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Defect Detection in SEM Images of Nanofibrous

Materials
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Abstract—Nanoproducts represent a potential growing sector
and nanofibrous materials are widely requested in industrial,
medical and environmental applications. Unfortunately, the pro-
duction processes at the nanoscale are difficult to control, and
nanoproducts often exhibit localized defects that prevent their
functional properties. Therefore, defect detection is a particularly
important feature in smart-manufacturing systems, which aims
at reducing quality-inspection times and production wastes. Here
we present a novel solution to detect defects in nanofibrous
materials by analyzing SEM images. We employ an algorithm
that learns, during a training phase, a model yielding sparse
representations of the structures that characterize correctly
produced nanofiborus materials. Defects are then detected by
analyzing each patch of an input image and extracting features
that quantitatively assess whether the patch conforms or not to
the learned model. The proposed solution has been successfully
validated over 45 images acquired from samples produced by a
prototype electrospinning machine, a promising technology for
producing nanofibrous materials. The low computational times
indicate that the proposed solution can be effectively adopted in
a monitoring system for industrial production.

Index Terms—Defect and Anomaly Detection, Nanofibrous
Materials, Quality Control, Sparse Representations, Smart Man-
ufacturing, SEM Images

I. INTRODUCTION

Nanoproducts demand has steadily increased over the past

few years [1]. In particular, nanofibrous materials are nowa-

days widely requested [2], e.g., in life sciences and medicine

[3], [4], filtration and water treatment [5], [6], [7], surface

coating [8], [9], and sensors [10].

However, despite the large number of production pro-

cesses and the flourishing of laboratory prototypes [11], [12],

nanofibrous materials are not yet industrially produced at

the large scale. They are indeed recognized as one of the

main challenges in high-tech manufacturing [13], [14], e.g.,

in the Horizon 2020 Program Factory of the Future. In

fact, production processes at the nanoscale are still difficult

to control and, as a result, the nanostructure characterizing

these materials often exhibits local defects, which may impair

their mechanical or filtering properties. Defects also make the

production long and costly, resulting in an increased proportion
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Fig. 1. Two details from SEM images depicting nanofibrous material
produced by electrospinning. The large area covered by filaments in both
images refer to good quality fibers. The top image contains two sorts of
localized defects: a small speck of dust at the center and two beads, namely
fiber clots. The bottom image contains a films, which is a thin layer of material
among the fibers.

of wasted materials and long time spent in thorough quality-

inspection procedures.

Hence, automated systems for monitoring the quality of

nanostructures are of crucial importance for the development

of nanoproducts industry. On the one hand, these systems

allow to raise alerts as soon as the amount/size of defects

exceeds a given tolerance level, in order to take corrective

actions (including halting the machinery) and guarantee a

satisfactory production quality. On the other hand, automatic

defect-detection solutions provide a quantitative assessment

which can be used to accurately design/tune the production

process to both optimize physical properties and control the

defectiveness of the produced materials [15].

As we will discuss in Section II-B, defects in nanofi-

brous materials can be conveniently detected by analyzing

Scanning Electron Microscopes (SEM) images, since these

instruments have a resolution up to 1 nanometer. However,

despite the relevance of this industrial problem, to the best

of our knowledge, there are no automatic systems able to

provide a comprehensive monitoring of nanofiber production.

In particular, there are no systems able to detect and quanti-

tatively assess localized defects, like beads and films shown

in Figure 1. While humans can easily identify these defects,

thus distinguishing between normal and anomalous/defective

regions, this is not a simple task for a machine. In fact, both

normal and anomalous regions are far from being regular:

fibers follow different orientations and randomly overlap, and
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defects can be very different in appearance and shape. Existing

vision-based systems for monitoring nanofiber production only

measure fiber diameter [16], [17] or orientation [18], while not

localized defects like those in Figure 1, which is indeed our

goal.

Our contribution is the first solution able to automatically

detect and quantitatively assess localized defects in SEM

images of nanofibrous materials. We successfully solve this

problem by adopting an anomaly-detection algorithm which

can be easily executed on a machinery that embeds a SEM

microscope and all the accessories to prepare samples for spot

checks. We test our solution on SEM images of nanofibrous

materials produced by a prototype electrospinning machine

and show that i) it achieves excellent detection performance,

and ii) it requires a negligible processing time with respect

to the sample-preparation time. The proposed solution can

thus be employed in a comprehensive monitoring system that

performs spot checks on the produced material and generates

alarms and feedbacks to correct the production process.

We locate defects as regions covered by anomalous patches,

i.e., small portions of the image that do not conform the

structure of normal images. To this end, we use the algorithm

in [19], which is able to handle patches that (given their large

dimensionality and complex structure) cannot be straightfor-

wardly analyzed by traditional multivariate statistical methods

[20], e.g., maximum likelihood approaches. Patch dimension-

ality/complexity are in fact reduced by extracting features,

namely meaningful indicators with a known response from

normal data. However, manually designing effective features

is difficult, since patches extracted from the considered SEM

images are far from being regular. Hence, we adopt [19]

to extract data-driven features that measure the conformance

of test patches with respect to a learned dictionary, which

provides sparse representations [21] of normal patches. As

typical in the anomaly-detection context, anomalies are then

detected as patches corresponding to outliers with respect to

the features distribution [22]. Another reason for using [19]

is that this algorithm can be extended to operate at different

magnification levels [23].

The algorithm in [19] was introduced for detecting anoma-

lies in image textures, and we here introduce specific pre- and

post-processing stages to improve the defect-detection perfor-

mance on SEM images of nanofibrous materials. Moreover,

we perform an experimental campaign that is substantially

larger than that in [19], as we also include comparisons

against state-of-the-art anomaly-detection methods [24], [25],

and quantitative performance assessment over a dataset of

45 SEM images. In contrast, quantitative tests in [19] were

performed on a dataset of texture images [26] and only few

SEM images were considered in a qualitative assessment.

We made our dataset (consisting of 45 SEM images) and the

defect annotations publicly available for download1. These im-

ages were acquired from a prototype electrospinning machine,

developed by the Istituto per lo Studio delle Macromolecole

of the National Research Council of Italy within the Project

NanoTWICE (see Acknowledgments), which aims at equip-

1http://web.mi.imati.cnr.it/ettore/NanoTwice

ping the already existing and fully-functioning prototype with

all the facilities necessary for industrialization.

The paper is structured as follows. Nanofibrous materials

and electrospinning are presented in Section II, together with

the methods for monitoring nanofiber production and an

overview of anomaly-detection algorithms for images. The

addressed anomaly-detection problem is formulated in Section

III, and the proposed solution is illustrated in Section IV.

Experiments are detailed in Section V, while conclusions and

future research directions are presented in Section VI.

II. BACKGROUND AND RELATED WORKS

Nanofibrous materials are porous materials made of poly-

mer nanofibers, i.e., fibers whose diameter is smaller than

100 nanometers [27], which are embedded together in an

amorphous structure. Thanks to the possibility of tuning the

material properties by modifying nanostructures characteris-

tics, nanofibrous materials are nowadays applied in several

fields, and have generated a lot of innovative applications

in the last few years [2], [28]. Most of applications concern

medicine, e.g., anti-adhesion materials in surgery, biofunction-

alized materials for biomedical applications, and scaffolds for

tissue engineering [29], [3], [4]. Other important applications

concern the construction of filtration membranes [5], [6], [7],

where nanofibrous materials are inserted in a media to provide

superior filtration capabilities. Finally, nanofibrous materials

are also employed in surface coating [8], [9] and sensors [10].

A. Nanofibrous Materials Production and Electrospinning

Several techniques for producing nanofibers have been

presented in the literature, e.g., self-assembly, templating,

lithography and electrospinning [2], [30]. This latter is per-

haps the most promising and versatile one, since it directly

produces nanofibrous materials whose nanostructure is mainly

in the form of non-woven nanofibers. Moreover, nanofibrous

materials produced through electrospinning typically feature

higher surface-to-volume ratio and a porosity that can be better

controlled than in materials produced by other techniques.

Electrospinning also allows large flexibility in the size and

shape of the produced nanofibers [2], [28]. Electrospinning

was originally studied by Rayleigh in 1897, and patented in

1934 [31]; however, it has only recently gained momentum

thanks to the explosive growth of nanostructured materials [2].

Briefly, the electrospinning process takes place between a

spinning head and a plate. The spinning head has a capillary

opening where a high voltage is applied, and it is connected

with a reservoir of polymer solution under pressure. On

the other side, the static plate (usually grounded) acts as a

counter-electrode that collects nanofibers. The high voltage

difference between the spinning head and the ground results

in a nano- to micron-sized electrically-driven polymer solution

jet, which is drawn out from the apex of a cone (the so-

called Taylor cone) formed at the capillary opening of the

spinning head. The solvent rapidly evaporates from the jet

during the run and, under optimal conditions, a continuous

nano-sized filament is deposited to the collecting electrode in

http://web.mi.imati.cnr.it/ettore/NanoTwice
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a random fashion, forming the non-woven structure. Further

details about electrospinning process can be found in [2], [28].

Unfortunately, external environmental variables and process

instabilities (e.g., instabilities in the solution jet [32], [33]) may

seriously affect the production, introducing high variability

in the fiber characteristics and localized defects like those in

Figure 1. In particular, beads are generated by drops coming

off from the spinning head, which are deposited on the plate

together with the fibers. Similarly, films are caused by larger

drops that, once deposited on the plate, widen and thin; then,

once the solvent evaporates, a film thinner than the fibers

remains. Finally, tiny speck of dust might also get trapped in

the fibers, and this also prevents the functional properties of

the nanofibrous materials. Another issue is the presence of big

holes in the material, i.e., parts of the sample where no fibers

are present. Obviously, a physiological porosity is expected

and desired; however, problems arise when pores are larger

than a reference value. Similarly, problems may arise when

fibers characteristics (e.g., the average fiber diameter and their

distribution) depart from their reference value.

B. Monitoring Nanofibrous Materials Production

Several solutions to monitor nanofibrous material produc-

tion, including electrospinning, have been presented in the

literature. They can be roughly divided into solutions that

continuously control production parameters during the process

(e.g., the current or the pressure in the equipment) and solu-

tions that control the produced materials through spot checks.

Monitoring production parameters is simpler, as it consists of

analyzing signals acquired from the machine; however, the

quality of the produced materials can be affected by several

other stochastic factors and analyzing these signals might not

be sufficient to detect defects in the produced materials. Thus,

it is preferable to inspect samples of the produced material, and

two directions are possible: i) to directly analyze the structure

of the nanofibrous material by SEM imaging, or ii) to assess

some functional properties (e.g., nano-mechanical properties

through atomic force microscopy [34] or filtering behavior in

case of filters [6], [7]). The latter option does not allow to

generate alerts in a short time, thus is less suited for regular

spot checks. As such, the most effective approach consists in

acquiring SEM images of few material samples and directly

analyze their nanostructures.

Of course, visual inspection by human operators is not

a viable option, as large-scale industrial scenarios require

automatic and repeatable solutions that quantitatively assess

defects. So far, the only existing automatic solutions are meant

to measure the fibers diameter and orientation [16], [17], [18],

while they are not able to detect defects like those shown in

Figure 1.

C. Anomaly Detection in Images

Algorithms for detecting anomalies [35] in images can

be divided in reference-based and reference-free ones. In

reference-based methods (e.g., [36]), anomalies are detected

by comparing the test image against a reference one that

does not contain anomalies and can be used as a template.

These methods apply in many industrial scenarios, e.g., in

semiconductor production where wafers correspond, up to

some small misalignment, to a reference template [36].

Reference-free algorithms do not use any template image to

compare with, and they are the only viable option in scenarios

like the one considered here, where normal images depict

filaments that follow pseudo-random rather than geometrical

patterns. Reference-free algorithms detect anomalies by either

computing i) features that are able to discriminate between

normal and anomalous regions, or ii) features that provide

a known response to normal regions. In the latter case, any

region yielding an unusual response is considered anomalous.

Methods implementing this latter strategy are typically re-

ferred as novelty detection [22], [37], [38] (in the machine-

learning community this problem is also known as one-

class classification [39]). In this paper we present a novelty-

detection algorithm, even though we refer to anomaly/defect

since these terms are more appropriate descriptions for the

considered application.

On the one hand, anomaly-detection methods are easy to

use, since they simply require a training set of normal images

(which is often easy to collect) and are in principle able

to detect as anomalous any pattern that does not conform

training images. On the other hand, this problem is more

challenging because it does not rely on any information

about the anomalies to be detected. Overviews of anomaly-

detection algorithms for images can be found in [35], [22];

not surprisingly, these algorithms have been also proposed for

industrial monitoring purposes [40], [41], [42].

Here, we adopt an anomaly-detection algorithm based on a

dictionary yielding sparse representations, which are nowadays

one of the leading models in image and signal processing

applications [21], [43]. In particular, we pursue the approach in

[19] to represent normal data, in which a dictionary is learned

during an initial training phase. Then, test images are analyzed

in a patch-wise manner, computing features which assess the

conformance of each patch with the structures characterizing

normal ones. Anomalies are then identified as outliers in the

feature distribution. This approach proved to be particularly

successful on image texture. A different anomaly-detection

algorithm that uses sparse representations is [24], where the

anomalous data are identified during the sparse-coding stage,

by means of an ad hoc procedure. Convolutional-sparse mod-

els [44] were also shown to be effective in detecting anomalies,

even though they are more computationally demanding than

traditional patch-based models like those described in Section

IV-A.

While several defect-detection algorithms used in industrial

applications (e.g., those in [45], [46], [47], [48]) are very

application-specific and cannot be straightforwardly applied

to nanofibrous materials, anomaly-detection algorithms based

on sparse representation are rather general. In fact, these

have been customized for different monitoring scenarios, like

analyzing MEMS [49] signals in environmental monitoring ap-

plications, or ECG tracings to detect arrhythmias in wearable

devices [50].
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(a) (b)

Fig. 2. (a) Examples of training patches. (b) Atoms of the dictionary learned
by the ADMM algorithm [51]. Here we show only 16 atoms.

III. PROBLEM FORMULATION

Let us denote by s : X → R
+ the SEM image depicting

the nanostructures to analyze for anomaly-detection purposes,

where X ⊂ Z
2 is the regular pixel grid corresponding to

the image domain. The image intensity2 at pixel c ∈ X is

denoted by s(c). Our goal is to locate anomalous regions in

s; as such, the problem can be formulated as estimating the

unknown anomaly mask

Ω(c) =

{
0 if c falls inside a normal region

1 if c falls inside an anomalous region
(1)

which has to report as many anomalies as possible, indepen-

dently of their dimension and shape. In particular, we are

interested in estimating an anomaly mask Ω̃ that i) covers

most of the anomalous regions in s and that ii) reports the

largest number of anomalies, including the smallest ones.

Our only assumption is that, for training purposes, a set

of normal (i.e., anomaly-free) images T is given, while no

training images containing anomalous regions are provided.

This is a reasonable assumption since anomalous regions

might be very different in shape, dimension and appearance,

and a training set might not encompass all possible anomalies

that could occur during operations. In this sense, anomalies

remain unknown and we detect as anomalous any region that

do not conform the structure of normal data.

IV. PROPOSED SOLUTION

To better locate anomalies, we process the input image s in

a patch-wise manner. A patch is a small image region having a

given shape and extracted at a specific pixel, denoted as patch

center. In particular, the patch centered in c ∈ X is defined as

sc = {s(c+ u), u ∈ U}, ∀c ∈ X (2)

where U is a neighborhood of the origin which defines the

patch shape. While in principle patches sc can be defined

2SEM produces grayscale images, since each pixel reports the number of
electrons received by the detector. However, the proposed algorithm can be
easily extended to color images by jointly analyzing different color bands.

over arbitrary shapes, in practice, we chose U as a square

neighborhood of
√
p×√

p pixels, where p is the cardinality of

U . Note that sc will be usually considered as a column vector

in R
p, and thorough the paper we use bold letters to indicate

vectors. Figure 2(a) shows examples of patches extracted from

normal images.

A. Normal Patches Model

Our modeling assumption is that patches in normal images

are drawn from a stationary, stochastic process PN and can

be ideally contained in an unknown union of low dimensional

subspaces of Rp [52]. Such union of subspaces corresponds to

our model which has to be learned from the training set T. This

model can be expressed in term of a dictionary D ∈ R
p×n

[53] that provides sparse approximation of all normal patches

sc ∈ R
p, i.e.,

sc ≈ Dxc . (3)

In (3), xc ∈ R
n denotes the coefficient vector which is sparse,

namely only few coefficients are nonzero, thus ‖xc‖0, which

is the number of nonzero components of xc, is small. Note

that (3) corresponds to the following expression

sc ≈
n∑

i=1

xc,idi , (4)

where xc,i denotes the i-th component of xc and di the i-th

column of D, which is commonly referred to as a dictionary

atom. Sparsity implies that only few xc,i in (4) are nonzero

and that each normal patch can be (well) approximated by a

linear combination of few dictionary atoms. The dictionary D

is typically overcomplete, i.e., the number of atoms exceeds

space dimension (n > p): overcompleteness allows more

flexibility in the definition of atoms than in basis expansions,

and this flexibility enables sparsity in (4).

The coefficients of the sparse representation xc are com-

puted by solving the sparse coding problem which is formu-

lated as

xc = argmin
x̃∈Rn

1

2
‖Dx̃− sc‖22 + λ‖x̃‖1, (5)

where the ℓ1 regularization term ‖x̃‖1 promotes sparsity in the

solution [54]. According to (4) sparsity should be promoted

by the ℓ0 regularization term ‖x̃‖0 instead of ‖x̃‖1. However,

while the ℓ0 regularization makes the sparse coding problem

NP-Hard, the formulation (5) is convex and can be solved by

standard convex optimization algorithms. The problem (5) is

theoretically grounded, since it can be shown that under proper

assumptions concerning the dictionary D and the number

of nonzero coefficients of xc, the sparse coding problems

involving the ℓ0 and ℓ1 regularizations have the same solution

[55]. The solution of (5) corresponds to the maximum a

posteriori (MAP) estimate of xc given the patch sc, when the

nonzero coefficients follow a Laplace distribution. This result

can be extended to other ℓp regularizations, which corresponds

to assuming that the nonzero coefficients of xc follow a Gibbs

distribution [56].

The dictionary learning problem actually corresponds to

learning both the dictionary D ∈ R
p×n and the sparse
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representations X ∈ R
n×m for a given training set S ∈ R

p×m,

containing m normal patches arranged as the columns of S.

Dictionary learning is then formulated as solving

[D,X] = argmin
D̃∈Rp×n, X̃∈Rn×m

1

2
‖D̃X̃ − S‖22 + λ‖X̃‖1, (6)

where the ℓ1 regularization is applied to each column of X .

The problem (6) is typically solved by using the Alternating

Direction Method of Multipliers (ADMM) [57] which alter-

nates the calculation of the dictionary atoms and the sparse

representations X of training patches S with respect to the

current dictionary.

In our experiments we learn the dictionary D solving (6)

by means of the algorithm in [51] based on the ADMM and

solve the sparse coding (5) using the LARS algorithm [58].

Figure 2(b) reports a few atoms of a dictionary learned from a

normal image, and shows that these atoms actually depict the

peculiar structures of the filaments that characterize normal

patches. It seems quite likely that a linear combination of few

of these atoms can reliably approximate the normal patches

reported in Figure 2(a).

B. Detection of Anomalous Patches

We assume that anomalous patches come from a process

PA yielding structures that are different from those generated

by PN . Unfortunately, it is not often possible to learn a

dictionary that approximates anomalous patches, since these

are rarely provided in a sufficient amount for training. Thus,

we detect anomalies by determining whether test patches fall

inside/outside of the union of low-dimensional subspaces that

well approximate normal patches.

In practice, each patch in a test image is independently an-

alyzed to determine whether it admits a sparse representation

with respect to D. To this purpose, we compute a feature

consisting in a bivariate indicator which jointly accounts for

the reconstruction error and the sparsity of the representation

(3). In particular, given a patch sc, we compute xc (sparse

coding) by solving the BPDN problem (5), and we extract as

feature in c the following indicator vector:

f(c) =

[
‖Dxc − sc‖2

‖xc‖1

]
. (7)

Indicators extracted from normal patches follow a stationary,

albeit unknown, distribution. Anomalous patches are expected

to substantially deviate from normal ones in either their

sparsity or reconstruction error (or possibly both). Thus, the

corresponding indicators would be outliers with respect to the

distribution φ0 of indicators extracted from normal patches.

While in [19] outliers in the indicators are detected by means

of a confidence region built according to the multivariate

Chebyshev inequality, we here model the distribution φ0 by

Kernel Density Estimation (KDE), adopting a kernel based on

linear diffusion with automatic bandwidth selection [59].

Then, a patch sc is considered anomalous when f(c) falls

in a low-density region of φ0. Therefore, an initial estimate of

the anomaly mask is given by

Ω̃(c) =

{
0 if φ0 (f (c)) < γ

1 if φ0 (f (c)) ≥ γ
, (8)

being γ > 0 a parameter that tunes the responsiveness of

the anomaly detector. In particular, the value of γ can be

empirically chosen to provide an acceptable false positive rate.

C. Preprocessing

To effectively capture the structure that characterizes normal

filaments, we consider quite small patches; thus, there might

be patches that do not overlap with any filament and are

completely dark. Patches that are entirely zero can be perfectly

reconstructed by any linear model, and achieve a (very) sparse

representation, having all coefficients in (3) equal to zero.

Unfortunately, null indicator vectors can impair the estimation

of φ0, and it is safer to remove them from both the training

and test patches. Thus, we consider for training only patches

in the set S:

S = {sc |median(sc) > ε}, (9)

where ε > 0 is a manually tuned parameter. The same

operation is applied on test images. The median in (9) was

used to remove also dark patches that marginally overlap with

a filament. It is worth mentioning that nanofibrous materials

having too large holes might yield porosity values that are

far from the reference ones. However, this sort of anomalies

can be detected by straightforward morphological operations

on the whole image and certainly do not require any learning

method.

Another pre-processing operation to perform before dictio-

nary learning and sparse coding is to subtract the average value

from each patch sc, which is quite a customary operation in

the sparse-representation literature.

D. Postprocessing

Even though the anomaly detector (8) takes as input the

whole patch sc, its final decision concerns only the patch

center c and no other pixels belonging to the same patch.

However, since patches centered in neighboring pixels largely

overlap, it would be better to aggregate the decisions of the

anomaly detector in all those patches that overlap with c.

We perform such aggregation by post-processing the anomaly

mask (8) by majority voting:

Ω̂(c) =

{
0 if #Ac < #Nc

1 if #Ac ≥ #Nc

, (10)

where Ac = {u ∈ U | Ω̃(c + u) = 1} denotes the set of

pixels in sc that are considered anomalous and Nc = {u ∈
U | Ω̃(c+u) = 0} the set of pixels that are considered normal.

Finally, to smooth the borders of anomalous regions in

Ω̂ we perform an additional post-processing by customary

morphological operators [60]. More precisely, we apply an

erosion followed by a dilation, which are nonlinear filters

based on order statistics: the minimum and the maximum over

a given support, respectively. We experienced that adopting

these binary operations over a neighborhood smaller than U
can improve the coverage of anomalous regions.
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Algorithm 1 The training phase of the proposed algorithm.

Require: a training set of normal images T.

1: Prepare two training sets of normal patches S and V .

2: Remove dark patches from S and V as in (9).

3: Subtract the average value from each patch in S and V .

4: Learn the dictionary D solving (6) from S.

5: Compute the sparse representation of V solving (5).

6: Compute {f (c) , ∀ sc ∈ V } as in (7), the indicators of

normal patches.

7: Fit φ0 through KDE, and define a suitable the threshold

γ > 0 to be used in the detector (8).

E. Algorithm Summary

We here describe the training phase (Algorithm 1) and detail

all of the steps of the proposed solution during operations

(Algorithm 2). To prevent overfitting, it is convenient to split

T in two sets of patches, S and V , which are both pre-

processed as in Section IV-C (Algorithm 1, lines 1-3). We

use patches in S to learn the dictionary D by solving (6) via

the ADMM algorithm [51] (line 4), while we compute the

sparse representations (line 5) and the indicators (line 6) for

all the patches in V . Then, we fit the distribution φ0 only to

these latter (line 7), ignoring patches used to learn D. Finally,

a suitable threshold γ > 0 is chosen.

During operations, each test image is processed in a patch-

wise manner and each patch sc undergoes the preprocessing

steps described Section IV-C (Algorithm 2, line 2-3). The

sparse representation xc is computed by solving the sparse-

coding problem (line 4) and the corresponding indicator vector

f(c) is obtained (line 5). A simple thresholding on φ(f(c)) as

in (8) provides a preliminary estimate of the anomaly mask,

i.e., Ω̃ (line 6). The anomaly mask is then refined through the

post-processing to obtain Ω̂ (line 9-12).

V. EXPERIMENTS

We analyze SEM images acquired from samples pro-

duced by the prototype electrospinning machine developed for

the NanoTWICE Project. Electrospinning sessions were per-

formed with experimental conditions (machine parameters and

environmental variables) that typically produce good quality

nanofibrous materials with no macroscopic defects. There is

no point of considering worse production conditions, as these

can be easily detected by other macroscopic approaches (e.g.,

they yield altered current patterns during the process) and do

not require vision-based monitoring.

A. Dataset Description

Our SEM images were acquired with the FE-SEM (Carl

Zeiss Sigma NTS, Gmbh Öberkochen, Germany). A sample

of 4×4 cm from the produced material is placed on a metallic

support, and a thin gold coating of 5 nm is applied on the

sample surface to guarantee satisfactory electrical conduction.

All images are acquired in the same conditions and using

the same parameters, i.e., magnification of 8000x, extra high

tension of 5 kV , working distance of 7 mm, brightness of

45%, and contrast of 52%.

Algorithm 2 The operational phase of the proposed algorithm.

Require: test image s; D, φ0, γ > 0 from Algorithm 1

1: for all patch sc in s do

2: if sc satisfies (9) then

3: Subtract form sc its average value.

4: Solve (5) to compute xc.

5: Compute the indicator f(c) as in (7).

6: Define the anomaly mask value Ω̃(c) as in (8).

7: end if

8: end for

9: for all pixel c of the anomaly mask Ω̃ do

10: Set the anomaly mask Ω̂ via majority voting (10).

11: end for

12: Apply erosion and dilatation operators to Ω̂.

Our dataset contains 45 SEM images (dimension 1024×696
pixels): 5 images are anomaly-free, while 40 images contain

anomalies of different size. For each image, we manually

select all defects, defining the anomaly mask Ω that is used

as a ground truth in our tests. Overall defects in these images

are very small: on average they cover 1.3% of the image, and

only the 0.5% of the anomalies exceed the 2% of the image

size.

B. Figures of Merit

To assess the performance of the proposed solution we

compute the following figures of merit: False Positive Rate

(FPR), namely the percentage of pixels which are erroneously

identified as anomalous; True Positive Rate (TPR), namely

the percentage of pixels which are correctly identified as

anomalous.

Since both FPR and TPR depend on the threshold γ, which

sets the responsiveness of Algorithm 2 and of the alternative

solutions described below, we analyze the Receiver Operating

Characteristic (ROC) curve, which is obtained by plotting the

TPR against the FPR for different values of γ. Moreover,

the area under the ROC curve (AUC) is used as a single

quantitative performance indicator, which is equal to 1 in the

case of the perfect detector (i.e., TPR = 100% and FPR = 0%).

However, although the AUC is commonly adopted in de-

tection problems, in the considered scenario it is mainly

influenced by large defects, while our goal is to detect all

of them disregarding their size. Therefore, to quantitatively

assess the coverage of all defects, we extract the connected

components [60] of the ground truth Ω, thus assigning a blob

to each defect. Then, we measure the Defect Coverage as the

percentage of pixels covered by the output Ω̂ of a detector

yielding FPR = 5%. Of course, each defect yields one Defect

Coverage value, and different solutions have to be contrasted

by comparing the distribution of Defect Coverage values.

C. Alternative Solutions

We compare our algorithm against five anomaly-detection

solutions that, like ours, operate patch-wise without any

anomalous patch for training. All solutions have been tested in
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Fig. 3. Values of the AUC for the considered methods obtained by varying the
patch size. The solid triangles indicate the points where the AUC is maximized
and in the legend the optimal patch size popt is reported.

the same setting: they are trained from a set T of 5 anomaly-

free images, they preliminary remove dark patches as in (9),

and they perform the same postprocessing described in Section

IV-D.

The first three (Variance, Gradient, Grad&Var) are baseline

solutions that implement manually designed features to distin-

guish between normal and anomalous patches. In particular,

the indicator vectors associated to these baseline solutions are

suggested by the fact that defects are often flat, whereas normal

regions are characterized by prominent edges (see Figures

1 and 2(a)). The fourth solution (STSIM) is based on the

structural texture similarity measure proposed in [25], which

achieves state-of-the-art performance in texture classification.

Finally, the fifth solution (Coding) was proposed in [24] and

also learns a model based on sparse representation, thus it

extracts a data-driven feature like the proposed one.

Baseline solutions follow the same framework of the pro-

posed algorithm: more precisely, during the training phase,

we compute an indicator vector f(c) for all of the patches

extracted from the images in T. Then, we fit the distribution

φ0 on the computed indicators by KDE [59] and set a

suitable threshold γ. During operations, the anomaly mask Ω̃
is computed as in (8). The only difference between the baseline

solutions is the indicator vector f used:

• Variance: the indicator vector f(c) corresponds to the

sample variance v(c) computed over the patch sc.

• Gradient: the indicator vector f(c) corresponds to g(c),
the average magnitude of the gradients in the patch sc.

More precisely, we compute at first the image of gradient

magnitude d as

d =
√
(s⊛ dx)2 + (s⊛ dy)2, (11)

where dx = [−1, 1] and dy = [−1; 1] are the horizontal

and vertical derivative filters [60], respectively, and ⊛

denotes the 2-dimensional convolution. If we denote by

dc the patch centered at c extracted from d, then g(c) is

the average value of the patch dc.

• Grad&Var: this solution stacks the indicators v(c) and
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Fig. 4. ROC curves for all solutions considered in Section V, with the
corresponding AUC values reported in the legend. Proposed and Coding

solutions use a patch size p = 152, while the others the optimal patch size
popt selected in Figure 3. The Proposed solution outperforms by far all of the
others.

g(c) in a two-dimensional indicator vector

f(c) =

[
g(c)
v(c)

]
. (12)

The STSIM solution is based on structural texture similarity

metric [25], which assesses the similarity between different

textures. More precisely, a texture image s is decomposed

into steerable-filter subbands [61], and a feature vector h(c)
is obtained by computing subband statistics over sc. In [25]

this is used for texture classification: each feature vector is

assigned to the closest class in terms of Mahalanobis distance.

In our scenario there is only one texture corresponding to nor-

mal images, and we perform anomaly detection using feature

vectors as follows: during the training phase we compute the

feature vectors from the training images, their mean h and

their covariance. Then, during operations, we compute h(c) for

each patch and consider sc anomalous when the Mahalanobis

distance between h(c) and h exceeds a fixed threshold γ. This

is equivalent to consider as anomalous any patch having an

indicator falling outside a confidence region around h, defined

by the Chebyshev inequality.

The Coding solution was presented in [24] and also assumes

that normal data admit sparse representation with respect to

a dictionary D as in (3). Differently from our algorithm, the

anomaly-detection phase in [24] is embedded in a specific

sparse coding procedure. More precisely, for each patch sc

the sparse representation xc is computed together with a term

ac, which exhibits a large magnitude when the approximation

(3) is not good enough. Thus, anomalies are detected when

the magnitude of ac exceeds a fixed threshold γ. To enable a

fair comparison, we use the same dictionary D in the Coding

and Proposed solutions.
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Of course, choosing the right patch size is very important,

since small patches might not exhibit the typical structure of

normal data, while large patches might prevent the detection

of small anomalies. To fairly compare different methods, each

one has to be tested using its optimal patch size. Therefore, we

choose the best value of p for baseline and STSIM solutions

by testing p ∈ {42, 82, 122, . . . , 1202} over a validation set

of 5 images containing anomalies. Figure 3 shows the average

AUC values obtained for each solution, and reports the optimal

patch sizes popt that are used in our experiments. As far as the

Coding and the Proposed solution are concerned, we manually

set the patch size p = 152, since using larger patches would

require too many training data to avoid overfitting in model (3)

and would substantially increase the computational costs. The

same 5 validation images are used to set the other parameters

for all of the considered solutions, using cross-validation to

maximize the AUC: λ in (6) and (5), ε in (9), as well as the

parameters in the Coding solution. The Defect Coverage is

computed by configuring the parameter γ in each method to

yield FPR = 5% in these 5 validation images. Finally, these 5

images used for validation are not considered for performance

assessment, thus our experiments involve the remaining 35

images.

D. Results

The proposed solution is compared in two experiments

against the five solutions described in Section V-C.

At first, we test each solution over the entire dataset, and we

assess the overall anomaly-detection performance by the ROC

curves averaged over 35 images. These curves are reported in

Figure 4, together with the corresponding AUC values in the

figure legend. ROC curves clearly indicate that the Proposed

solution outperforms all the others, achieving AUC values that

are at least superior of 0.2. In particular, the proposed solution

outperforms the Coding, which uses the same dictionary D.

Thus, we can conclude that (at least in this specific application)

it is not convenient to embed the anomaly detection into the

sparse-coding stage, while it is better to separately compute the

TABLE I
COMPUTATIONAL COMPLEXITY OF THE PROPOSED SOLUTION

Operation Flops per patch Time per image (s)

Median filter O(
√
p log p) 0.0087± 0.0011

Mean Subtraction O(p) 0.1522± 0.0022
Sparse Coding O(pnk + nk2 + k3) 51.190± 1.7717
Indicator Vector O(pn) 1.6716± 0.0411
Density Evaluation O(1) 0.0273± 0.0012
Majority Voting O(

√
p) 0.0159± 0.0020

Morphological filtering O(
√
p log p) 0.0101± 0.0005

indicators and then identify anomalies as outliers. The STSIM

solution achieves the worse performance, probably because

the anomalies in these images are very small and cannot be

detected when using large patch sizes. However, as observed

in [25] and in Figure 3, the performance of STSIM solution

degrades when considering smaller patches, since the local

subband statistics cannot capture the texture structure.

In the second experiment we compare the Defect Coverage

values of all these solutions, to make sure that the superior

performance achieved by the proposed solution is not due

to a superior coverage of few large defects (like the film in

Figure 1). The box-plots in Figure 5 confirm that the proposed

solution guarantees a Defect Coverage that is often better than

others, having most of the defects covered more than 60%.

Thus, considering that small anomalies far outnumber the large

ones (as described in Section V-A) we can safely conclude that

the proposed solution provides superior detection performance

also of small defects. We also provide a visual comparison of

the anomaly-detection performance. Figure 6 reports the masks

Ω̂ over three meaningful images for the three most effective

solutions (according to Figures 4 and 5), generated by setting

the same values γ used to compute the Defect Coverage values.

These masks confirm that the proposed solution provides

a superior coverage of very small anomalies, as it clearly

emerges in the second image. The large film in the first image

is successfully detected by all methods (and in particular by the

Coding solution). However, the tiny anomalies in the second

image are much better detected by the Proposed solution.

Also, the Coding solution completely misses a large bead

in the third image. Finally, most of the false alarms in the

Proposed solution appears at junctions and pairs of filaments

that are very close to each other (see third image), which

however correspond to very few patches.

E. Computational Complexity

We analyze the computational complexity of the Algorithm

2 to show that our solution can be effectively adopted in a

system monitoring the industrial production of nanofibrous

materials through spot checks. Table I reports the order of

floating point operations (flops) that each step of the Algorithm

2 performs to analyze a single patch s, together with the

time (mean value ± standard deviation) required to process

an entire image using our MATLAB implementation of the

algorithm on a PC mounting an Intel Core i7 3.40GHz CPU

and 16GB RAM.

The preprocessing consists of (9), where the computation

of the median is performed in a sliding manner and requires
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Fig. 6. Examples of anomaly detection on three meaningful SEM images. The first column reports the three original images, while the following ones
present the detections obtained from Grad&Var, Proposed and Coding solutions, respectively. These solutions have been chosen as the best performing ones
according to Figures 4 and 5. The threshold γ has been set as in Figure 5, to yield FPR = 5%. Pixels correctly identified as anomalous are marked in green,
false positives in red, while false-negatives in blue.

O(
√
p log p) flops for each patch. Subtracting the mean re-

quires O(p) operations. The sparse coding is performed using

the implementation of the LARS algorithm provided in the

SPAMS [62] library and requires O(pnk + nk2 + k3) flops,

where k is the maximum number of iterations of the LARS

and is set to 200 in our experiments. Then, the indicators in (7)

are computed at the cost of O(pn) operations. Since the values

of the density φ0 are sampled in a regular grid, the evaluation

of φ0(f) can be performed retrieving a value in a lookup-table,

at a constant cost O(1). Finally, the mask Ω̂ is computed by

performing the majority voting and applying the morpholog-

ical operators, which require O(
√
p) and O(

√
p log p) flops,

respectively.

The computational times reflect the complexity of each step,

thus are dominated by the sparse coding. However, the time

required to analyze an image is well below the time needed to

prepare the next sample material, thus multiple SEM images

could be analyzed from the same sample. Moreover, the sparse

coding can be easily sped up by considering fewer patches in

the analysis, e.g., skipping every second patch. We experienced

that such a running process does not substantially affect the

resolution of the map Ω̂, while it decreases the time required

by a factor of 4. Finally, it is worth noting that the sparse

coding is embarrassingly parallel, as the solution (5) can be

executed independently over multiple patches. Hence, a GPU

implementation of the proposed solution would dramatically

reduce the computational times.

VI. CONCLUSIONS

We present an anomaly-detection algorithm that can suc-

cessfully detect defects in nanofibrous materials. Experiments

conducted on a large dataset of SEM images show that the

proposed algorithm can effectively detect also tiny defects,

and that it processes images in a reasonable time. Thus,

this algorithm can be implemented in smart manufacturing

systems for nanofibrous material production, to control the

quality of the produced material by spot checks. These checks

allow to adjust the production process parameters and, when

regularly performed, to raise alerts when the production quality

falls below a desired standard, yielding both economical

and environmental advantages. Ongoing work concerns new

dictionary-learning methods to exploit examples of defects

during the training phase.
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