-T1200, and

AES-T1700. These 8 Trojans will not be optimized dur-

ing the synthesis process. For each Trojan-inserted bench-

mark circuit, 10 power traces are collected from actual

experiments without triggering the Trojans. For the genuine

benchmark circuit, 80 power traces are collected for testing.

Hence, the testing set I consists of 80 Trojan-free traces and

80 Trojan-inserted traces.

There are 3 testing parties and the testing party 1 (TP1)

is assumed to be untrustworthy. In general, untrustworthy

testing parties will only modify a small percentage of the

detection results to hide Trojans. This is because that if

untrustworthy testing parties modify a large part of the detec-

tion results, it will be easy to expose themselves and their

reputations will be destroyed. Therefore, the modified per-

centages of the detection results by the untrustworthy testing

party are set to be 5%, 7% and 9% for evaluation.

B. EDA EVALUATION RESULTS ON ISCAS89 BENCHMARKS

First, the robustness of CE-HTDM against untrustworthy

testing parties is analyzed, as shown in Table 2. The detection

accuracy represents the rate of ICs correctly clustered among

all the ICs under test. It is shown that the detection accuracy

of CE-HTDM is better than each of the three testing parties.

This means, the proposed method is robust against mali-

cious modifications introduced by the untrustworthy testing

party (testing party 1). As the modified percentage increases,

the detection accuracy of CE-HTDM decreases slightly.

TABLE 2. Robustness: the detection results of CE-HTDM under
untrustworthy testing parties.

We now present the detection accuracy and clustering qual-

ity of CE-HTDM under trustworthy testing parties, which

means there are no malicious modifications introduced by

these three testing parties. The detection results are given

in Table 3. For different benchmark circuits, the detection

accuracy of CE-HTDM is higher than that of each test-

ing party. The clustering quality of the detection results of

s38417 is shown in Fig. 10. It is shown that the inter-cluster

distance obtained by CE-HTDM is significantly larger than

the inter-cluster distance obtained by each testing party. This

is helpful for forming a clear cluster boundary. The clus-

tering quality of other benchmark circuits is similar to that

of s38417. In conclusion, CE-HTDM can improve both the

detection accuracy and the clustering quality effectively.

TABLE 3. The detection results of CE-HTDM under trustworthy testing
parties.

The comparison of CE-HTDM and the majority vot-

ing method is presented in Fig. 11, which includes two

cases, under trustworthy testing parties (Fig. 11(a)) and

under untrustworthy testing parties (Fig. 11(b), Fig. 11(c),

Fig. 11(d)). As shown in Fig. 11(a), for different benchmarks,

the detection accuracy of the CE-HTDM is significantly

higher than that of the majority voting method. As shown
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FIGURE 10. The clustering results of s38417 under trustworthy testing
parties [25]. (a) TP1 (EM). (b) TP2 (HAC). (c) TP3 (sIB). (d) The proposed
CE-HTDM.

in Fig. 11(b), Fig. 11(c) and Fig. 11(d), with the increasement

of the modified percentage, the detection accuracy of both

methods slightly decreases, and the detection accuracy of the

majority voting method has decreased more sharply than CE-

HTDM. Obviously, the detection accuracy of the CE-HTDM

is still higher than the majority voting method under these

malicious modifications. Overall, the CE-HTDM method is

more effective on detecting Trojans and more robust to mali-

cious modifications than the majority voting method.

C. FPGA EVALUATION RESULTS ON TRUST-HUB

BENCHMARKS

In the FPGA evaluation on Trust-Hub Trojan bench-

marks [26], the number of LUTs and registers utilized by the

Trojans are counted, and the area overhead of the Trojans are

calculated, as shown in Table 4. The hardware overhead of

these Trojans is varying from 1.93% to 9.45% of the design.

The FPGA evaluation results of the basic clustering

algorithms, which includes two types proposed in [24],

the partition-based hardware Trojan detection method and the

density-based hardware Trojan detection method, are given

in Table 5 and Table 6, respectively. It is shown that the

detection accuracy of sIB algorithm in the FPGA evaluation

is much lower than its detection accuracy in the EDA evalua-

tion. The reason is that the sIB algorithm is more susceptible

TABLE 4. Hardware overhead of the genuine AES circuit and
Trojan-inserted AES circuits.

to noises and process variations. The detection accuracy of the

remaining partition-based or density-based clustering algo-

rithms is in a range of 87% ∼ 92.5%, which is lower than

the detection accuracy of the supervised hardware Trojan

detection technique proposed in [18]. However, the method

proposed in [18] works in the supervised hardware Trojan

detection situation in which the golden simulated models

are needed for training, while the clustering based Trojan

detection method works in the unsupervised situation does

not require golden chips or golden models. Therefore the

detection results of these clustering based hardware Trojan

detection techniques are acceptable.

According to the discussion in Section V-C, the EM algo-

rithm, k-means algorithm and DBSCAN algorithm are cho-

sen as the basic clustering algorithms to build the proposed

detection method. Other clustering algorithms are also fea-

sible. The FPGA evaluation results of CE-HTDM are given

in Table 7. It is shown that the detection accuracy has been

increased to 93.75% under the trustworthy testing parties,

which is higher than the detection accuracy of each testing

party. As the modified percentage increases, the detection

accuracy of CE-HTDM has slightly reduced. When the mod-

ified percentage is set to be 9%, the detection accuracy of

CE-HTDM is still high up to 91.50%. This implies that

the CE-HTDM method has a strong robustness to malicious

modifications.

The comparison of CE-HTDM and the majority voting

method on AES benchmark circuit (in the FPGA evalua-

tion) is shown in Fig. 12. When all the testing parties are

FIGURE 11. Comparison of the detection accuracy of CE-HTDM and the majority voting method under different modified percentages in
the EDA evaluation [25]. (a) 0%. (b) 5%. (c) 7%. (d) 9%.
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TABLE 5. FPGA evaluation results of the partition-based hardware Trojan detection method [24].

TABLE 6. FPGA evaluation results of the density-based hardware Trojan detection method [24].

TABLE 7. FPGA evaluation results of the proposed clustering ensemble based hardware Trojan detection method (CE-HTDM).

FIGURE 12. The comparison of the CE-HTDM method and the majority
voting method in the FPGA evaluation.

trustworthy, the detection accuracy of CE-HTDM is signif-

icantly higher than that of the majority voting method. When

the modified percentage increases, the detection accuracy of

CE-HTDM and majority voting method slightly decrease,

and the detection accuracy of CE-HTDM decreases more

slowly than the majority voting method. It is shown that the

detection accuracy of CE-HTDM is still higher than that of

the majority voting method under malicious modifications.

This implies that the CE-HTDM method has better detection

accuracy and robustness than the majority voting method

under untrustworthy testing parties.

As shown in Fig. 13, the comparison of the detection

accuracy with and without the preprocessing process is also

presented. In Fig. 13(a), we present a comparison of the

detection accuracy of the basic clustering algorithms, before

and after the preprocessing process. Before preprocessing,

the detection accuracy of basic clustering algorithms is in a

range of 83.12% to 88.75% (except the sIB algorithm). After

preprocessing, the detection accuracy has increased to a range

of 87.5% to 92.50%. It is obvious that the detection accuracy

of all basic clustering algorithms is significantly improved

FIGURE 13. Detection accuracy with and without preprocessing. (a) Basic
clustering algorithms. (b) CE-HTDM.

after preprocessing. As mentioned above, the performance of

the sIB algorithm is poor in the FPGA evaluation due to it

is susceptible to noises and process variations. In Fig. 13(b),

the comparison of the detection accuracy of the CE-HTDM

method with and without the preprocessing process is pre-

sented, where the CE-HTDM without preprocessing is rep-

resented as CE-HTDM, while the CE-HTDM which has

the preprocessing phase is represented as CE-HTDM. The

detection accuracy of CE-HTDM is in a range of 85.50%

to 88.75%, while the detection accuracy of CE-HTDM is

in a range of 91.50% to 93.75%. Obviously, the detection

accuracy of CE-HTDM has increased around 5% after pre-

processing. In conclusion, the preprocessing method (UCFS)

not only improves the detection accuracy of basic clustering

methods, but also effectively improves the detection accuracy

of the proposed CE-HTDM.

D. TIME OVERHEAD OF CE-HTDM

In this section, the time overhead of the CE-HTDM method

is evaluated in EDA experiments and FPGA experiments.
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TABLE 8. The time overhead of the CE-HTDM method in the EDA evaluation.

TABLE 9. The time overhead of the CE-HTDM method in the FPGA evaluation.

The experimental tools in the EDA evaluation are WEKA

3.6 and PyCharm 2017.2.3, which run on the Intel(R)

Core(TM) i5-4590 CPU. The frequency of the CPU is

3.30GHz.

In Section V-B, we have analyzed that the time overhead

of CE-HTDM includes the time of five steps: collecting test

data, preprocessing, clustering generation, relabeling& trans-

forming, and clustering combination, which can be denoted

as tCE−HTDM = tc+ tp+ tcg+ tR&T + tcc. In EDA evaluation,

100 power traces are collected for testing. Therefore, the time

overhead of collecting test data is tc = M × 5 × 10−6 =

5× 10−4s. As tc is too small, it can be ignored.

According to the log files ofWEKAand PyCharm, the time

overhead of tp, tcg, tR&T and tcc, are calculated, as shown

in Table 8. Note that, the time spending on modifying the

detection results by untrustworthy testing house, is not a part

of the time overhead of the CE-HTDM. Overall, the time

overhead of CE-HTDM is in a range of 0.37s to 0.44s.

There are three testing parties in the CE-HTDM and each

testing party uses a traditional hardware Trojan detection

method. The time overhead for one test house to perform one

testing process can be represented by tTra = tc + tp + tcg ≈

tp + tcg. Therefore, for the ith testing party in CE-HTDM, its

time overhead is tTra = tp+tpi, where tpi is the time overhead

of the ith testing party performing a clustering generation step.

The time overhead for each of these testing parties is in a

range of 0.06s to 0.39s. Therefore, compared to the maximum

time overhead of the traditional method (one testing party

performs one detection process), the increased time overhead

of CE-HTDM is small. Besides, it can be observed that the

time overhead of CE-HTDM is mainly correlated with two

parts: tcg and tcc. The time overhead of clustering generation

tcg = max{tp1, tp2, tp3} (as discussed in Section V-B) is in a

range of 0.33s to 0.38s, and the time overhead of clustering

combination tcc is in a range of 0.02s to 0.05s. The time

overhead of the remaining three parts is relatively small,

which has a low contribution to the total time of CE-HTDM.

The time overhead of the CE-HTDMmethod in the FPGA

evaluation is presented in Table 9. 160 power traces are col-

lected for testing. Therefore, the time overhead of collecting

test data is tc = M × 5 × 10−6 = 8 × 10−4s. The

value of tc in FPGA evaluation is also small, which can be

ignored. It is shown that the time overhead of CE-HTDM is

in a range of 0.32s to 0.35s, while the time overhead of the

traditional method is in a range of 0.04s to 0.29s. Compared

to the maximum time overhead of these traditional methods,

the time overhead increased by CE-HTDM is very low.

When the modified percentage changes, the time overhead

of clustering generation tcg does not change, while the time

overhead of clustering combination tcc is in a range of 0.02s

to 0.05s. The reason is that, when an untrusted testing party

modifies the detection results, it will not affect the previous

detection process (clustering generation). However, due to the

changes in the data composition of the clustering generation
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results, the processing time of clustering combination will

change. In general, since the untrusted testing party modifies

the labels of Trojan-inserted ICs, the data composition of the

clustering generation results will become simpler, which will

lead to a shorter time for clustering combination phase.

VII. CONCLUSION

In this paper, we propose a golden models-free hardware

Trojan detection method against untrustworthy testing parties

by exploiting a novel hybrid clustering ensemble method.

To the best of our knowledge, this work is the first to consider

that the testing party may be untrustworthy.We formulate two

attackmodels of untrustworthy testing parties, and propose an

adversarial data generation algorithm for the untrustworthy

testing party to modify the collected test data. Then, we pro-

pose a novel hybrid clustering ensemble method for Trojan

detection, which can resist the malicious modifications on

Trojan detection results introduced by untrustworthy testing

parties. Besides, the UCFS method is modified and used to

preprocess the raw power traces of ICs, which can filter out

noisy features and extract predominant features to alleviate

the impact of process variations and noises. Theoretical anal-

ysis on four keys problems are also presented: the number

of necessary testing parties; the time overhead and compu-

tational overhead of the proposed method; choose the basic

clustering algorithms by using a proposed diversity analysis

based algorithm; the reason why the clustering ensemble

method is superior to the majority voting method. Both EDA

evaluation on ISCAS89 benchmarks and FPGA evaluation on

Trust-HUB benchmarks are performed. Experimental results

show that the proposed method can obtain better detection

accuracy and clustering quality (larger inter-cluster distance)

than each testing party. Meanwhile, it can defeat untrustwor-

thy testing parties without increasing much overhead.
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