
Defect Aware Test Patterns

Huaxing Tang, Gang Chen,
Sudhakar M. Reddy

ECE Department, University
of Iowa, Iowa City, IA 52242

Chen Wang, Janusz Rajski

Mentor Graphic Corporation,
Wilsonville, OR 97070

Irith Pomeranz

School of ECE, Purdue Univ.,
West Lafayette, IN 47907

Abstract
A method to generate test patterns referred to as defect
aware test patterns is proposed. Defect aware test
patterns have greater ability to detect un-modeled
defects. The proposed method can be used with any test
generation procedure to improve the effectiveness of the
tests in detecting un-modeled defects. Experimental
results on several industrial designs show the
effectiveness of defect aware tests. We also propose a
measure to estimate the effectiveness of given test sets in
detecting un-modeled defects.

1. Introduction

Defects in deep submicron VLSI circuits are known to
be predominantly opens and shorts or bridges. Two
different approaches are currently being pursued to
generate tests to achieve low value for defective parts
per million shipped parts. One is to generate tests for
more elaborate fault models that model defects more
accurately [3,7,9,10,20, 21] and the other is to generate
n-detect test sets using simpler fault models such as
single stuck-at line (SSL) faults [4,8,11,22]. n-detect test
sets contain tests to detect each modeled fault n times.
The effectiveness of n-detect test sets is based on the
observation that the possibility of accidentally activating
an un-modeled defect and propagating its effect to
observed outputs is enhanced by such test sets [11,22].

In this work we consider enhancement of the
probability of detecting un-modeled defects using single
pattern tests to detect static defects. Although not
discussed in this work, the basic idea behind the
proposed method can be extended for use with
two-pattern tests to enhance the coverage of un-modeled
dynamic defects.

As observed above, interconnect opens and bridges
are known to be the most likely defects in deep
submicron designs. We will present results on industrial
circuits that show that tests for stuck-at faults detect
essentially all detectable interconnect opens. We target
improvement of coverage of un-modeled bridge defects
when n-detect tests for SSL faults are generated.

The remainder of this paper is organized as follows.
In Section 2 we review previous works related to
generating tests to improve coverage of un-modeled
defects and then present the basic idea behind the

proposed method. In Section 3 we give details of the
proposed method and of our implementation of
generating defect aware tests using an ATPG that targets
SSL fault detection. In Section 4 we propose a measure
to estimate the coverage of un-modeled defects by given
test sets. Experimental results are presented in Section 5
and Section 6 concludes the paper.

2. Preliminaries

Some earlier works have considered methods to generate
n-detect tests for SSL faults with improved coverage of
un-modeled defects. The method proposed in [15]
generates n-detect tests such that every subset of faults
of size m is either detected by a single test or each one of
the faults in the subset is detected at least n times. The
method proposed in [16] allows a test t that detects a
fault f to be counted as an additional detection of f only
if t satisfies a condition on its relationship with each one
of the earlier generated tests that detects fault f. The
methods discussed above do not directly consider
increasing the probability of accidental detection of
un-modeled bridges.

Several methods to model bridges have been
proposed in the literature [1,6,9,12-14,20]. A model that
is effective in modeling the bridges that can be used to
efficiently generate tests to detect bridges is the so called
4-way bridging fault model [20]. This model has been
used to generate manufacturing tests for commercial
processors [2,7,20]. We use 4-way bridging faults as
surrogates for un-modeled defects in evaluating the
method proposed in this work to generate defect aware
tests. For the sake of completeness we describe below
the 4-way bridging fault model.

Figure 1. Bridging fault examples: (a) a bridge;

(b) a DOM bridging fault

In the 4-way bridging fault model, each bridge
defect between nodes <A, B>, shown in Figure 1(a), is
modeled by four bridging faults: {A dom 0, B dom 0, A

A (1/0)

B (0)
Static bridging fault {A dom 0}

Small Rbridge

(b)

A

B

(a)

1530-1591/05 $20.00 © 2005 IEEE

dom 1, B dom 1}. The bridging fault {A dom 0} shown in
Figure 1(b) is defined as node A is stuck-at-0 in the
presence of the bridge if node B is 0. In this case, the
signal value on node A is determined or dominated by
the signal value on B in the presence of the bridge, thus
leading to the fault name {A dom 0}. Node A is referred
to as the victim node and node B as the aggressor node
in the bridging fault {A dom 0}. The {A dom 0} fault is
detected by a test that detects A stuck-at-0 and
simultaneously sets B to 0. The other three components
of a 4-way bridging fault and the tests to detect them are
defined in a similar manner [20].

We next discuss the observation that is the basis for
the method proposed to generate tests with enhanced
coverage of un-modeled bridges.

Given a test set T, let the 1-probability
(0-probabilty) of a signal line S be the ratio of the
number of times S is set to 1 (0) in the fault free circuit
when T is applied and the number of tests in T. Let PS1
(PS0) denote the 1-probability (0-probability) of S.
Consider a bridge between nodes A and B and assume
that nodes A and B are uncorrelated. The bridge may be
detected by a test that detects A stuck-at-0 and sets B to 0.
The probability of accidentally detecting the bridge by n
different tests that detect A stuck-at-0 is 1-(1-PB0)n. In
Figure 2 we plot the probability of detecting the bridge
fault versus the number of times the A stuck-at-0 fault is
detected for four different values of PB0.

Bridging Fault Detection Profile

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10

Number of Detections

D
et

ec
tio

n
Pr

ob
ab

ili
ty

Figure 2. Probability of detecting a bridge by

N-detect tests [18]

The plots in Figure 2 suggest that for a fixed value
of n for n-detect test sets the probability of accidental
detections of bridge defects can be increased
significantly by increasing the probability of occurrence
of the appropriate signal values on one of the pair of
nodes involved in a bridge when the tests for modeled
faults are applied.

Typically only a very small portion of the circuit
inputs are specified in tests for modeled faults. Thus it is
feasible to specify some of the unspecified circuit inputs
to set circuit lines to desired values. This can be used to
increase the probabilities of signal lines with low signal
probabilities, to increase the probability of accidental
detection of un-modeled bridges. In the sequel, for the
sake of simplicity, we use 4-way bridge faults in
describing the proposed method and in evaluating its
effectiveness.

3. Defect aware ATPG

Details of the proposed method to increase the coverage
of un-modeled defects are given next.

3.1. Signal probability enhancing cubes
The signal probability enhancing (SPE) cubes of a node
are minimally specified input vectors which can set a
given node to a desired logic value.

We use SPE cubes to increase the 1-probablity or
0-probablity of signal lines with signal probabilities
below a threshold. During test generation, after a test t is
generated we embed SPE cubes of selected nodes into t
by setting the unspecified values in t to the specified
values in the SPE cubes of the selected nodes. For
example, let t = X0X110XXXX. We can embed the SPE
cube X0XXX01XXX into t and obtain a modified test
X0X1101XXX. We can embed another SPE cube
1X01XXXXXX into the modified test to obtain the
newly modified test 1001101XXX. The remaining
unspecified values in the modified test can be randomly
filled before fault simulating the test.

SPE cubes for a node can be obtained by
performing backward implications with the node value
set to a desired value 0 or 1. In order to reduce the
impact on the randomness of the generated test patterns
with respect to un-modeled defects, several different
SPE cubes for a node can be generated and randomly
selected from the generated cubes for embedding into
tests. In this work, upto three SPE cubes were generated
and stored for each target node.

Figure 3. Signal probability enhancing cube

example

The nodes targeted for enhancing signal
probabilities normally have strongly biased signal
probability when the inputs are randomly specified. For
example in Figure 3, node g has low 1-probability value
(5/64) if inputs (a,b,c,d,e,f) are randomly specified. The
input vector <XX1000> can set node g to 1, and is
considered as a SPE cube setting for g to 1. <11X000> is
another SPE cube of g to set it to 1. If the circuit of
Figure 3 is part of a larger circuit, the low value of
1-probability of g can be improved if one of these cubes
is applied often during test generation for the circuit.

3.2. The proposed ATPG algorithm
The proposed ATPG uses SPE cubes to improve the
overall signal probability profile for the circuit under test
during ATPG and therefore improving the bridging fault
coverage and test quality.

Since it may be too time consuming to compute the
signal probabilities for all circuit nodes as new patterns
are generated, only the signal probabilities of the fanout

b

d
e

g
c

a

f

PB0 = 0.50

PB0 = 0.25

PB0 = 0.10

PB0 = 0.05

stems which are outputs of fanout-free regions are
computed in our work. These nodes together with a
signal value are referred to as potential signal
probability enhancement targets and are placed in a
buffer Buf1 during a preprocessing step.

During the generation of tests, first a conventional
ATPG is run until a preset number of N patterns are
generated. During this phase of the APTG all
unspecified values in the generated tests are filled
randomly. The signal probabilities of signals in Buf1 are
initially computed from the signal value statistics
collected for the first N test patterns. N was set to 512 in
our implementation. After the generation of the first N
test patterns, the proposed SPE technique is turned on
and signal probability enhancement is performed by
embedding SPE cubes for selected signals into each
newly generated test pattern. After embedding SPE
cubes, the remaining unspecified values in the modified
tests are randomly filled.

All the potential SPE targets in Buf1 with
0-probability or 1-probability value less than a
predefined threshold (0.10 in our implementation) are
considered as SPE candidates and put into a second
buffer Buf2. A subset of the SPE candidates with the
lowest signal probabilities are selected as SPE targets
and put into a third buffer Buf3. In our implementation
we allowed Buf3 to contain upto 1000 SPE targets
ordered according to increasing values of their signal
probabilities. We attempt to embed one randomly
selected SPE cube of each SPE target in Buf3 into a
partially specified newly generated test pattern. The SPE
targets in Buf3 are updated after each set of 32 new test
patterns. This is done by first updating the signal
probabilities of the SPE candidates in Buf2 after 32 new
test patterns are simulated and then moving upto 1000
signal nodes with the lowest probabilities into Buf3.
Similarly, we update the signal probabilities of the
potential SPE targets in Buf1 after every 128 new tests
are simulated and the SPE candidates in Buf2 are
updated by moving the potential SPE targets in Buf1
with signal probabilities less than 0.1 into Buf2.

Up to three SPE cubes are generated only for
signals in Buf3. Whenever a signal line is moved into
Buf3 we generate SPE cubes only if they were not
generated earlier for this signal line.

3.3. Signal probability enhancement maintaining
test data compression
When test data volumes are to be reduced by
compression techniques such as [17,23] the unspecified
values in the tests are filled by the decompressor used.
Thus filling unspecified values in tests by embedding
SPE cubes may dramatically reduce the achievable test
data volume compression. For this reason one should fill
only a very limited number of unspecified bits in tests by
embedding SPE cubes. For test data compression
technique such as [17], one can compute the number of
unspecified values that can be filled by embedding SPE
cubes. We briefly describe this next.

For a design with NFF scan cells, let the targeted

input test data compression ratio be CR and let the
encoding efficiency of the compression scheme be η.
Then the allowed maximum number of specified bits in
a test is η*NFF/CR. Given a newly generated test we
can allow the unspecified bits to be specified by
embedding SPE cubes until the total number of specified
bits in the test is less than or equal to η*NFF/CR.

4. Modified bridging coverage estimate

Quality of tests is typically evaluated by fault coverage
metrics. Fault coverage metrics however do not provide
a measure of the coverage of actual defects. For this
reason, several methods have been proposed in the
literature to estimate defect coverage by given test sets.
One method is to use fault coverage of un-modeled
faults (called surrogate defects) as a measure of defect
coverage [8,15,16]. Several methods that do not use
simulation of surrogate defects to estimate defect
coverage have also been proposed [4,5,8]. A recently
proposed measure called bridge coverage estimate (BCE)
[4] is simple to calculate and was shown to estimate
incremental defect coverage by n-detect test sets as
measured by the defective parts of an ASIC design
detected by tests with increasing numbers of detection of
SSL faults. This measure of quality may not give an
accurate estimate of the coverage of un-modeled defects
but it can be used to compare relative effectiveness of
defect coverage by two different test sets. Another use of
this measure could be to use the increment in the value
of the measure to estimate the additional defect coverage
obtained by, for example, n-detect tests as additional
tests are generated to increase the number of detections
of SSL faults. This will provide a basis to select the
value of n for n-detect tests. However it has been noted
that BCE may saturate early for some designs and hence
may not provide a good estimate of incremental defect
coverage by n-detection tests as n is increased [2]. We
propose a modification to this measure. Experimental
results presented in the next section show that the
modified measure gives a better estimate of the
incremental defect coverage of test sets.

Definition 1 [4]: Given a test set T and a target
fault list F of SSL faults, the bridging coverage estimate
(BCE) is calculated as follows:

∑
=

−−•=
n

i

ii

F
f

BCE
1

)21(
||

where fi is the number of stuck-at faults detected i times
by T, |F| is the total number of stuck-at faults in the
target fault list F, and n is the maximum number of
detections that a fault can be detected by T. In practice, n
is limited by the maximum number of detections that the
fault simulation tool keeps track of. The underlying
assumption in computing BCE is that the aggressor node
of a bridging fault has 50% probability of being in the
state to activate the bridge defect when the appropriate
stuck-at fault at the victim node is detected.

Consider a bridging fault {A dom 0} between nodes
A and B. For a given test set, assuming the 0-probability

value of B is p and the stuck-at fault (A sa0) is detected
by n different test patterns, the probability to detect this
bridging fault by this test set will actually be 1-(1-p)n,
instead of (1-2-i) as used in the calculation of BCE. To
overcome this inaccuracy of BCE a modified bridge
coverage estimate, called BCE+ is proposed, which
combines multiple detection profile of SSL faults and
the circuit signal probability profile for a given set of
tests.

Definition 2: Given a test set T, a set of signal
nodes S and a target fault list F, the bridging coverage
estimate BCE+ is calculated as follows:

∑ ∑

∑ ∑

= =

= =

+

−−•+

−−•=

n

i

i
j

S

j

sa
i

n

i

i
j

S

j

sa
i

p
SF

f

p
SF

fBCE

1
1

||

1

1

1
0

||

1

0

)})1(1(
||

1{
||

)})1(1(
||

1{
||

where fi
sa0 (fi

sa1) is the number of sa0 (sa1) faults
detected i times by test set T, pj0 (pj1) is the 0-probabiltiy
(1-probalility) of signal j in the subset S of the circuit
signals considered and |S| is the cardinality of the set S.

5. Experimental results

We implemented the proposed defect aware ATPG
procedures by incorporating them into a state of the art
commercial ATPG. The modified ATPG is referred to as
SPE_ATPG.

In the first experiment we performed, for each one
of four circuits studied we generated two sets of n-detect
tests for SSL faults using the original ATPG and the
SPE_ATPG for n = 1 to 10. Both test sets were then fault
simulated on 100K randomly selected bridges using
4-way bridging fault model. The 100K bridges result in
400K 4-way bridging faults. The results are given in
Table 1 on the next page. In Table 1 we first give the
circuit name, the number of gates #G and the number of
scan cells #SC in the circuit. In the following columns
we report the number of tests #TP, the run times RT and
the percent of the 400K 4-way bridging faults detected
by the test sets. The column with the heading Dn
includes the data for n-detect test sets, n =1 to 10. The
data for the ten pairs of n-detect test sets are arranged in
two consecutive rows, with the data for the original
ATPG in the first row and the data for the SPE_ATPG in
the second row. The run times reported are normalized
run times obtained by dividing the run times by the time
to generate the standard single detection tests for SSL
faults using the original ATPG. It can be seen that for all
circuits every n-detect test set obtained by SPE_ ATPG
achieves higher bridging fault coverage than the
corresponding test sets obtained by the original ATPG.
The higher bridging fault coverage is obtained with
minimal increase in run time and test pattern count. On
the average, the 1-detect test sets of SPE_ATPG have
0.1% more patterns than the 1-detect test sets of the
original ATPG and the pattern count increase is 0.8% for
10-detect test sets. The average increase in run time for
SPE_ATPG is 8.8% for 1-detect tests and it is 7.4% for

10-detect tests. The average increase in bridging fault
coverage (BFC) obtained by using SPE technique is
1.05% for 1-detect test sets and 0.81% for 10-detect test
sets.

The following additional observation can be made
from the data given in Table 1. Using SPE techniques
one can derive higher quality tests that can achieve the
same or higher un-modeled defect coverage using
smaller run times and pattern counts. For example the
10-detct test set for circuit C1 generated by using the
original ATPG has 34,151 tests and a relative run time of
7.37. These tests achieve bridging fault coverage of
95.06. However using SPE techniques one can achieve
95.53 bridging fault coverage by 3-detect tests which
contain 11,692 tests and use a relative run time of 2.19.

The next experiment we performed was to validate
the use of techniques such as SPE to improve the
coverage of un-modeled defects. The data in Table 1
shows that the SPE based test sets achieve higher bridge
defect coverage. The data given in Table 2 shows that
1-detect tests for SSL faults generated by the original
ATPG and the SPE_ATPG both detect essentially all
interconnect open faults. This data was obtained by
simulating the 1-detect tests on interconnect opens
modeled by multiple line stuck-at faults. To perform this
experiment we incorporated into the ATPG the
procedures in [19]. An interconnect open at a circuit
node with a fan-out of k is modeled by (2k+1 – 2)
multiple stuck-at faults [19]. Implicit simulation
procedures given in [19] permit efficiently determining
the multiple stuck-at faults detected by a given test set.
Since simulation procedures cannot determine the
un-testable faults we also modified the ATPG to
determine if the multiple stuck-at faults remaining after
simulating 1-detect test sets are detectable. In Table 2,
after the circuit name, we give the number of multiple
stuck-at faults corresponding to all possible single
interconnect open faults. Next we give the number of
test patterns (#TP) and the number of multiple stuck-at
faults that are not detected (#UndOF) by the 1-detect test
sets derived by the original ATPG and the SPE_ATPG.
The number of undetected faults given includes the
faults that can be detected if additional tests are
generated by an ATPG modified to generate tests for
multiple-stuck faults and the faults aborted by the ATPG.
It can be seen that a negligible portion of multiple
stuck-at faults that model interconnect open defects are
not detected by standard SSL test sets.

Table 2. Coverage for interconnect open defects
Orig_D1 SPE_D1 Ckt #TotOF #TP #UndOF #TP #UndOF

C1 7.970E8 5400 18 5352 8
C2 1.198E9 2252 465 2296 1799
C3 2.246E9 2126 327 2101 929
C4 2.700E9 7937 1228 7985 1770
 The third experiment we performed was to

evaluate the relative quality of tests generated using
SPE_ATPG when we restrict the total number of
specified bits in tests to be less than or equal to a
maximum value. For this experiment we assumed the

test data compression technique of [17] with a target
compression ratio of 32X and encoding efficiency of
0.95. This restricts the number of specified bits to be less
than 3% of the number of circuit scan cells. Using this
limit on the number of specified bits in tests we
generated 1-detection test sets with and without using
the SPE techniques. The results of this experiment are
given in Table 3. After the circuit name we give the
number of test patterns, the SSL fault coverage (SAFC)
and the fault coverage of 400K randomly selected 4-way
bridging faults (BFC) for the original ATPG and the
SPE_ATPG. From Table 3 it can be seen that compared
to the original ATPG tests the SPE_ATPG tests achieve
higher bridging fault coverage and the same SSL fault
coverage. For three of the four circuits the pattern counts
are less for the SPE based tests. These results show that
SPE techniques can be used to improve the ability of
tests to detect un-modeled defects without reducing
achievable test data compression.

Table 3. Defect aware ATPG under EDT
(C.R.=32X)

Orig_D1_32X SPE_D1_32X Ckt #TP SAFC BFC #TP SAFC BFC
C1 5757 97.13 90.95 5860 97.13 92.74
C2 2755 98.38 94.97 2663 98.38 95.53
C3 2502 98.74 92.61 2475 98.74 93.74
C4 9116 98.66 93.82 8857 98.66 94.20

 The fourth experiment we performed was to
investigate the effect of SPE techniques when the faults
targeted for test generation may include SSL faults as
well as bridging faults extracted from the circuit layout.
For circuit C1 for which we have layout we extracted
800K realistic bridges. Using the extracted bridges and

SSL faults we generated tests with and without using
SPE techniques in the following way. First 1-detect test
set was generated which was augmented to detect
realistic bridges. Next we augmented these test sets to
3-detect all SSL faults. These four test sets were fault
simulated on additional 400K randomly selected 4-way
bridging faults. The results of this experiment are
reported in Table 4. The coverage of realistic bridges are
reported under the columns BFCEx and the coverage of
randomly selected bridges are shown under column
BFCRd. BFEEx gives the fault efficiency computed as
the percentage of detected faults out of the detectable
faults obtained by subtracting the fault proven to be
un-testable by the ATPG. It can be seen that all test sets
essentially achieve comparable coverage of realistic
bridging faults since they were targeted by ATPGs.
However the SPE based test sets achieve higher
coverage of un-modeled (un-targeted) bridging faults.

Table 4. SPE hybrid ATPG for design C1
Test Set #TP BFCEx BFEEx BFCRd

Orig_D1H 13278 90.17 99.75 93.64
SPE_D1H 12431 90.18 99.76 95.28
Orig_D3H 17441 90.17 99.75 94.44
SPE_D3H 16353 90.18 99.76 96.20

 The last set of data we present is related to the
bridge coverage estimate measures BCE and BCE+. An
objective of such measures is to determine the
incremental defect coverage obtained when additional
tests are added to a given test set. In Figures 4(a)
through 4(d) we plot the ratio of increase in bridging
fault coverage (∆BFC) and the increase in BCE (∆BCE)
and BCE+ (∆BCE+) as the value of n in n-detect tests is
increased. When BCE saturates the ratio ∆BFC/∆BCE

Table 1. Conventional n-detect test sets vs. SPE n-detect test sets
Ckt D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

5400 8311 11591 14870 18191 21411 24744 27716 31104 34151#TP
5352 8229 11692 15028 18245 21456 24777 27970 31180 34165
1.00 1.47 2.03 2.68 3.51 3.95 4.69 5.31 6.49 7.37 RT
1.09 1.58 2.19 2.87 3.51 4.42 4.99 5.72 6.53 7.31

91.05 92.53 93.38 93.90 94.25 94.49 94.66 94.86 94.98 95.06

C1

#G=344K
#SC=20K

BFC
93.11 94.70 95.53 96.05 96.37 96.62 96.75 96.86 96.96 97.01
2252 3597 5092 6600 7964 9292 10768 12145 13649 15119#TP
2296 3663 5206 6735 8157 9494 10961 12418 13847 15550
1.00 1.43 1.99 2.67 3.42 4.19 4.91 5.73 6.52 7.23 RT 1.06 1.55 2.12 2.81 3.58 4.42 5.20 6.00 6.78 8.72

95.03 96.35 97.02 97.38 97.66 97.85 98.01 98.13 98.22 98.26

C2

#G=543K
#SC=45K

BFC 95.40 96.72 97.38 97.72 97.98 98.14 98.29 98.40 98.48 98.53
2126 2694 3707 4536 5380 6249 7071 7946 8753 9669#TP
2101 2669 3731 4557 5423 6327 7072 8034 8873 9733
1.00 1.35 1.88 2.41 3.15 3.73 4.46 5.26 6.04 6.54 RT 1.10 1.56 2.22 2.67 3.32 3.95 4.61 5.30 6.30 6.88

92.80 94.44 95.43 95.98 96.34 96.57 96.77 96.92 97.04 97.15

C3

#G=1.21M
#SC=70K

BFC
94.17 95.66 96.53 96.95 97.31 97.51 97.69 97.81 97.89 98.01
7937 11156 15399 19492 23254 27212 30959 35304 39299 43253#TP
7985 11419 15643 19706 23592 27487 31498 35706 39946 43632
1.00 1.20 1.63 2.13 2.73 3.38 4.08 4.74 5.42 6.10 RT 1.13 1.35 1.84 2.33 2.95 3.59 4.24 4.94 5.61 6.35

93.88 94.61 95.11 95.38 95.59 95.77 95.89 96.00 96.08 96.18

C4

#G=1.21M
#SC=70K

BFC 94.26 94.89 95.35 95.63 95.82 95.98 96.09 96.17 96.27 96.34

could be very large and for this reason the vertical axis
in Figures 4(a) – 4(d) uses logarithmic scale. From these
plots we see that BCE+ provides a better estimate of the
increase in un-modeled defect coverage as additional
tests are added as noted by the fact that the plots for
∆BFC/∆BCE+ are flat while the plots for ∆BFC/∆BCE
rise steeply which indicates BCE saturation.

6. Conclusions

In this work we proposed a method to generate tests to
obtain high quality tests for manufacture test. The
proposed method enhances the probability of desired
signal values to increase accidental detections of static
defects. Results on several industrial circuits show that
the proposed method can be readily incorporated in to an
existing ATPG and the resulting test sets achieve higher
un-modeled defect coverage. The increase in defect
coverage is obtained with minimal impact on run time,
pattern count and achievable test date compression ratios.
A new measure to estimate test quality, called BCE+,
which is shown to give a good estimate of incremental
defect coverage was also proposed.
 In the future methods to increase accidental
detection of defects such as open transistors, resistive
opens and certain high resistance bridges which effect
circuit delays will be investigated.

References
1. M. Abramovici and M. Breuer, “A practical approach to fault

simulation and test generation for bridging fault,” IEEE Trans.
Computers, vol.34, no.7, 1985, pp. 658-663.

2. E. M. Amyeen et al., “Evaluation of the quality of N-detect scan
ATPG patterns on a processor,” in Proc. ITC, 2004, pp. 669-678.

3. K. Baker et al., “Defect-based delay testing of resistive
vias-contacts, a critical evaluation,” in Proc. ITC, 1999, pp.
467-476.

4. B. Benware et al., “Impact of multiple-detect test patterns on
produce quality,” in Proc. ITC, 2003, pp. 1031-1040.

5. R. D. Blanton, K. N. Dwarakanath and A. B. Shah, “Analyzing
the effectiveness of multiple-detect test sets,” in Proc. ITC, 2003,

pp. 876-885.
6. S. Chakravarty and A. Jain, “Fault models for speed failures

caused by bridges and opens,” in Proc. VTS, 2002, pp. 373-378
7. S. Chakravarty et al., “Experimental evaluation of scan tests for

bridges,” in Proc. ITC, 2002, pp. 509-518.
8. J. Dworak et al., “Defect-oriented testing and defective-part-level

prediction,” in Design and Test of Computers, vol.18, no.1, 2001,
pp. 31-41.

9. P. Engelke et al., “Automatic test pattern generation for resistive
bridging fautls,” in Proc. ETS, 2004.

10. H. Konuk, “Voltage- and current-based fault simulation for
interconnect open defects,” IEEE Trans. CAD of IC & Sys.,
vol.18, no.12, 1999, pp. 1768-1779.

11. S. C. Ma, P. Franco, and E. J. McCluskey, “An experimental test
chip to evaluate test techniques experimental results,” in Proc.
ITC, 1995, pp. 663-672.

12. S. Ma, I. Shaik and R. S. Fetherston, “A comparison of bridging
fault simulation methods,” in Proc. ITC, 1999, pp. 587-595.

13. P. C. Maxwell and R. C. Aitken, “Biased voting: a method for
simulating CMOS bridging faults in the presence of variable gate
logic thresholds,” in Proc. ITC, 1993, pp. 63-72.

14. S. D. Millman and S.J. P. Garvey, “An accurate bridging fault test
pattern generator,” in Proc. ITC, 1991, pp. 411-418.

15. I. Pomeranz and S.M.Reddy, “Stuck-at tuple-detection: a fault
model based on stuck-at faults for improved defect coverage”, in
Proc. VTS, 1998, pp. 289-294.

16. I. Pomeranz and S. M. Reddy, “Definitions of the numbers of
detections of target faults and their effectiveness in guiding test
generation for high defect coverage,” in Proc. DATE, 2001, pp.
504-508.

17. J. Rajski, et al., “Embedded deterministic test for low cost
manufacturing test,” in Proc. ITC, 2002, pp. 301-310.

18. J. Rajski, “Key note speech”, in ITC, 2003.
19. S. M. Reddy et al., “On testing of interconnect open defects in

combinational logic circuits with stems of large fanout,” in Proc.
ITC, 2002, pp. 83-89.

20. S. Sengupta et al., “Defect-based tests: a key enabler for
successful migration to structural test,” Intel Technology Journal,
Q.1, 1999.

21. T. M. Storey and W. Maly, “CMOS bridging faults detection”, in
Proc. ITC, 1990, pp. 842-851.

22. L. C. Wang, K. M. Butler and M. R. Mercer, “On efficiently and
reliably achieving low defective part levels,” in Proc. ITC, 1995,
pp. 616-625.

23. P. Wohl, et al., “X-tolerant compression and application of
scan-ATPG patterns in a BIST architecture,” in Proc. ITC, 2003,
pp.727-736.

0.1

1

10

100

1 2 3 4 5 6 7 8 9

 0.1

1

10

100

1 2 3 4 5 6 7 8 9

0.1

1

10

100

1 2 3 4 5 6 7 8 9

0.1

1

10

100

1 2 3 4 5 6 7 8 9

Figure 4. Plots of ∆BFC/∆BCE and ∆BFC/∆BCE+

(a) – C1 (b) – C2

(c) – C3 (d) – C4

∆BFC/∆BCE

∆BFC/∆BCE+

∆BFC/∆BCE

∆BFC/∆BCE ∆BFC/∆BCE

∆BFC/∆BCE+

∆BFC/∆BCE+ ∆BFC/∆BCE+

