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Abstract 
A method to generate test patterns referred to as defect 
aware test patterns is proposed. Defect aware test 
patterns have greater ability to detect un-modeled 
defects. The proposed method can be used with any test 
generation procedure to improve the effectiveness of the 
tests in detecting un-modeled defects. Experimental 
results on several industrial designs show the 
effectiveness of defect aware tests. We also propose a 
measure to estimate the effectiveness of given test sets in 
detecting un-modeled defects.  
 
 
1. Introduction 
 
Defects in deep submicron VLSI circuits are known to 
be predominantly opens and shorts or bridges. Two 
different approaches are currently being pursued to 
generate tests to achieve low value for defective parts 
per million shipped parts. One is to generate tests for 
more elaborate fault models that model defects more 
accurately [3,7,9,10,20, 21] and the other is to generate 
n-detect test sets using simpler fault models such as 
single stuck-at line (SSL) faults [4,8,11,22]. n-detect test 
sets contain tests to detect each modeled fault n times. 
The effectiveness of n-detect test sets is based on the 
observation that the possibility of accidentally activating 
an un-modeled defect and propagating its effect to 
observed outputs is enhanced by such test sets [11,22].  

In this work we consider enhancement of the 
probability of detecting un-modeled defects using single 
pattern tests to detect static defects. Although not 
discussed in this work, the basic idea behind the 
proposed method can be extended for use with 
two-pattern tests to enhance the coverage of un-modeled 
dynamic defects. 

As observed above, interconnect opens and bridges 
are known to be the most likely defects in deep 
submicron designs. We will present results on industrial 
circuits that show that tests for stuck-at faults detect 
essentially all detectable interconnect opens. We target 
improvement of coverage of un-modeled bridge defects 
when n-detect tests for SSL faults are generated.  

The remainder of this paper is organized as follows. 
In Section 2 we review previous works related to 
generating tests to improve coverage of un-modeled 
defects and then present the basic idea behind the 

proposed method. In Section 3 we give details of the 
proposed method and of our implementation of 
generating defect aware tests using an ATPG that targets 
SSL fault detection. In Section 4 we propose a measure 
to estimate the coverage of un-modeled defects by given 
test sets. Experimental results are presented in Section 5 
and Section 6 concludes the paper. 
 
2. Preliminaries 
 
Some earlier works have considered methods to generate 
n-detect tests for SSL faults with improved coverage of 
un-modeled defects. The method proposed in [15] 
generates n-detect tests such that every subset of faults 
of size m is either detected by a single test or each one of 
the faults in the subset is detected at least n times. The 
method proposed in [16] allows a test t that detects a 
fault f to be counted as an additional detection of f only 
if t satisfies a condition on its relationship with each one 
of the earlier generated tests that detects fault f. The 
methods discussed above do not directly consider 
increasing the probability of accidental detection of 
un-modeled bridges.  

Several methods to model bridges have been 
proposed in the literature [1,6,9,12-14,20]. A model that 
is effective in modeling the bridges that can be used to 
efficiently generate tests to detect bridges is the so called 
4-way bridging fault model [20]. This model has been 
used to generate manufacturing tests for commercial 
processors [2,7,20]. We use 4-way bridging faults as 
surrogates for un-modeled defects in evaluating the 
method proposed in this work to generate defect aware 
tests. For the sake of completeness we describe below 
the 4-way bridging fault model. 

 
Figure 1. Bridging fault examples: (a) a bridge;    

(b) a DOM bridging fault 

In the 4-way bridging fault model, each bridge 
defect between nodes <A, B>, shown in Figure 1(a), is 
modeled by four bridging faults: {A dom 0, B dom 0, A 
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dom 1, B dom 1}. The bridging fault {A dom 0} shown in 
Figure 1(b) is defined as node A is stuck-at-0 in the 
presence of the bridge if node B is 0. In this case, the 
signal value on node A is determined or dominated by 
the signal value on B in the presence of the bridge, thus 
leading to the fault name {A dom 0}. Node A is referred 
to as the victim node and node B as the aggressor node 
in the bridging fault {A dom 0}. The {A dom 0} fault is 
detected by a test that detects A stuck-at-0 and 
simultaneously sets B to 0. The other three components 
of a 4-way bridging fault and the tests to detect them are 
defined in a similar manner [20]. 

We next discuss the observation that is the basis for 
the method proposed to generate tests with enhanced 
coverage of un-modeled bridges.  

Given a test set T, let the 1-probability 
(0-probabilty) of a signal line S be the ratio of the 
number of times S is set to 1 (0) in the fault free circuit 
when T is applied and the number of tests in T. Let PS1 
(PS0) denote the 1-probability (0-probability) of S. 
Consider a bridge between nodes A and B and assume 
that nodes A and B are uncorrelated. The bridge may be 
detected by a test that detects A stuck-at-0 and sets B to 0. 
The probability of accidentally detecting the bridge by n 
different tests that detect A stuck-at-0 is 1-(1-PB0)n. In 
Figure 2 we plot the probability of detecting the bridge 
fault versus the number of times the A stuck-at-0 fault is 
detected for four different values of PB0. 
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Figure 2. Probability of detecting a bridge by 

N-detect tests [18] 

The plots in Figure 2 suggest that for a fixed value 
of n for n-detect test sets the probability of accidental 
detections of bridge defects can be increased 
significantly by increasing the probability of occurrence 
of the appropriate signal values on one of the pair of 
nodes involved in a bridge when the tests for modeled 
faults are applied.   

Typically only a very small portion of the circuit 
inputs are specified in tests for modeled faults. Thus it is 
feasible to specify some of the unspecified circuit inputs 
to set circuit lines to desired values. This can be used to 
increase the probabilities of signal lines with low signal 
probabilities, to increase the probability of accidental 
detection of un-modeled bridges. In the sequel, for the 
sake of simplicity, we use 4-way bridge faults in 
describing the proposed method and in evaluating its 
effectiveness. 

3. Defect aware ATPG 
 
Details of the proposed method to increase the coverage 
of un-modeled defects are given next. 

3.1. Signal probability enhancing cubes 
The signal probability enhancing (SPE) cubes of a node 
are minimally specified input vectors which can set a 
given node to a desired logic value.  

We use SPE cubes to increase the 1-probablity or 
0-probablity of signal lines with signal probabilities 
below a threshold. During test generation, after a test t is 
generated we embed SPE cubes of selected nodes into t 
by setting the unspecified values in t to the specified 
values in the SPE cubes of the selected nodes. For 
example, let t = X0X110XXXX. We can embed the SPE 
cube X0XXX01XXX into t and obtain a modified test 
X0X1101XXX. We can embed another SPE cube 
1X01XXXXXX into the modified test to obtain the 
newly modified test 1001101XXX. The remaining 
unspecified values in the modified test can be randomly 
filled before fault simulating the test. 

SPE cubes for a node can be obtained by 
performing backward implications with the node value 
set to a desired value 0 or 1. In order to reduce the 
impact on the randomness of the generated test patterns 
with respect to un-modeled defects, several different 
SPE cubes for a node can be generated and randomly 
selected from the generated cubes for embedding into 
tests. In this work, upto three SPE cubes were generated 
and stored for each target node. 

 
Figure 3. Signal probability enhancing cube 

example 

The nodes targeted for enhancing signal 
probabilities normally have strongly biased signal 
probability when the inputs are randomly specified. For 
example in Figure 3, node g has low 1-probability value 
(5/64) if inputs (a,b,c,d,e,f) are randomly specified. The 
input vector <XX1000> can set node g to 1, and is 
considered as a SPE cube setting for g to 1. <11X000> is 
another SPE cube of g to set it to 1. If the circuit of 
Figure 3 is part of a larger circuit, the low value of 
1-probability of g can be improved if one of these cubes 
is applied often during test generation for the circuit. 

3.2. The proposed ATPG algorithm 
The proposed ATPG uses SPE cubes to improve the 
overall signal probability profile for the circuit under test 
during ATPG and therefore improving the bridging fault 
coverage and test quality.  

Since it may be too time consuming to compute the 
signal probabilities for all circuit nodes as new patterns 
are generated, only the signal probabilities of the fanout 
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stems which are outputs of fanout-free regions are 
computed in our work. These nodes together with a 
signal value are referred to as potential signal 
probability enhancement targets and are placed in a 
buffer Buf1 during a preprocessing step.  

During the generation of tests, first a conventional 
ATPG is run until a preset number of N patterns are 
generated. During this phase of the APTG all 
unspecified values in the generated tests are filled 
randomly. The signal probabilities of signals in Buf1 are 
initially computed from the signal value statistics 
collected for the first N test patterns. N was set to 512 in 
our implementation. After the generation of the first N 
test patterns, the proposed SPE technique is turned on 
and signal probability enhancement is performed by 
embedding SPE cubes for selected signals into each 
newly generated test pattern. After embedding SPE 
cubes, the remaining unspecified values in the modified 
tests are randomly filled.  

All the potential SPE targets in Buf1 with 
0-probability or 1-probability value less than a 
predefined threshold (0.10 in our implementation) are 
considered as SPE candidates and put into a second 
buffer Buf2. A subset of the SPE candidates with the 
lowest signal probabilities are selected as SPE targets 
and put into a third buffer Buf3. In our implementation 
we allowed Buf3 to contain upto 1000 SPE targets 
ordered according to increasing values of their signal 
probabilities. We attempt to embed one randomly 
selected SPE cube of each SPE target in Buf3 into a 
partially specified newly generated test pattern. The SPE 
targets in Buf3 are updated after each set of 32 new test 
patterns. This is done by first updating the signal 
probabilities of the SPE candidates in Buf2 after 32 new 
test patterns are simulated and then moving upto 1000 
signal nodes with the lowest probabilities into Buf3. 
Similarly, we update the signal probabilities of the 
potential SPE targets in Buf1 after every 128 new tests 
are simulated and the SPE candidates in Buf2 are 
updated by moving the potential SPE targets in Buf1 
with signal probabilities less than 0.1 into Buf2.  

Up to three SPE cubes are generated only for 
signals in Buf3. Whenever a signal line is moved into 
Buf3 we generate SPE cubes only if they were not 
generated earlier for this signal line.  

3.3. Signal probability enhancement maintaining 
test data compression 
When test data volumes are to be reduced by 
compression techniques such as [17,23] the unspecified 
values in the tests are filled by the decompressor used. 
Thus filling unspecified values in tests by embedding 
SPE cubes may dramatically reduce the achievable test 
data volume compression. For this reason one should fill 
only a very limited number of unspecified bits in tests by 
embedding SPE cubes. For test data compression 
technique such as [17], one can compute the number of 
unspecified values that can be filled by embedding SPE 
cubes. We briefly describe this next.  

For a design with NFF scan cells, let the targeted 

input test data compression ratio be CR and let the 
encoding efficiency of the compression scheme be η. 
Then the allowed maximum number of specified bits in 
a test is η*NFF/CR. Given a newly generated test we 
can allow the unspecified bits to be specified by 
embedding SPE cubes until the total number of specified 
bits in the test is less than or equal to η*NFF/CR. 

 
4. Modified bridging coverage estimate 
 
Quality of tests is typically evaluated by fault coverage 
metrics. Fault coverage metrics however do not provide 
a measure of the coverage of actual defects. For this 
reason, several methods have been proposed in the 
literature to estimate defect coverage by given test sets. 
One method is to use fault coverage of un-modeled 
faults (called surrogate defects) as a measure of defect 
coverage [8,15,16]. Several methods that do not use 
simulation of surrogate defects to estimate defect 
coverage have also been proposed [4,5,8]. A recently 
proposed measure called bridge coverage estimate (BCE) 
[4] is simple to calculate and was shown to estimate 
incremental defect coverage by n-detect test sets as 
measured by the defective parts of an ASIC design 
detected by tests with increasing numbers of detection of 
SSL faults. This measure of quality may not give an 
accurate estimate of the coverage of un-modeled defects 
but it can be used to compare relative effectiveness of 
defect coverage by two different test sets. Another use of 
this measure could be to use the increment in the value 
of the measure to estimate the additional defect coverage 
obtained by, for example, n-detect tests as additional 
tests are generated to increase the number of detections 
of SSL faults. This will provide a basis to select the 
value of n for n-detect tests. However it has been noted 
that BCE may saturate early for some designs and hence 
may not provide a good estimate of incremental defect 
coverage by n-detection tests as n is increased [2]. We 
propose a modification to this measure. Experimental 
results presented in the next section show that the 
modified measure gives a better estimate of the 
incremental defect coverage of test sets.  

Definition 1 [4]: Given a test set T and a target 
fault list F of SSL faults, the bridging coverage estimate 
(BCE) is calculated as follows:  
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where fi is the number of stuck-at faults detected i times 
by T, |F| is the total number of stuck-at faults in the 
target fault list F, and n is the maximum number of 
detections that a fault can be detected by T. In practice, n 
is limited by the maximum number of detections that the 
fault simulation tool keeps track of. The underlying 
assumption in computing BCE is that the aggressor node 
of a bridging fault has 50% probability of being in the 
state to activate the bridge defect when the appropriate 
stuck-at fault at the victim node is detected.  

Consider a bridging fault {A dom 0} between nodes 
A and B. For a given test set, assuming the 0-probability 



value of B is p and the stuck-at fault (A sa0) is detected 
by n different test patterns, the probability to detect this 
bridging fault by this test set will actually be 1-(1-p)n, 
instead of (1-2-i) as used in the calculation of BCE. To 
overcome this inaccuracy of BCE a modified bridge 
coverage estimate, called BCE+ is proposed, which 
combines multiple detection profile of SSL faults and 
the circuit signal probability profile for a given set of 
tests. 

Definition 2: Given a test set T, a set of signal 
nodes S and a target fault list F, the bridging coverage 
estimate BCE+ is calculated as follows:  
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where fi
sa0 (fi

sa1) is the number of sa0 (sa1) faults 
detected i times by test set T, pj0 (pj1) is the 0-probabiltiy 
(1-probalility) of signal j in the subset S of the circuit 
signals considered and |S| is the cardinality of the set S.  
 
5. Experimental results 
 
We implemented the proposed defect aware ATPG 
procedures by incorporating them into a state of the art 
commercial ATPG. The modified ATPG is referred to as 
SPE_ATPG.  

In the first experiment we performed, for each one 
of four circuits studied we generated two sets of n-detect 
tests for SSL faults using the original ATPG and the 
SPE_ATPG for n = 1 to 10. Both test sets were then fault 
simulated on 100K randomly selected bridges using 
4-way bridging fault model. The 100K bridges result in 
400K 4-way bridging faults. The results are given in 
Table 1 on the next page. In Table 1 we first give the 
circuit name, the number of gates #G and the number of 
scan cells #SC in the circuit. In the following columns 
we report the number of tests #TP, the run times RT and 
the percent of the 400K 4-way bridging faults detected 
by the test sets. The column with the heading Dn 
includes the data for n-detect test sets, n =1 to 10. The 
data for the ten pairs of n-detect test sets are arranged in 
two consecutive rows, with the data for the original 
ATPG in the first row and the data for the SPE_ATPG in 
the second row. The run times reported are normalized 
run times obtained by dividing the run times by the time 
to generate the standard single detection tests for SSL 
faults using the original ATPG. It can be seen that for all 
circuits every n-detect test set obtained by SPE_ ATPG 
achieves higher bridging fault coverage than the 
corresponding test sets obtained by the original ATPG. 
The higher bridging fault coverage is obtained with 
minimal increase in run time and test pattern count. On 
the average, the 1-detect test sets of SPE_ATPG have 
0.1% more patterns than the 1-detect test sets of the 
original ATPG and the pattern count increase is 0.8% for 
10-detect test sets. The average increase in run time for 
SPE_ATPG is 8.8% for 1-detect tests and it is 7.4% for 

10-detect tests. The average increase in bridging fault 
coverage (BFC) obtained by using SPE technique is 
1.05% for 1-detect test sets and 0.81% for 10-detect test 
sets.  

The following additional observation can be made 
from the data given in Table 1. Using SPE techniques 
one can derive higher quality tests that can achieve the 
same or higher un-modeled defect coverage using 
smaller run times and pattern counts. For example the 
10-detct test set for circuit C1 generated by using the 
original ATPG has 34,151 tests and a relative run time of 
7.37. These tests achieve bridging fault coverage of 
95.06. However using SPE techniques one can achieve 
95.53 bridging fault coverage by 3-detect tests which 
contain 11,692 tests and use a relative run time of 2.19.  

The next experiment we performed was to validate 
the use of techniques such as SPE to improve the 
coverage of un-modeled defects. The data in Table 1 
shows that the SPE based test sets achieve higher bridge 
defect coverage. The data given in Table 2 shows that 
1-detect tests for SSL faults generated by the original 
ATPG and the SPE_ATPG both detect essentially all 
interconnect open faults. This data was obtained by 
simulating the 1-detect tests on interconnect opens 
modeled by multiple line stuck-at faults. To perform this 
experiment we incorporated into the ATPG the 
procedures in [19]. An interconnect open at a circuit 
node with a fan-out of k is modeled by (2k+1 – 2) 
multiple stuck-at faults [19]. Implicit simulation 
procedures given in [19] permit efficiently determining 
the multiple stuck-at faults detected by a given test set. 
Since simulation procedures cannot determine the 
un-testable faults we also modified the ATPG to 
determine if the multiple stuck-at faults remaining after 
simulating 1-detect test sets are detectable. In Table 2, 
after the circuit name, we give the number of multiple 
stuck-at faults corresponding to all possible single 
interconnect open faults. Next we give the number of 
test patterns (#TP) and the number of multiple stuck-at 
faults that are not detected (#UndOF) by the 1-detect test 
sets derived by the original ATPG and the SPE_ATPG. 
The number of undetected faults given includes the 
faults that can be detected if additional tests are 
generated by an ATPG modified to generate tests for 
multiple-stuck faults and the faults aborted by the ATPG. 
It can be seen that a negligible portion of multiple 
stuck-at faults that model interconnect open defects are 
not detected by standard SSL test sets.  

Table 2. Coverage for interconnect open defects 
Orig_D1 SPE_D1 Ckt #TotOF #TP #UndOF #TP #UndOF

C1 7.970E8 5400 18 5352 8 
C2 1.198E9 2252 465 2296 1799 
C3 2.246E9 2126 327 2101 929 
C4 2.700E9 7937 1228 7985 1770 
  The third experiment we performed was to 

evaluate the relative quality of tests generated using 
SPE_ATPG when we restrict the total number of 
specified bits in tests to be less than or equal to a 
maximum value. For this experiment we assumed the 



test data compression technique of [17] with a target 
compression ratio of 32X and encoding efficiency of 
0.95. This restricts the number of specified bits to be less 
than 3% of the number of circuit scan cells. Using this 
limit on the number of specified bits in tests we 
generated 1-detection test sets with and without using 
the SPE techniques. The results of this experiment are 
given in Table 3. After the circuit name we give the 
number of test patterns, the SSL fault coverage (SAFC) 
and the fault coverage of 400K randomly selected 4-way 
bridging faults (BFC) for the original ATPG and the 
SPE_ATPG. From Table 3 it can be seen that compared 
to the original ATPG tests the SPE_ATPG tests achieve 
higher bridging fault coverage and the same SSL fault 
coverage. For three of the four circuits the pattern counts 
are less for the SPE based tests. These results show that 
SPE techniques can be used to improve the ability of 
tests to detect un-modeled defects without reducing 
achievable test data compression. 

Table 3. Defect aware ATPG under EDT 
(C.R.=32X) 

Orig_D1_32X SPE_D1_32X Ckt #TP SAFC BFC #TP SAFC BFC
C1 5757 97.13 90.95 5860 97.13 92.74
C2 2755 98.38 94.97 2663 98.38 95.53
C3 2502 98.74 92.61 2475 98.74 93.74
C4 9116 98.66 93.82 8857 98.66 94.20

 The fourth experiment we performed was to 
investigate the effect of SPE techniques when the faults 
targeted for test generation may include SSL faults as 
well as bridging faults extracted from the circuit layout. 
For circuit C1 for which we have layout we extracted 
800K realistic bridges. Using the extracted bridges and 

SSL faults we generated tests with and without using 
SPE techniques in the following way. First 1-detect test 
set was generated which was augmented to detect 
realistic bridges. Next we augmented these test sets to 
3-detect all SSL faults. These four test sets were fault 
simulated on additional 400K randomly selected 4-way 
bridging faults. The results of this experiment are 
reported in Table 4. The coverage of realistic bridges are 
reported under the columns BFCEx and the coverage of 
randomly selected bridges are shown under column 
BFCRd.  BFEEx gives the fault efficiency computed as 
the percentage of detected faults out of the detectable 
faults obtained by subtracting the fault proven to be 
un-testable by the ATPG. It can be seen that all test sets 
essentially achieve comparable coverage of realistic 
bridging faults since they were targeted by ATPGs. 
However the SPE based test sets achieve higher 
coverage of un-modeled (un-targeted) bridging faults.  

Table 4. SPE hybrid ATPG for design C1 
Test Set #TP BFCEx BFEEx BFCRd

Orig_D1H 13278 90.17 99.75 93.64
SPE_D1H 12431 90.18 99.76 95.28
Orig_D3H 17441 90.17 99.75 94.44
SPE_D3H 16353 90.18 99.76 96.20

 The last set of data we present is related to the 
bridge coverage estimate measures BCE and BCE+. An 
objective of such measures is to determine the 
incremental defect coverage obtained when additional 
tests are added to a given test set. In Figures 4(a) 
through 4(d) we plot the ratio of increase in bridging 
fault coverage (∆BFC) and the increase in BCE (∆BCE) 
and BCE+ (∆BCE+) as the value of n in n-detect tests is 
increased. When BCE saturates the ratio ∆BFC/∆BCE 

Table 1. Conventional n-detect test sets vs. SPE n-detect test sets 
Ckt D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 

5400 8311 11591 14870 18191 21411 24744 27716 31104 34151#TP 
5352 8229 11692 15028 18245 21456 24777 27970 31180 34165
1.00 1.47 2.03 2.68 3.51 3.95 4.69 5.31 6.49 7.37 RT 
1.09 1.58 2.19 2.87 3.51 4.42 4.99 5.72 6.53 7.31 

91.05 92.53 93.38 93.90 94.25 94.49 94.66 94.86 94.98 95.06

C1 
 

#G=344K 
#SC=20K 

BFC 
93.11 94.70 95.53 96.05 96.37 96.62 96.75 96.86 96.96 97.01
2252 3597 5092 6600 7964 9292 10768 12145 13649 15119#TP 
2296 3663 5206 6735 8157 9494 10961 12418 13847 15550
1.00 1.43 1.99 2.67 3.42 4.19 4.91 5.73 6.52 7.23 RT 1.06 1.55 2.12 2.81 3.58 4.42 5.20 6.00 6.78 8.72 

95.03 96.35 97.02 97.38 97.66 97.85 98.01 98.13 98.22 98.26

C2 
 

#G=543K 
#SC=45K 

BFC 95.40 96.72 97.38 97.72 97.98 98.14 98.29 98.40 98.48 98.53
2126 2694 3707 4536 5380 6249 7071 7946 8753 9669#TP 
2101 2669 3731 4557 5423 6327 7072 8034 8873 9733
1.00 1.35 1.88 2.41 3.15 3.73 4.46 5.26 6.04 6.54 RT 1.10 1.56 2.22 2.67 3.32 3.95 4.61 5.30 6.30 6.88 

92.80 94.44 95.43 95.98 96.34 96.57 96.77 96.92 97.04 97.15

C3 
 

#G=1.21M 
#SC=70K 

BFC 
94.17 95.66 96.53 96.95 97.31 97.51 97.69 97.81 97.89 98.01
7937 11156 15399 19492 23254 27212 30959 35304 39299 43253#TP 
7985 11419 15643 19706 23592 27487 31498 35706 39946 43632
1.00 1.20 1.63 2.13 2.73 3.38 4.08 4.74 5.42 6.10 RT 1.13 1.35 1.84 2.33 2.95 3.59 4.24 4.94 5.61 6.35 

93.88 94.61 95.11 95.38 95.59 95.77 95.89 96.00 96.08 96.18

C4 
 

#G=1.21M 
#SC=70K 

BFC 94.26 94.89 95.35 95.63 95.82 95.98 96.09 96.17 96.27 96.34



could be very large and for this reason the vertical axis 
in Figures 4(a) – 4(d) uses logarithmic scale. From these 
plots we see that BCE+ provides a better estimate of the 
increase in un-modeled defect coverage as additional 
tests are added as noted by the fact that the plots for 
∆BFC/∆BCE+ are flat while the plots for ∆BFC/∆BCE 
rise steeply which indicates BCE saturation. 
 
6. Conclusions 
 
In this work we proposed a method to generate tests to 
obtain high quality tests for manufacture test. The 
proposed method enhances the probability of desired 
signal values to increase accidental detections of static 
defects. Results on several industrial circuits show that 
the proposed method can be readily incorporated in to an 
existing ATPG and the resulting test sets achieve higher 
un-modeled defect coverage. The increase in defect 
coverage is obtained with minimal impact on run time, 
pattern count and achievable test date compression ratios. 
A new measure to estimate test quality, called BCE+, 
which is shown to give a good estimate of incremental 
defect coverage was also proposed.  
     In the future methods to increase accidental 
detection of defects such as open transistors, resistive 
opens and certain high resistance bridges which effect 
circuit delays will be investigated.  
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Figure 4. Plots of ∆BFC/∆BCE and ∆BFC/∆BCE+ 

(a) – C1 (b) – C2

(c) – C3 (d) – C4 

∆BFC/∆BCE 

∆BFC/∆BCE+ 

∆BFC/∆BCE 

∆BFC/∆BCE ∆BFC/∆BCE 

∆BFC/∆BCE+ 

∆BFC/∆BCE+ ∆BFC/∆BCE+ 


