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Abstract Wafer defect detection often relies on accurate
image registration of source and reference images obtained
from neighboring dies. Unfortunately, perfect registration
is generally impossible, due to pattern variations between
the source and reference images. In this paper, we propose
a defect detection procedure, which avoids image registra-
tion and is robust to pattern variations. The proposed method
is based on anisotropic kernel reconstruction of the source
image using the reference image. The source and reference
images are mapped into a feature space, where every feature
with origin in the source image is estimated by a weighted
sum of neighboring features from the reference image.
The set of neighboring features is determined according
to the spatial neighborhood in the original image space, and
the weights are calculated from exponential distance similar-
ity function. We show that features originating from defect
regions are not reconstructible from the reference image, and
hence can be identified. The performance of the proposed
algorithm is evaluated and its advantage is demonstrated
compared to using an anomaly detection algorithm.
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1 Introduction

Defect detection in wafers is a critical component of the
wafers manufacturing process. Manual defect detection is
difficult, time consuming, expensive and may cause yield
ratio loss. Accuracy obtainable by human inspection is often
insufficient due to lapses in alertness associated with fatigue,
and various image processing techniques have been applied
to automatic defect detection in wafers. A common approach
for wafer defect detection utilizes a reference image and
applies some detection procedure to the difference between
the observed and reference images [1–5]. A semiconductor
wafer typically contains many copies of the same electrical
component (denoted as “dies”) laid out in a matrix pattern.
A reference image for one die is obtained by acquiring an
image of the neighboring die, which is verified to be clear of
defects. The reference image and the inspected image (fur-
ther referred to as the “source image”) are spatially aligned
and subtracted one from another, and the resulting differ-
ence image is processed for further defect detection. A major
drawback of this approach is that the detection performance
is very sensitive to image registration inaccuracies between
the source and reference images [6–8]. Moreover, printed
patterns on the source and reference dies may differ slightly,
particularly in the neighborhood of their edges. These pat-
tern variations obscure the defects in the difference image
and may yield high false detection rate.

Xie and Guan [9] and Guan et al. [10] proposed to gen-
erate a golden-block database from the wafer image itself,
and then modify and refine its content when used in further
inspections of the same pattern. Gleason et al. [11] modeled
self-similarities in the source image with fractal image encod-
ing and detected defects without image registration. Onishi
et al. [12] proposed a reference-based method that does not
require exact registration. Grayscale morphological dilation
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Fig. 1 SEM tool and example
images it produces: a Defect
review scanning electron
microscope designed in Applied
Materials Israel; b Reference
image (clean of defects) and
c Source image. Defects are
indicated by arrows

of the reference and inspected images allows dynamic toler-
ance control, which compensates for slight misregistration.
The difference image is calculated according to the minimal
distance between the reference and inspected images in the
dilation range. Chang et al. [13] used an unsupervised learn-
ing by a two-layer competitive Hopfield neural network for
defect detection. Their method does not require a reference
image and enables detection based on the variance of gray
level and sharp spatial irregularity.

In this paper, we propose a reference-based method for
defect detection, which avoids image registration and is
robust to pattern variations. The proposed procedure involves
anisotropic kernel reconstruction of the source image using a
reference image. The idea of anisotropic kernels was studied
by Lafon and Coifman [14,15] and successfully applied to
image denoising applications by Szlam [16]. Here, we exploit
anisotropic kernels for the application of wafer defect detec-
tion. The source and reference images are mapped into a
feature space, where every feature with origin in the source
image is estimated by a weighted sum of neighboring fea-
tures from the reference image. The weights are calculated by
using an exponential distance similarity function for a set of
features in the spatial neighborhood of the source feature in
the original image space. We show that features originating
from defect regions are not reconstructible from the reference
image and hence can be identified.

The paper is organized as follows. In Sect. 2, we present
the motivation for developing the proposed algorithm. In
Sect. 3, we provide a theoretical framework for source image
reconstruction from the reference image using anisotropic

kernel and discuss feature space selection and reconstruc-
tion error. In Sect. 4 we present the implementation of the
proposed algorithm. In Sect. 5, we demonstrate the applica-
tion of the proposed algorithm to wafer defect detection and
show its improved performance compared to using a Single
Hypothesis Test (SHT) [17]. Finally, in Sect. 6 we discuss
the robustness of the proposed algorithm to pattern variations
and misregistration and summarize in Sect. 7.

2 Motivation and goals

In this section, we describe a standard procedure for defect
detection in patterned wafers, discuss its drawbacks and
present our objectives.

2.1 Background

Figure 1a shows a wafer inspection tool, namely Defect
Review Scanning Electron Microscope (SEM), which detects
defects of different types during the wafer manufacturing
process. The inspection of the wafer begins with imaging
of its surface. The analyzed wafer is illuminated with elec-
trons, which cause interactions on the wafer’s surface. These
interactions lead to subsequent emission of electrons that
supplies the information about the edges and the material
of the inspected wafer. This information is rendered into
two-dimensional intensity distribution that can be stored
as a digital image and analyzed for defect detection (see
Fig. 1b, c).
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Fig. 2 Examples of defects.
Defects are of various shapes
and sizes and may belong to the
wafer background or to its
pattern

There are no precise characteristics of the possible defects.
Defects may include particles, open lines, shorts between
lines or other problems. Figure 2 demonstrates that they may
be of various shapes, sizes, and may belong to the wafer
background or to its pattern. The inspected wafer may con-
tain many defects or no defects at all. The defects may be
predominant or scarcely noticeable. The described variety
makes it difficult or even impossible to perform template
matching based on some a priori features or training data-
base of detects.

Pattern to pattern comparison is the most suitable tech-
nique for an SEM-based inspection system. This compari-
son could be performed using a reference image captured
from another wafer’s die that was preliminarily checked to be
clean of defects [2–5,7,18] or using self-reference approach
based on the golden template construction from the repeating
cells in the image [9,10]. A pure reference system compares
every pixel in the inspected image with the corresponding
pixel in the reference image, which is assumed to be per-
fectly registered with the image being analyzed. With this
approach, image registration between the reference image
and the source image is a major problem. Furthermore, in
some cases only a single image that is under inspection is
available. A self-reference technique avoids the above prob-
lems and does not require a reference image and registra-
tion. However, it cannot always detect the exact placement
of the defects, but only their existence. The golden template
is constructed from the analyzed image, so if the image con-
tains defects, the template that is obtained by averaging the
pattern blocks will also contain reduced defects. Hence, the
reference-based technique, which relies on another defect-
free die from the same wafer, is more popular. Next, we
describe the general framework [4,5,7,18,19] of the com-
parison between reference and source images.

2.2 Pixel-based comparison

Using the reference image from Fig. 1b we would like to
verify whether a pixel s from the source image in Fig. 1c
originates from the pattern clutter or not. For this purpose,
we denote the null hypothesis by

H0 : s ∈ P, (1)

which assumes that a pixel with coordinates s = (i, j)
belongs to the pattern clutter P . Under this hypothesis, a
pixel from the source or reference image could be viewed
as a combination of a noise-free pixel from an underlying
pattern image and white noise:

Iref(s) = Ipat(s) + δ1(s) ∀s ∈ �
(2)

Isrc(s) = Ipat(s + r) + δ2(s) ∀s ∈ �,

where Isrc, Ipat, Iref denote source, noise-free pattern and ref-
erence images, respectively; � denotes a set of indexes in
the image domain; δ1(s) and δ2(s) denote independent white
noise disturbances; and r is a translation vector, which is esti-
mated by registration of the reference image to the source
image.

2.2.1 Simple differencing

The difference image D(s) = Iref(s) − Isrc(s), calculated by
subtracting the source image from the reference image, is
used in several defect detection applications [7,9,20]. As a
preprocessing step, denoising and registration of the source
and reference images must be performed. It is important that
the denoising procedure will preserve edges and will not
blur the defects. For example, soft-threshold wavelet denois-
ing [21] is applied to the images in Fig. 1b, c, and the results
are shown in Fig. 3. The denoised images are usually regis-
tered using various techniques [7,8], mostly based on maxi-
mizing the correlation between blocks.

Figure 4a demonstrates the absolute difference image of
the source and reference images shown in Fig. 3. Large differ-
ences are apparent in regions where the null hypothesis does
not hold. Filtering and thresholding of the difference image
can reveal the defective regions in the inspected wafer [9,20].
The defect mask is generated according to the following deci-
sion rule:

B(s) =
{

1, if |D(s)| > τ,

0, otherwise.
(3)

Often, the threshold τ is chosen empirically. Rosin [22,23]
surveyed and reported experiments on many different criteria
for choosing τ for general change detection applications.
However, global threshold of pixel-by-pixel differencing
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Fig. 3 a Image from Fig. 1b
after performing stationary
wavelet denoising, the arrows
point at the defects; b Image
from Fig. 1c after the same
denoising procedure

Fig. 4 a Difference image.
Large differences may result
from pattern variations and may
obscure the defects (marked
with white frames); b Detection
based on thresholding of SHT of
the difference image reveals
only two of the four defects and
one is falsly detected as defect.
Thresholding with a lower
threshold will detect the missed
defects, but add more false
detections; c Difference image
between the reconstructed
source image and the source
image; d Detection based on
unreconstructed regions of the
reconstructed source image

yield high false alarm rate and is usually outperformed by
more advanced statistical algorithms.

2.2.2 Single hypothesis test

The decision rule in many anomaly detection algorithms is
cast as a statistical hypothesis test [24,25]. The decision as
to whether or not a given pixel arises from an anomaly cor-
responds to choosing one of two competing hypotheses: the
null hypothesis H0 (see Eq. 1) or the alternative hypothesis
H1, corresponding to no-anomaly and anomaly decisions,
respectively. The image pair (Iref, Isrc) is viewed as a random
vector. Knowledge of the conditional joint probability den-
sity functions (PDFs), p(Iref, Isrc|H0) and p(Iref, Isrc|H1),
allows a decision upon one of the hypotheses using the clas-
sical framework of hypothesis testing [26–28].

The variety and unpredictability of defects makes it impos-
sible to characterize the H1 hypothesis and to construct the
respective PDF p(Iref, Isrc|H1). On the contrary, character-
izing the null hypothesis is straightforward. In the absence
of any defect, the difference between the source and aligned
reference images can be assumed to be due to noise alone,
according to the model presented in Eq. (2). An anomaly
detection algorithm based on SHT [17,29] of the difference
image D(s) allows one to check null hypothesis fulfillment
without any statistical knowledge about the defects.

Anomalies are often associated with localized groups of
pixels, hence it is common for the anomaly decision at a
given pixel s to be based on a small block of pixels in the
neighborhood of s in the image. Accordingly, a data set is
constructed from overlapping patches formed around every
pixel in the difference image D(s). Given the expected vector
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M and the covariance matrix � of the constructed data set,
the Mahalanobis distance of any vector X from M is obtained
by

d2(X) = (X − M)T �−1(X − M), (4)

and the SHT is given by

d2(X)
H0
≶
H1

D2, (5)

where H1 and H0 represent hypotheses of anomaly presence
and absence, respectively, and D is a distance threshold.

Although there are obvious statistical dependencies within
a patch, the observations for each pixel in a patch are typ-
ically assumed to be independent and identically distrib-
uted (i.i.d.). It is also assumed that the noise in the model
presented in Eq. (2) is Gaussian. Under these assumptions,
d2(X) is distributed χ2

n (0) (central chi-squared distribution
with n degrees of freedom), where n is the number of pixels
in the patch constructed around pixel s. The decision thresh-
old D for a desired false alarm rate is calculated according
to

PFA = 1 − pd2(ξ < D2). (6)

The model presented in Eq. (2) handles only the transla-
tional differences between the images. However, the source
and reference image patterns are not identical and pattern
variations may occur on nearby edges. These differences
could be as intense as the differences caused by defects (see
Fig. 4a), which may cause false detection. Figure 4b shows
that applying SHT to the difference image of the images from
Fig. 3 leads to false detections, due to the pattern variations
differences that predominate over small defects differences.
Pattern variation differences invalidate the assumption that
the constructed feature vector X of the difference image is
Gaussian distributed under the null hypothesis. Hence, the
SHT threshold in the Eq. (5) could not be computed using
Eq. (6).

Onishi et al. [12] tried to overcome the problems of pat-
tern variations and misregistration by using a grayscale mor-
phological dilation of the reference and inspected images.
The difference image is calculated according to the mini-
mal distance between the reference and inspected images
in the dilation range. However, this technique allows only
slight misregistration and pattern variation, because it does
not exploit the neighborhood replication of the periodic
pattern.

2.3 Objectives

The aim of this work is to develop a more flexible similar-
ity model that can significantly conceal the pattern varia-
tions disturbance and does not require precise registration.
The proposed measure takes advantage of the periodicity of

patterned wafers images, which results from the replicated
circuit pattern. Due to the periodicity and the similarity of
the source and reference images patterns, given a patch from
the source image we can find similar patches in the reference
image. Therefore, under the null hypothesis a pixel s in the
source image could be reconstructed from several pixels in
the reference image according to the following model:

Îsrc(s) = 1∑
W (s, s′)

∑
s′∈Ns

W (s, s′)Iref(s′), (7)

where W (s, s′) denotes the similarity measure that will be
presented in the next section, and the neighborhood Ns of
the pixel s is given by

Ns = {
s′ | s′ ∈ nk(s)

}
, (8)

nk(s) is the set of k nearest neighbors of s. The neighborhood
is determined in the original 2-d Euclidean metric of the
image and relates the pixel in the source image only to its
spatial neighbors in the reference image.

The model proposed in Eq. (7) does not assume that a
pixel in the source image is related to one specific pixel in
the reference image, but originates from a combination of
several pixels, according to some similarity measure. This
model reduces to the model presented in Eq. (2), if all the
weights W (s, s′) are equal to zeros except the one that relates
to s′ = s + r. The detection is based on the success of source
image reconstruction from the reference image. We assume
that under the null hypothesis the source image patches can
be reconstructed from patches of the reference image due to
similarity and periodicity of patterns in the source and refer-
ence images. On the contrary, if a patch of the source image
contains a defect, there are no similar patches in the reference
image and the patch cannot be reconstructed from patches of
the reference image. Hence, the detection is obtained by

H0 : W (s, s′) �= 0 ∃s′ ∈ Ns
(9)

H1 : W (s, s′) = 0 ∀s′ ∈ Ns.

Figure 4c demonstrates the improved difference image based
on difference between the estimated source image (Fig. 4d)
and the original source image (Fig. 3a). Four unreconstructed
(black) regions are exactly the regions of defects, all other
parts in the image are reconstructed. The detection procedure
we have presented overcomes the pattern variation problem
demonstrated in Fig. 4a, b and detects all the four defects
without false alarms.

3 Detection using anisotropic kernels

In this section, we discuss the reconstruction procedure of
the source image from the reference image and the similarity
measure it involves. The reconstruction is performed in a
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feature space based on the one proposed by Szlam [16] for
image denoising applications.

3.1 Kernel representation of the source image using a
reference image

Let us pick a d-vector G = (g1, . . . , gd) of filters and map
pixels of source and reference images into R

d features space
ξG :

s → ξG(s) = {Isrc ∗ g1(s), . . . , Isrc ∗ gd(s)},
(10)

s′ → ξG(s′) = {Iref ∗ g1(s′), . . . , Iref ∗ gd(s′)},
where s, s′ ∈ � and � is a general set of indices in the
image space. We omit from features notation labels src and
ref, instead the indices s are associated with features from
the source image and s′ are associated with features from the
reference image. Given ξG(s′) for all s′ ∈ Ns, we estimate
ξG(s) by

ξ̂G(s) = 1

D(s)

∑
s′∈Ns

W (s, s′) · ξG(s′), (11)

where Ns is denoted in Eq. (8). According to [16], we choose

W (s, s′) = exp−ρ(s,s′)2/ε, (12)

where ρ is a metric in our feature space, ε is a similarity
parameter, and D(s) = ∑

s′∈Ns
W (s, s′) is a normalizing

factor. The similarity W (s, s′) is measured as a decreasing
function of the Euclidean distance

ρ2(s, s′) = ‖ξG(s) − ξG(s′)‖2
2. (13)

The similarity parameter ε controls the decay of the expo-
nential function and therefore the decay of the weights as a
function of the Euclidean distances. Finally, returning to the
image domain, a reconstructed source image is obtained by

Îsrc(s) =
∑

s′∈Ns
exp{−‖ξG(s) − ξG(s′)‖2

2/ε}Iref(s′)∑
s′∈Ns

exp{−‖ξG(s) − ξG(s′)‖2
2/ε}

. (14)

Under the null hypothesis H0, a patch from the source
image is reconstructible from similar patches from the refer-
ence image. According to Eq. 9, if the source patch contains
a defect there are no similar patches in the reference image
and the reconstructed pixel is determined to be zero:

H0 : Îsrc(s) → Isrc(s) ⇒ s /∈ A,
(15)

H1 : Îsrc(s) → 0 ⇒ s ∈ A,

where A denotes a set of defect regions.

3.2 Filter banks

Szlam [16] construct G from non-local means filters (NL-
means) of Buades et al. [30], where gm,n is an [sx ×sy] matrix

with one in (m, n) position and zeros elsewhere. Thus, ξG is
the set of overlapping patches of the source and reference
images embedded in d = sx × sy dimensions.

There are also other choices of filters G, but different
bases may lead to the same similarity measure. For exam-
ple, given two different orthonormal bases, {g1, . . . , gn} and
{g̃1, . . . , g̃n}, for a subspace V ⊂ L2, because convolution
is linear we have mG = O mG̃ , where O is a rotation in d
dimensions. Thus, the embedding into [sx × sy] patches is
the same embedding (up to a rotation) as into [sx × sy] DCT
coordinates, and so the similarity weights constructed from
these embeddings are the same [16]. However, emphasiz-
ing only specific frequencies in the embedding coordinates
leads to different representations. This could be performed
by applying a frequency weighting matrix, which is used for
example in DCT-based applications like compression [31]
and watermarking [32]. Each [sx × sy] DCT coefficient is
multiplied by the corresponding element of the frequency
weighting matrix, which is usually constructed to reduce the
influence of high frequencies on the similarity.

Figure 5a, b presents two different parts of Brodatz tex-
ture image that are used as source and reference images.
The source image is reconstructed from the reference image
using [8 × 8] DCT coordinates feature space and frequency
weighting matrix, which is equal either to the human visual
frequency matrix given in [33], or all-pass frequency matrix
(matrix with all the entries equal to 1). Another varying
parameter is the similarity parameter ε. Larger ε results in
smoother image and blur of the fine structure. Smaller ε better
conserves the image details, but may make the reconstruction
of regions with strong pattern variations impossible.

The influence of the frequency weighting matrix could
be traced by fixing ε to be constant and comparing Fig. 5c
with d and Fig. 5e with f. A feature space based on the
DCT transform and all-pass frequency matrix leads to the
same similarity relations as the original NL-means feature
space, due to the linearity of the DCT. Attenuation of the
coefficients, related to certain frequencies, lowers their sim-
ilarity requirement and enables different reconstructions. In
the presented experiment, higher frequencies were attenu-
ated, reducing the influence of the details on the similarity
measure. Hence, in Fig. 5c the reconstruction was possible
even in the regions that were not reconstructed using
NL-means feature space in Fig. 5d (the black regions). How-
ever, lower similarity requirement of the high frequencies
coefficients reduces the reconstruction quality of the pat-
tern details, because smooth regions and fine structures are
not distinguished as well. The loss of detail in reconstruc-
tion with weighting matrix is especially evident in Fig. 5e,
where higher ε is used. On the contrary, the NL-means (DCT
with all-pass matrix) reconstruction in Fig. 5f succeeds in
preserving more fine structures. To summarize, DCT coor-
dinates feature space with frequency weighting matrix is
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Fig. 5 DCT-based reconstruction: a Reference image; b source image;
c, e images reconstructed using the [8 × 8] DCT transform with a fre-
quency weighting matrix given in [33] (suppression of the high frequen-
cies), ε = 0.05 and 0.1, respectively; d, f images reconstructed using
the [8 × 8] DCT transform with all pass matrix (all the entries equal
1), ε = 0.05 and 0.1, respectively. A feature space based on the DCT

transform and all pass frequency matrix leads to the same similarity
relations as the original NL-means feature space, due to the linearity
of the DCT. Reduction of the certain frequencies influence resembles
adaptive adjustment of the similarity parameter in the frequency space
and results in different reconstruction

advantageous in the case of images with high spectral activ-
ity. These images are usually characterized by a large number
of small details with low spatial redundancy. Spectral activity
of an image could be examined using a distribution of DCT
coefficients that are found by applying DCT to the whole
image. In our experiments of defect detection, the NL-means
feature space was used due to the periodicity of the details in
the inspected patterns.

3.3 Analysis of the representation error

To analyze the estimation error of Eq. (14), we construct a set
of points X ={ξG(s)

⋃
ξG(s′)|∀s′ ∈ Ns}={x1, x2, . . . , xN },

such that the number of points N (the size of the set) is large,
but finite. We assume that the points of the set X ⊆ M are
independent and uniformly distributed on M, where M ⊂
R

m is a d-dimensional compact Riemannian manifold [15,
34]. The last assumption is not trivial under finite set X and
will be discussed below.

We assume that a smooth function, f : M → R, exists
such that f (ξG(s)) = Isrc(s) and f (ξG(s′)) = Iref(s′). We
consider NL-means filter bank, which results in squared
patches around the estimated pixels. To estimate a pixel value
we calculate the inner product with a characteristic function
of the central feature element

f (ξG(s)) = 〈ξG(s), χcentral〉 = Isrc(s), (16)

where 〈·, ·〉 denotes an inner product on M, which is a Rie-
mannian manifold and by definition is associated with a
smooth inner product. Therefore, the function proposed in

Eq. (16) is smooth as required. The same function is valid
for the reference image features construction.

Denoting the estimation operator by E , we can rewrite
Eq. (14) as

(E f )(ξG(s))

=
∑

s′∈Ns
exp{−‖ξG(s) − ξG(s′)‖2/ε} f (ξG(s′))∑

s′∈Ns
exp{−‖ξG(s) − ξG(s′)‖2/ε} . (17)

Under the above assumptions, the estimation error is given
by [34]

Îsrc(s) − Isrc(s) = (E f )(ξG(s)) − f (ξG(s))

= ε

4
	 f (ξG(s)) + O(ε2). (18)

Hence, for 	 f (ξG(s)) � 1/ε the estimation error is negligi-
ble. Unfortunately, ε cannot be too small, because Eq. (18)
holds only if the number of points N grows faster than

ε−( d
2 +1) [15]. Intuitively, the uniform distribution assump-

tion implies that smaller N induces lower density of points
around the estimated points. Therefore, if we decrease ε to
zero, we will not be able to find any feature similar to the one
estimated.

The second aspect that we consider is the fact that the
data points X may not lie exactly on M. Suppose that X is
a perturbated version of M and there exists a perturbation
function η : M → X , with small norm, such that every
point in X can be written as x + η(x), for some x ∈ M. It
was shown in [15] that the approximation used for obtain-
ing Eq. (18) is valid as long as the similarity parameter

√
ε

remains larger than the size of the perturbation ‖η(x)‖. In
our case, we could rewrite any feature as
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Algorithm 1 Defect Detection using NL-means estimation

1: {s - pixel index, f - source image, f̂ - reconstructed source image}
2: for all s ∈ f do
3: Ps ⇐ construct a patch of size [sx × sy] around pixel s
4: i ⇐ 1
5: {r - pixel index, fref - reference image, Ns- search region neigh-

borhood of s}
6: for all r ∈ Ns do
7: Pi

r ⇐ construct a patch of size [sx × sy] around pixel r

8: W i ⇐ exp(− ρ(Ps,Pi
r)

2

ε
) {ρ - a distance metric}

9: i ⇐ i + 1
10: SW ⇐ �iW i

11: if SW = 0 then
12: for all i do
13: W i ⇐ 0
14: else
15: for all i do
16: W i ⇐ W i

SW
17: P̂s ⇐ �∀iW i · Pi

r {source image patch estimation using reference
neighboring patches}

18: D(s) ⇐ ‖P̂s − Ps‖2 {difference image value at pixel s calcula-
tion}

19: f̂ (s) ⇐ �∀iW i · fref(ri)

20: if f̂ (s) = 0 then
21: s ∈ A {A is a set of defect regions}

ξG(s) = x(s) + r(s) + n(s), (19)

where x(s) is an ideal point that belongs to the manifold
M and represents the original pattern, n(s) denotes a noise
term, and r(s) denotes pattern variations under H0 or a defect
term under H1. The same notations are valid for s′. As a pre-
processing step, the noise should be suppressed by apply-
ing a denoising operator to the images. Assuming that the
remaining noise is negligible, the estimation error, presented
in Eq. (18), is valid if

‖r(s)‖ <
√

ε. (20)

For a defect-originated point, we assume that ‖r(s)‖ is larger
than

√
ε. Hence, the reconstruction in Eq. (17) does not hold,

which indicates the presence of a defect.

4 Implementation of the algorithm

Algorithm 1 summarizes the reconstruction and decision pro-
cedures for defect detection as described in Eqs. (10)–(15).
To verify whether a pixel from the source image belongs to
a defect area according to Eq. (15), we execute the follow-
ing steps. A patch around every pixel in the source image is
transformed into a vector in the feature space using Eq. (10),
whose dimension is related to the defect size. A patch should
be sufficiently big to contain the defect and its nearest
surroundings, but not too big, to preserve the dominance
of the defect presence. When no a priori information about
possible defect size is available, the defect detection could
be performed several times assuming different sizes in each

run. Next, the source feature vector is estimated by feature
vectors formed from neighboring patches from the reference
image according to Eq. (11). The neighborhood in the fea-
ture space is determined according to the neighborhood in
the image space, which is a squared region centered at the
tested pixel’s spatial location. The neighborhood region must
cover at least one period of the pattern to allow estimation
without image registration.

The estimation is performed by similarity weights from
Eq. (12) that are calculated from Euclidian distances in the
feature space [16]. The parameter ε in Eq. (12) controls
the relation between the distance in feature space and the
corresponding weighting factor. It is important to choose a
sufficiently large ε (weak similarity requirement) to enable
reconstruction of the source image from the reference image
even in case of pattern variations. However, ε should be suffi-
ciently small (strong similarity constraint) to prevent recon-
struction of defects from the reference image and thereby
facilitate the distinction between pattern variations and
defects. In our experiments, we adjusted this parameter so
that the reference image could be reconstructed from itself
(a patch was reconstructed only from its neighbors). We
chose the minimal ε that provided good reconstruction
results.

The calculated weights are normalized only if their sum
is larger than zero (in practice, a certain small threshold
larger than zero is selected, e.g., 1e − 15). Zero sum indi-
cates lack of reference patches that are similar to the source
patch, which implies that source patch is not reconstructible
from the reference patches. Otherwise the weighted average
of the neighboring reference patches estimates the source
patch via Eq. (11), and the tested pixel using Eq. (14). Hence,
black pixels in the reconstructed image can be identified as
defects.

In case of pattern variations, the performance is improved
by increasing the search region to more than one period,
at the expense of increasing the computational complexity.
The complexity of the proposed algorithm is O(n · m · d),
where n is a data set dimension (image size), m is neigh-
borhood dimension (search region size) and d is a feature
space dimension (patch size). Therefore from a computa-
tional point of view, m and d should be as small as possible.
In our experiments we used a region that covered two to three
pattern periods.

5 Experimental results

In this section, we evaluate the proposed algorithm by
analyzing the receiver operating characteristics (ROC) and
demonstrate its improved performance compared to using
an anomaly detection algorithm [17,35]. In all the presented
experiments the reconstruction is performed using the
NL-means feature space.
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Fig. 6 Brodatz textures for
constructing a reference
dictionary and anomalous
patches. a and b Textures for the
reference dictionary and
FAR-test data sets; c and
d textures for generating
anomalous patches

The ROC curves are obtained by using images from the
Brodatz textures database, where one texture is used for con-
structing a dictionary of patches (reference patches), and
another texture is used for constructing a set of anomalous
patches. In our simulations, the reference dictionary contains
5,000 patches chosen randomly from one texture image, and
additional patches from that texture image (which are dif-
ferent from the patches in the reference dictionary) are used
for calculating the false alarm rate. The latter set of patches
is denoted as FAR-test data set. Each patch in the FAR-test
data set is reconstructed from patches in the reference dictio-
nary using Eq. (11), and if the patch is not reconstructible, it
contributes to the false alarm rate. Similarly, each anomalous
patch is reconstructed from patches in the reference dictio-
nary, and if the patch is not reconstructible, it contributes to
the detection rate. By varying the value of ε from low val-
ues (corresponding to high detection and false alarm rates) to
high values (corresponding to low detection and false alarm
rates), we obtain an ROC curve. If we add noise to the data
or change the size of patches, then we obtain different ROC
curves.

In the first experiment, we choose the texture shown in
Fig. 6a for construction of the reference dictionary, and the
texture shown in Fig. 6c for the anomalous patches. The patch
size is 5 × 5 pixels, and white gaussian noise is added to
either patches in the FAR-test data set or the reference dic-
tionary. Figure 7a shows ROC curves for different signal-
to-noise ratios (SNRs), and demonstrates the degradation in
performance as the SNR decreases. We observe that noise

in the reference dictionary is less significant than noise in
the data, because a given patch may be reconstructed from
many patches from the reference dictionary, and thus noise in
the reference dictionary is averaged out when reconstructing
the source patch, whereas noise in the data is generally not
reconstructible from the reference dictionary. In the second
and third experiments, we choose the texture shown in Fig. 6b
for construction of the reference dictionary, and the texture
shown in Fig. 6d for the anomalous patches. The influence of
the anomaly size on the detection performances was studied.
Figure 7b shows ROC curves for anomaly sizes of 5×5, 7×7
and 11 × 11 pixels, where the patch size varies according to
the anomaly size. As expected, bigger anomalous patches
are more easily detected than smaller ones. However, detec-
tion of bigger anomalous patches involves higher computa-
tional complexity. Figure 7c shows ROC curves for a constant
anomaly size of 5 × 5 pixels and varying patch sizes around
the anomaly of 5 × 5, 7 × 7 and 9 × 9 pixels. The area of the
patch that does not contain an anomaly pattern is filled with
a pattern from the reference texture. The best performances
are achieved when the anomaly fills most of the patch’s area
(7 × 7 pixels), but not all of it (9 × 9). Hence, a patch should
be sufficiently big to contain the anomaly and its nearest sur-
roundings, but not too big, to preserve the dominance of the
anomaly presence.

Finally, we apply the proposed algorithm to defect detec-
tion in wafers and compare the results to those obtained by
SHT on the difference image. The SHT does not require
a priori information except rough estimate of defect size. It
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Fig. 7 Performances
dependence on: a additive white
gaussian noise; b varying
anomaly size (patches grow
accordingly); c varying patch
size with constant anomaly
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requires calculation of Mahalanobis distance given in Eq. (4)
in a feature space of the difference image and applying the
SHT according to Eq. (5) to the result. The feature space is
constructed from patches formed around every pixel in the
difference image, and the size of the patches is the same as the
size of the patches in the kernel-based detection algorithm.
Figures 8 and 9 demonstrate the poor performance of SHT
for wafer defect detection, which is a consequence of pattern
variations. By contrast, the proposed approach successfully
identifies the detects and is robust to pattern variations. The
example presented in previous sections (Figs. 1, 3, 4) also
demonstrates the advantage of the proposed algorithm in case
of multiple defects. In the case of a single defect, the SHT
threshold in Eq. (5) could be adjusted for only one detec-
tion. However in case of multiple defects, the SHT threshold
adjustment becomes more complicated and false detections
may appear, especially in the neighborhood of edges with
pattern variations.

6 Discussion

In this section, we discuss the robustness of the algorithm for
pattern variations and misregistration in the case of periodic
and non-periodic patterned wafers. Although we refer to the
NL-means filters feature space, the conclusions are relevant
to other possible feature spaces.

The robustness for the pattern variations is a major advan-
tage of the kernel-based algorithm compared to the difference
image approach, as demonstrated in Figs. 4, 8 and 9. Fig-
ure 10 shows the exploitation of pattern periodicity, which
allows to overcome the problem of pattern variations. An
inspected patch, marked with a white frame in Fig. 10a, does
not have to be identical to one reference patch, but could
be a combination of several marked patches from Fig. 10b.
Moreover, Buades et al. [36] considered denoising image
sequences using NL-means filters and showed that motion
estimation between the sequences is not necessary. Motion
estimation between sequences is analogous to image reg-
istration between the source and reference images. Hence,
the proposed method is robust for misregistration, because
similar patches can be found in different regions of the ref-
erence image, as it is shown in Fig. 10b. Patches in Fig. 10b
are marked as similar to the inspected patch from Fig. 10a,
if their similarity measure according to Eq. (12) is above a
determined threshold.

Due to the nature of the algorithm, a favorable case for
NL-means is a periodic case, like periodic patterned wafers
images. If the inspected pattern is not periodic, the proposed
algorithm will be able to distinguish between the pattern-
originated patches and defect-originated patches, only if the
search region contains the respective pattern. The compensa-
tion for pattern variation will be less effective and fusion of
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Fig. 8 Wafer defect detection.
a Wafer image containing a
defect (designated by white
frame); b image reconstructed
by Algorithm 1 (ε = 0.04,
Ns = [81 × 81],
sx × sy = [13 × 13]);
c difference image (the white
frame is around the defect
location); d SHT on the
difference image yields false
detections and misses

Fig. 9 Wafer defect detection.
a Wafer image containing a
defect (designated by white
frame); b image reconstructed
by Algorithm 1 (ε = 0.03,
Ns = [151 × 151],
sx × sy = [13 × 13]);
c difference image (the white
frame is around the defect
location); d SHT on the
difference image yields false
detections and misses

detections in different SEM channels (images with different
perspective of the wafer) may be required to prevent false
detections caused by pattern variations. The optimal fusion

process remains an issue for a future research. The misregis-
tration is tolerable only within the search region, hence either
rough registration should be performed, or the search region
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Fig. 10 Exploitation of
periodicity of the pattern.
a Region from a source image.
A small patch is marked with a
white frame in the center;
b Aligned region from the
reference image. Patches in
b are marked as similar to the
inspected patch from a, if their
similarity measure according to
Eq. (12) is above a determined
threshold

should be chosen very large, which is disadvantageous due
to the increased computational complexity.

7 Summary

We have presented a defect detection approach, which avoids
image registration of the source and reference images and
is robust to pattern variations. The proposed method relies
on anisotropic reconstruction of the source image from the
reference image. Although the computational complexity of
the proposed algorithm is relatively high, further reduction
in complexity can be achieved by some modifications. For
example, a multi-scale implementation, similar to that pro-
posed for image denoising applications [30], may be advan-
tageous in our framework. The main idea is first to perform
a search in the coarsest scale and to continue the search
in finer scales only in regions that were found similar in
coarser scales. Additionally, the implementation of the pro-
posed algorithm can be accelerated by calculating in paral-
lel the similarity weights for all pixels in the reconstructed
image. The proposed algorithm can also be combined with
standard state-of-the-art wafer defect detection algorithms
to reduce the false alarm rate without increasing the missed
detection rate. Suspicious regions are first detected by con-
ventional defect detection algorithms. Subsequently, the
reconstruction procedure is applied only to patches around
the suspicious pixels according to proposed algorithm, and
regions that are not reconstructible are identified as defects.
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