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ABSTRACT Carbon fiber reinforced polymer (CFRP) has been increasingly used in aviation industry since it

significantly enhances the performance of aircraft. However, imperfections inside the CFRP structures pose

a threat to aviation safety. Apart from the defect shape and size, flaw depth is crucial to assess the defect

severity. In this work, we utilize a laser infrared thermography (LIT) system to inspect an aviation CFRP sheet

and adopt a long-short term memory recurrent neural network (LSTM-RNN) to determine the defect depth.

Thermographic sequences obtained by LIT are processed using thermographic signal reconstructions (TSR)

method. Raw data and TSR processed data are separately used to train and test the LSTM-RNN. Results show

that background noises in the original thermal signals can be effectively reduced by the TSR method, which

is helpful for the models to learn the signal characteristics. Compared with two traditional methods, recurrent

neural network (RNN) and convolutional neural network (CNN), we find the LSTM-RNN outperforms.

INDEX TERMS CFRP, depth determination, laser infrared thermography (LIT), neural network (NN),

thermographic signal reconstruction (TSR).

I. INTRODUCTION

Active infrared thermography (AIRT) is a non-contact, wide

range, and rapid technique [1]–[4], which has performed

effectively in defects detection of carbon fiber reinforced

polymer (CFRP) components. The front surface of inspected

structure is excited by an external heat source. Internal

imperfections of less effusivity appears as an area of higher

temperature than surrounding sound materials during the

stimulation course. This feature can be captured by a ther-

mal camera, making defects detection possible. Traditional

excitation sources include microwave [5], ultrasound [6], and

flash lamp [7], each of which has advantages and disad-

vantages due to the different physical principles. Recently,

with the development of laser technology, laser infrared ther-

mography (LIT) has attracted increasing attentions. Li et al.

proposed a new surface crack imaging method by using laser

as thermal excitation source [8]. Qiu et al. adopted a laser to

heat metal surface and studied the relationship between sur-

face crack size and temperature distribution [9]. Wang et al.

utilized a laser to heat aerospace composite plates in order

to detect internal defects [10]. Swiderski et al. detected the
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internal delamination defects of carbon fiber composite mate-

rials by using a laser as thermal excitation [11]. Com-

pared with traditional thermal excitation source, laser has

the advantages of higher energy density, higher accuracy

and great controllability. The laser excitation energy can be

controlled by adjusting the parameters of the laser pulse

waveform, frequency and intensity through a computer.

Moreover, the radius of laser spot can be controlled by optical

lens system, thereby changing the heating area of the speci-

men. Therefore, LIT is a flexible non-destructive technology

(NDT), which can accurately quantify the heat absorbed by

the surface of the specimen. However, restricted by resolution

limit and by the sensitivity of infrared cameras, it is difficult to

find out defects with small aspect ratio or beneath the surface.

To improve image contrast and signal-to-noise ratio (SNR),

thermographic signal reconstruction (TSR) was adopted to

process thermal response signal [12], [13].

Recently, neural networks (NN) have prevailed in pattern

recognition [14], automatic control [15], signal process-

ing [16] NNs have also advanced the defect classifica-

tion and depth determination with infrared thermography

NDT [17]–[21]. The featured parameter of the defects

can be extracted from NNs trained with data obtained

through simulations using finite element method (FEM) or
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through experiments. Due to its particular structure, long

short-term memory recurrent neural network (LSTM-RNN)

is specialized in processing time sequence information,

and has been applied in the natural language process-

ing [22] and data prediction [23]. While thermographic

sequences recorded by infrared camera could be regarded

as temperature-time sequences of each point on the surface

of inspected structure, where internal defects at different

depths exhibited different characteristics in their sequences.

Hu et al. used thermal contrasts over time in the cooling pro-

cess as input of LSTM-RNN, which classified the debonding,

adhesive, pooling, and liquid ingress defects in honeycomb-

structured materials. Result showed that the LSTM-RNN

model is capable of defects classification [24].

In this work, we focused on the depth determination

of embedding defects in CFRP laminates. A LSTM-RNN

model designed for processing temporal sequences will be

constructed. LIT inspected an CFRP specimen and thermal

responses (temperature evolutions) in after-exciting period

(cooling phase) will be used as data sets. TSR method will

be utilized to reconstruct the thermal signals as another data

sets. Temperature evaluation sequences from two data sets

will be used to train and test the model respectively. Results

will show that the LSTM-RNN model trained by data sets

from TSR method has great accuracy in determining the

depth of defects inside CFRP laminates. Compared with two

other methods, we will show that the LSTM-RNN method is

appealing in infrared thermal sequence processing.

II. GUIDELINES FOR MANUSCRIPT PREPARATION

A. SPECIMEN PREPARATION

Three pieces of carbon fiber unidirectional prepreg compos-

ite laminates were used as experimental specimens, num-

bered C1, C2, C3 (Fig. 1). The size of each specimen is

180mm×180mm, the thickness of the specimen skin is 3mm,

the single-layer prepreg thickness is 0.125mm, and the adhe-

sive film thickness is 0.2mm. The debonding defects was

simulated by embedding Teflon films between layers, since

Teflon and air have similar thermal properties. Since the ini-

tial specimen design plan was not made for this experiment,

the defect size of the three specimens parts were not the same.

Defects at shallow depths have small sizes, while those at

deep depths have large size.

B. EXPERIMENTAL SETUP

A self-built LIT system illustrated by Fig. 2 was used in

the experiment. The system consisted of three main parts:

laser transmitter, infrared camera and computer. A pulsed

laser with center wavelength of 1064mm was used to excite

surface of specimen under test. The incident laser diame-

ter is 4mm, and the pulse laser width range is 1ms∼500s.

Due to the wide distribution of the embedded defects,

concave lens, beam splitter and beam expander (from left

to right) were used to diffuse the laser. A Focal Plane

Array (FPA) infrared camera (from FLIR, 7.7-9.3µm) with a

FIGURE 1. Schematics of test specimen C1 (a), C2 (b), C3 (c).

FIGURE 2. Schematic diagram of LIT system.

320 × 240 pixels array was adopted to record the surface

temperature, forming a thermographic sequence, as shown

in Fig,3. A mini USB oscilloscope (Analog Discovery 2,

AD2) was used to control the electrical signal of the laser

transmitter to regulate the parameters of the laser.

Experiments were carried out twice for each of the three

specimens, using the same experiment settings. The distance

between the sample and the front concave lens was 500mm,

the distances between the three lenses was 50mm, and the dis-

tance between the beam expander and the laser was 5mm. The

detail of laser settings was shown in Table. 1.The diameter of

the laser spot on the surface was measured to be 300mm, and

the center of spot was adjusted to locate between the middle

two rows of defects. From the beginning of laser excitation,

the infrared camera started to record temperature distribution

of the specimen. The acquisition frequency was 50Hz and the

acquisition time was 20s. 1000 thermal images were recorded
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TABLE 1. Experimental parameters.

FIGURE 3. Thermographic sequence. The sequence includes heating and
cooling process.

for each experiment. Analyzing the thermal image obtained at

the time of 10.0s, the red squares in Fig. 4 show the observable

defects.

III. DEPTH DETERMINATION METHOD

A. LSTM-RNN

Compared with other networks, recurrent neural networks

(RNN) introduced a cyclic structure, which allows informa-

tion exchange and sharing between hidden layers. Thus, it is

capable of sequence data analysis and prediction. However,

in the process of RNN training and testing, problems such

as gradient disappearance, gradient explosion, lack of long-

term memory capability etc. would occur [25]. A solution

was proposed by Hochreiter et al. [26] and named as long

short termmemory (LSTM) structure which adds information

flow path processing and analysis of sequence data better.

The core of the LSTM structure is a unit with information

storage function. Valuable information can be stored for a

long time through the information flow. The forget gate, input

gate and output gate in the LSTM (Fig. 5) have the functions

of filtering the information on the flow and assigning weights

to the new and old information, to selectively increase and

remove the information in the cell. In simple terms, the for-

get gate determines which information should be abandoned

from previous unit cell states, the input gate determines which

input information and candidate cell state should be updated,

and the output gate outputs information based on the state of

the unit cell state. The vector formulas for a LSTM can then

be written as: [27], [28]

ft = σ (Wf xt + Uf ht−1 + bf ) (1)

FIGURE 4. Thermal images of C1 (a), C2 (b), C3 (c) at 10s.

it = σ (Wixt + Uiht−1 + bi) (2)

c̃t = tanh(Wcxt + Ucht−1 + bc) (3)

ct = ft · ct−1 + it · c̃t (4)

ot = σ (Woxt + Uoht−1 + bo) (5)

ht = ot · tanh(ct ) (6)

where f , i, o, c represent forget gate, input gate, output gate

and cell,W is the input weights, U is the recurrent weights, b

is the bias weights. σ is the sigmoid function, which enables

the value between 0 and 1. tanh is hyperbolic tangent func-

tion, which enables the value between −1 and 1.

B. FEATURE EXTRACTION

The temperature curves were obtained by extracting the tem-

perature of pixels in defective and non-defective area orderly,

as shown in Fig. 6. The deeper the defects, the faster the
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FIGURE 5. LSTM structure. Forget gate, input gate and output gate are in
the square 1, 2 and 3.

FIGURE 6. Temperature evolution curves of non-defective area and
defects at different depths. Cooling stage started at 10s.

temperature dropped. At the end, the temperature of all pixels

would gradually drop to room temperature. The temperature

evaluation of cooling stage was made as one of the data sets.

In addition, the fitting data obtained by using TSR was made

as another data sets to train and test LSTM-RNN.

TSR is one of the classic methods for processing pixel-

based temperature evolutions. The surface temperature in

the non-defective area can be described as one-dimensional

diffusion equation [29]:

∂2T

∂z2
−

1

α

∂T

∂t
= 0 (7)

which has the solution of

T =
Q

e
√

π t
(8)

where T is the surface temperature, Q is the energy absorbed

by the surface, e is the thermal effusivity, t is the time after the

laser excitation started. However, heat flow will be impeded

when encountering internal adiabatic boundaries, such as air

or similar defects. Heat must flow around the defect, so that

the condition of one-dimensional diffusion no longer applies.

It can be described by two-dimensional diffusion equation,

in which case the solution in the log domain is:

ln (T ) = ln

(

Q

e

)

−
1

2
ln (π t) (9)

which is a straight line with slope −0.5 in the logarithmic

coordinate system. In actual inspection course, due to the

uneven laser power distribution and the influence of the

internal structure of the material, the logarithmic data will

be slightly shifted. A function or set of orthogonal functions

can be used to approximate the logarithmic time dependence

of a pixel. In this work, we used the fitted logarithmic data

to amplify temperature discriminations between defective

and non-defective areas. The 5th polynomial was used to fit

thermal data, which can be described as:

ln (T ) = a0 + a1 ln (t) + a2 [ln (t)]2 + a3 [ln (t)]3

+ a4 [ln (t)]4 + a5 [ln (t)]5 (10)

where the low-order polynomial was applied as an effective

low-pass filter to maintain the basic thermal response, and the

high-order only replicates noise that appears in the later, low

amplitude data. The thermal signal can be reconstructed by

T = exp{a0 + a1 ln (t) + a2 [ln (t)]2 + a3 [ln (t)]3

+ a4 [ln (t)]4 + a5 [ln (t)]5} (11)

Fig. 7 shows the cooling curves of defects with different

depths after TSR. Compared with the raw data, we find that

TSR has a better separation of temperatures in the last stage.

In order to prepare the training data sets, every thermal

sequence was cropped and merged into a 750 × 300 thermo-

gram, including all defective and part of non-defective areas,

as shown in Fig. 8. For round defective areas in the red square,

temperature evaluation of the pixels in the circle with the

center of the areas were extracted. Out of the red squares,

all pixels were considered as ones in non-defective area, and

their temperature evaluation were extracted as well.

IV. RESULT AND EVALUATION

A. RESULTS BASED ON LSTM-RNN MODEL

The LSTM-RNNmodel is illustrated by Fig. 9, which had one

hidden layer containing 128 nodes. It was set based on trial

and error. The output layer possessed 6 nodes for determining

non-defective areas and defects of five depths. Due to the

greater temperature change at the beginning of the cooling

stage, too much information would be lost if a long-time

step was set. For this reason, the time step of LSTM-RNN

model was set to 2, which means that in the input layer vector

group {x1, x2, . . . , xn}, the length of xi was 2. The vector xt
combined with the hidden layer state ht−1 at the previous

time step to be a vector of length 130 was used as the input

of LSTM. Softmax activation function was applied in fully

connected layer which contained 6 nodes to determine non-

defective areas and defects of five depths. Adam optimizer
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FIGURE 7. Cooling curves of non-defective area and defects at different
depths after TSR.

FIGURE 8. Thermal image cropped and merged from raw thermographic
sequences obtained from experiment.

was used to update the weights of network. Batch size was

set to 32.

We used the raw data and the TSR data obtained from the

first experiment to train the network respectively. To compare

the effect of the LSTM-RNN model trained by raw data

set with the TSR data set in determining the depth of the

defects, the parameters were the same. For convenience of

description, the former was named as M1, and the latter was

named M2. The data obtained from the second experiment

was used to test the network. M1 started overfitting after

300 epochs training, in which case, the training loss decreased

while the verification began to increase. Thus,M1was trained

for 300 epochs. The final training loss declined to 0.05 then

stabilized. M2 was trained for 250 epochs, and final training

loss declined to 0.03 then stabilized.

Fig. 10 and Fig. 11 show that M1 and M2 both had high

accuracy in the determination of defects with different depths

(NDA represents non-defective area, numbers of 050 to

150 indicating that the defects depth ranging from 0.5mm

to 1.5mm). The normalized confusion matrix was used to

evaluate the training performance of the LSTM-RNN model

(Fig. 10(b) and Fig. 11(b)). The diagonal of the matrix rep-

resents the recall rates of the LSTM-RNN model, that is,

the proportion of positive examples that were correctly pre-

dicted as positive [30]. The recall rates ofM1were above 90%

FIGURE 9. Data flow diagram of LSTM-RNN. m is the number of input
layer vector group. n is the number of input layer vector. σ is the sigmoid
function. tanh is hyperbolic tangent function. ht−1(ht ) is the hidden state
at t − 1

(

t
)

step.

FIGURE 10. (a) Depth determination for M1, and (b) corresponding
normalized confusion matrix.

for the defects in 0.5mm, 0.75mm, 1.0mm. A possible reason

is that, the heat accumulated around the deep defects emit-

ted thermal radiation, which is attenuated greatly. Therefore,

the thermal radiation signal received by the infrared camera

was close to that at surface, resulting in a low recall rate of
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FIGURE 11. (a) Depth determination for M2, and (b) corresponding
normalized confusion matrix.

the model. The recall rates of M2 were above 95% for the

defects in each depth. Therefore, in determination of defect

depth, the effect of M2 is better than M1. This is because

the infrared camera is sensitive to the interference from

environment noise. It may cause fluctuations in the received

thermal signal. The data after TSR retains the tendency of

raw data, yet the smoothness and continuity have been greatly

improved. Also, the temperature changes of defects in differ-

ent depth discriminated much conspicuously.

B. COMPARISON WITH TRADITIONAL METHODS

In order to verify that the performance of the LSTM-RNN

model in determining depth of defects by processing thermal

signal, a RNNmodel and a CNNmodel were also trained and

tested by raw data and TSR data to compare.

RNN is the general class of neural network, which is

the predecessor of LSTM [31]. The model had one hidden

layer, containing 128 nodes. Time step was also set to 2.

Softmax activation function were applied. Adam optimizer

was used for weight updating. Batch size was set to 32. The

model trained by raw data was named as R1, and the model

trained by TSR data was named as R2. R1 was trained for

200 epochs and loss was declined to 0.03. R2 was trained for

150 epochs and loss was declined to 0.02. Results are shown

in Fig. 12 and Fig. 13.

CNN is a powerful deep learning method specializing in

various fields. The core ideas of CNN include three parts:

local receptive fields, shared weights, spatial or temporal

FIGURE 12. (a) Depth determination for R1, and (b) corresponding
normalized confusion matrix.

FIGURE 13. (a) Depth determination for R2, and (b) corresponding
normalized confusion matrix.

subsampling [32]. High-level features are extracted from the

input data through operations such as convolution operations,
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FIGURE 14. (a) Depth determination for N1, and (b) corresponding
normalized confusion matrix.

FIGURE 15. (a) Depth determination for N2, and (b) corresponding
normalized confusion matrix.

pooling operations, and nonlinear activation function map-

ping [33]. ACNNmodel was applied for depth determination.

Each convolutional layer contained 64 convolutional kernel,

of which size was 3 × 1. A maxpooling layer was added

every two convolutional layers to reduce the massive data

calculation. Softmax activation function was used, and Adam

optimizer was applied to update weight of network. Batch

size was set to 32. The model trained by raw data was named

as N1, and the model trained by TSR data was named as N2.

N1 was trained for 100 epochs and loss was declined to 0.03.

N2 was trained for 80 epochs and loss was declined to 0.05.

Results are shown in Fig.14 and Fig. 15.

Results show that, the recall rates of R1 are above 80%

for the defects in 0.25mm to 1.5mm, and those of R2 are

nearly 90%. However, the recall rates of N1 are below 80%

for the defects in 0.25mm to 1.5mm. The recall rates of N2 are

84% for the defects in 1.0mm and are around 80% for the

defects in 0.25mm, 0.75mm, 1.25mm, 1.5mm. Therefore,

we find LSTM-RNN>RNN>CNN in terms of the recall

rates. Because of the specialty in processing time related

sequence data, RNN testing results is close to LSTM-RNN.

CNN performswell in extracting local features, but compared

with the other networks, it has insufficiency in processing

time related sequence data.

V. CONCLUSION

In this work, LIT combined with deep learning algorithm

has been utilized to achieve the depth determination of the

debonding defects inside CFRP laminate. The raw data col-

lected by infrared camera and the data processed by TSR have

been used as input to train and test LSTM-RNNmodel. Using

the same method, the model trained by TSR data set outper-

forms the model trained by raw data set, indicating that envi-

ronment noises in the raw data can be effectively reduced by

TSR method and the continuity of the temperature evolution

sequence of defects at different depths were enhanced. At the

cooling stage, TSR data showed the greater discrimination

of temperature changes of defects at different depths, which

is important for the automatic determination of depth. The

performance of LSTM-RNN model has been evaluated and

compared with a RNN model and a CNN model. In terms

of the recall rates, the LSTM-RNN performs better than the

other two methods. In other words, for the thermal sequence

signals, the memory mechanism of LSTM-RNN enables it to

learn more signal characteristic information than RNN and

CNN. We expect this work will advance the field of NDT

using AI algorithms to improve the efficiency and accuracy

of defect identification and locating.
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