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Defect Detection in Textured Materials
Using Gabor Filters

Ajay Kumar, Member, IEEEand Grantham K. H. Pan&enior Member, IEEE

Abstract—This paper investigates various approaches for auto- has received much attention over the years [7]-[23]. This paper

mated inspection of textured materials using Gabor wavelet fea- focuses on this problem and proposes some new techniques to
tures. A new supervised defect detection approach to detect a classaddreSS the problem

of defects in textile webs is proposed. Unsupervised web inspection . . . . .
using multichannel filtering scheme is investigated. A new data fu- N textile looms, the fabric produced is typically 8-10-ft wide
sion scheme to multiplex the information from the different chan- and rolls out at the speed of 5-6 ft/s. The fabric produced is

nels is proposed. Various factors interacting the tradeoff for per- packed into rolls and later unrolled for inspection on the inspec-

formance and computational load are discussed. This scheme es+jgy taple. The major reasons for this offline inspection is the
tablishes high computational savings over the previously proposed

approaches and results in high quality of defect detection. Final slow speed Of.pI’OdUCtIOI’l, Wh'ch IS |nsuﬁlplent t(_) keep an in-
acceptance of visual inspection systems depends on economical assPector occupied, and the relatively hostile environment. The
pects as well. Therefore, a new low-cost solution for fast web in- majority of automated inspection systems currently available in
spection is also included in this paper. The experimental results the market are offline. Typical of these is the I-TEX inspection
conducted on real fabric defects for various approaches proposed g stom available from Elbit Vision Systems [8], which can de-
in this paper confirm their usefulness. . h

tect fabric defects up to a speed of 100 m/min. Many other web
inspection systems available from commercial vendors are tai-
lored to detect and locate defects accurately while maximizing
the throughput. Each of these inspection systems has its own
limitations and defect detection is limited to a certain range of
. INTRODUCTION defects. Fabric defect detection is still a topic of considerable

ISION-BASED inspection of industrial products offergesearch and researchers have proposed different algorithm to

low-cost, high-speed, and high-quality detection deduce the cost, and improve the throughput and range of de-
defects. Some of the most challenging industrial inspecti@cts that can be detected.
problems deal with the textured materials such as textiAe Prior Work
web, paper, and wood. The inspection problem encountered rior or
in textured materials become texture analysis problems atvarious approaches for fabric defect detection have been pro-
microscopic levels. Textured materials take many forms aR@sed in the past two decades [7]-{23]. The texture analysis
while there is a remarkable similarity in overall automatiofechniques for fabric defect detection are intuitively appealing,
requirements for visual inspection, the cost-effective solutioR§cause they allow us to capture texture features, which are sta-
are application specific and generally require extensive reseafigtically used to segment fabric defects. Gray-level texture fea-
and development efforts [1]. Automated visual inspection &fres extracted from co-occurrence matrix [9], mean and stan-
textured materialsyoven oronwoven, such as paper [2], steeflard deviations of subblocks [10], autocorrelation of subimages
roll [3], wood [4], [5], carpet [6], textile [7]-[23], etc., has been11], and Karhunen—Loéve (KL) transform [12] have been used
used for defect detection and quality assurance. for the segmentation of local fabric defects. Cotetral. [13]

In general, an image afoven Rbric sample can be regardediave characterized the fabric texture using the Gauss Markov
as a typical textured image. The detection of local fabric defe¢gndom field (GMRF) model and the textile web inspection
is one of the most intriguing problems in computer vision arefocess is treated as a hypothesis-testing problem on the sta-

tistics derived from this model. Campbelial.[14] use model-
Paper MSAD-S 01-39, presented at the 2000 Industry Applications Socigt)?sed Clus.termg to Segn.]e.nt def.eCtS from the dem.m f.a.bnc'
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Fig. 1. Perspective view of (a) real and (b) imaginary components of a typical Gabor function in spatial domain.

transform (DWT) has been detailed in [17]-[19]. Jaspial. The main contributions of this paper [37] are summarized as
[20] use texture-adapted wavelet bases whose response is clobews.

to zero for normal fabric texture and Significantly different for 1) A new Supervised defect detection scheme to detect a
fabric defect, thereby enabling detection. Escefetl.[21] use class of fabric defects is proposed.

multiscale Gabor filters for textile web defect detection. Ajay 2) A new multichannel filtering scheme for unsupervised
and Pang [22] have demonstrated fabric defect detection using  fabric defect detection using a class of self-similar Gabor

only real Gabor functions. functions [27] is presented. As detailed in Section IV-G,
this scheme differs from existing techniques in five cru-
B. Present Work cial ways.

3) A new, low-cost solution for the web inspection using
only the imaginary part of the Gabor function is pre-
sented.

The organization of this paper is as follows. In Section Il, a

In this paper, fabric defect detection using Gabor filters is
further investigated. One common technique to implement
multiresolution analysis is to use wavelet transforms. However,

wavelet bases are shift invariant and, therefore, it is difficult ¢ Gabor filters | ted: the bank of Gabor filt
to characterize a texture pattern from the wavelet coefficiedfs/'€W Of ©>abor TIErs 1S presented, the bank ot Labor Tilters
ed for power spectrum sampling of the image is introduced.

since the wavelet descriptors depend on pattern location [29r “Section IIl ised defect detection to detect a ¢l ;
Gabor filters can also decompose the image into compone ection T, supervised detect detection 1o detect a ciass o
ric defects is described. In Section 1V, unsupervised defect

corresponding to different scales and orientations. Gabor filt o . . . i ;
etection is described. This section includes a discussion on the

achieve optimal joint localization in spatial and spatial fre- d multich | filteri h d . f thi
guency domain [25] and, therefore, have been used extensiy§Posed muilichannetliitering scheme and comparison ot this

for texture analysis [26]-[29] and document analysis [30], [31?,C errrl]e with prlordvlvork [21] " In Sec'qon V,hexperlmgntgl res.ults
and object detection [32]. rom the proposed low-cost inspection scheme using imaginary

Although researchers have not agreed on a precise definit%?ggt‘;ggc\t/';m are reported, which is followed by conclusions

of texture, several definitions have been proposed in the litd?-
ature [33], [34]. Many textures can be modeled as a collection
of similar, not necessarily identical, primitive objects caliex- Il. GABOR FUNCTION

tels In uniform textures, théextelsare identical and arraHQEd In the Spatia| domain, the Gabor function is a Comp|ex expo-
in repeating pattern with a constant displacementofalong nential modulated by a Gaussian function. The Gabor function
thex axis andAy along they axis. Dunnet al. [35], [36] have forms a complete but a nonorthogonal basis set and its impulse
found that when a texture contaitextelsnot arranged in square response in the two—dimensional (2-D) plane has the following
lattice (Ax # Ay), asymmetric Gabor filters are useful. Theyeneral form [27], [28]:

textelspacing(Az, Ay) for real fabric samples is often not ar-

ranged in square lattice. This can be due to the presence of sto- 1 1 /2% 4?2 .
chastic turf/perturbations on the fabric surface, and/or due to thd (%> ¥) = Um0, P75\ 2 - o2 exp(2mjuoz)
underlying structure of the fabric itself as in the case of many Q)

twill weave fabrics. The fabric defect detection using asymwherew, denotes the radial frequency of the Gabor function.
metric Gabor filters is investigated in this paper. For supervis@the space constants, and o, define the Gaussian envelope
defect detection, no effective systematic method existed preslong thex andy axes. Fig. 1 shows the perspective plot of
ously [22] for automatically selecting the desired Gabor filtera typical Gabor filter in the spatial domain. In the frequency
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domain, the Gabor function acts as a bandpass filter and thkerew, = f;,, and f; and f;, are the lowest and highest fre-

Fourier transform off (z, v) is given by quencies of interest. A bank of self-similar Gabor filters formed
) ) by rotation (varyingg) and dilation (varyingp) of the basic
F(u, v) = exp {_} [(“ — ) + U_} } ) Gab_or fllter.(l) is used to perform power spectrum sampling of
2 o2 o2 the inspection images.

Each of the complex Gabor filters has the real (even) and
where imaginary (odd) parts that are conveniently implemented as the

1 1 spatial mask of\f x M sizes. In order to have a symmetric re-

Ou= 2o, and o, = 210y gion of support)/ is preferred to be an odd number. For a given

input imagel (z, y), the magnitude of filtered imagg,,(z, )
A class of self similar-functions, referred to as Gabor waveéletss obtained by using Gabor filtefi,,(x, v) as follows:
which have been used for texture analysis [27], will be consid-
ered in this work. Using (1) as the mother Gabor wavelet, tg, (=, y) = {[qu(a:, e + I(z, )]

self-similar filter bank can be obtained by appropriate dilation 1/2
and rotation off (x, y) through the generating function + [fpglz, ¥)o * I(x, y)]Q} (6)
Tpa(m, y) = a7 2f(2, ¢) (3) where %" denotes 2-D convolution operation, arfg,(z, ).
and f,,(x, y), represent the even and odd parts of the Gabor
where filter separated from (3).
&' =a7P(zcosby + ysinf,) IIl. SUPERVISEDDEFECT DETECTION
=o P(—zsinb, +ycosb,), Segmentation of a similar class of local fabric defects with
a>1;, p=1,2,...,8 g¢g=1,2,...,L. a priori knowledge about the orientation and size of a sample

defect can be regarded as supervised defect segmentation
The integer subscripts and ¢ represent the index for scale[22], [37]. When the approximate orientation and size of
(dilation) and orientation (rotation), respectivefyis the total defects are known, the power spectrum-sampling of the re
number of scales anflis the total number of orientations in thespatial-frequency plane is not necessary. In such cases, he
self-similar Gabor filter bank. For each orientatigrthe angle segmentation has been achieved with only one Gabor filter,

8, is given by from the Gabor filter bank that can provide best discrimination
of texture features against the defects. The encouraging results
6 — m(g—1) g=1,2 I (4) in [22] have stressed the need for a heuristic algorithm that can
1 L o automatically select a Gabor filter to detect a class of fabric

_ defects. In order to choose the best Gabor filter, a cost function

The scale factora™” ensures that the energg,, = . T

I 1% fonle. 92 drdy is independent ofp [29] that can represent an appropriate measure of discrimination of
oo J—oo [JPI __texture features against that of defects has to be selected. The

Thus, all the filters in the Gabor filter bank have the Saméeost function used in [28] has been found suitable and used

energy, irrespective of their scale and orientation. In most case : Lo .
[21], [22], [28], [36], a reasonable design choice is to sele'crﬁhe proposed algorithm. A Gabor filter is said to represent

. . X : a defect if, on average, it produces higher outputs for regions
circularly symmetric Gabor filters, i.eq, = o,,. However, as . :

; ’ ; ) , corresponding to defect as compared with other defect-free re-
discussed in Section I-A, asymmetric Gabor filtéss # o)

i : . ions of the image. The following section describes a heuristic
can be useful for real fabric textures. As illustrated in [27 . : :
: - dlgorithm to select the best representative Gabor filter from the
the following formulas ensure that the half-peak magnitude ) .
. L ank of Gabor filters to detect a class of fabric defects.
responses of adjacent asymmetric filters touch each other

(Fig. 6): A. Filter Selection Algorithm
T —(1/(s-1)) A bank of S x 1. Gabor filters described in Section II, with
o= <T> Sscalep=1,...,5)andl orientationgg =1, ..., L) is
! investigated for supervised defect detection. A real fabric image
_V2h 2Aa+1) sample with a defect, which can best represent the class of fabric
© 2nfu(a—1) defects to be detected, is chosen. This image is dividedAinto
511/2 nonoverlapping square (in our case) regions of sizé pixels.
o, = [2 02— < 2ln2 ) ] Eachofthei = 1, 2, ..., S x L Gabor filters in the filter bank
2705 fn is applied to each of the = 1, 2--- K regions and a filtered

outputf,,(z, v) using equation (6) is obtained. The average

-1
- |27 tan ( — . —21In 5y output for everyith filter in the regionk = 1,2, ..., K is
{ (ZL) <f} <47f20£fh>ﬂ ®) obtained as follows:

T __

be admissible and progressive [27], [29]. However, in the context of representing Dy, (l <1
a class of self-similar functions, this term is used.

1The Gabor function do not exactly satisfy the requirements that the wavelet . 1
Z Ipg(, y). (7)

(z,y)EkK
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For every filter i, the maximum average outpubi 3T T T T T T T T T T T T T LT
.. . I T S S T A . . ' ' ] + —5~ MISPIC!

and the minimum average outpu]ﬁfnhEl among all of thg i . ; _e_big_ﬁnm

k= 1,2,..., K regions is determined. A cost function gl i i i i i i.i] 1 = Wror)g-dfa“;t, ies F

J(i), which is designated as the normalized difference of tw ' | PRV D (S enemdliples

outputs, is calculated for every filter in the filter bank

2 -
J(Z) — < max z 111111) 3 (8) g
min ‘2 1.54
The filter f(x, y),, that gives the highest cost functiof,, is % X
chosen as the best representative filter to detect a class of fa®  1}.3
defects under consideration ¥ | 3 :
_ ; u.sl-"*«-i- N5 ;
Jop = | ax (0} ) Y Sy RAn #

-------

I TN TN N A T T U R OO TN N A O O OO
123 4567 89101112131415161718192021222324
Fitter number, i

The image under investigation is filtered with this filter o

f(z, y)»p corresponding to the highest cost functig in (9).

The magnitude of this filtered image is obtained using (6) and

is subjected to thresholding operation to segment the defectsig. 2.t ?election of best representative filter for supervised defect
segmentation.

B. Thresholding

The thresholding limit is determined from a reference dgabor filters marked on the absicca of this plot is as follows:
defect-free fabric image. This reference image is filtered wifiiter numbers 1-6 are for filters with = 1 andg =1, ..., 6
Gabor filter f(x, y),, and the magnitude of filtered imageand, 7-13 are fop = 2 andg = 1, ..., 6, and similarly for
R(z, y) is obtained. From this filtered image, the sholdinghe rest. As seen from this graph, image samples with defect
limit is obtained as follows: big-knot shown in Fig. 3(a), achieves the peak of its cost

function for Gabor filter number 9p = 2, ¢ = 3). Gabor
P, = max |R(z, y)] (10) filter number 12 f = 2, ¢ = 6) achieved the peak of the cost
myeW functions for the detection of fabric defestong-drawshown
where ‘W” is a window centered at the image. Thus, h# Fig. 3(d). Similarly, the fabric sample in Fig. 3(g) with defect
threshold valuey,;, is the maximum value of gray levels,netting-multipliesachieves its peak at filter number (8= 2,
within a window “W,” in the image R(z, ) obtained from ¢ = 4) and defecmispickat filter number 8p = 2, ¢ = 2).
the reference image. The window size is chosen to avoid ahiyese four Gabor filters were applied to their respective fabric
possible distortion effects from the image due to discontinuitié@mples and the filtered images are shown in Fig. 3(b), (e), (h),
at the border. In this paper, the window size is obtained t&nd (k).
removing ten pixelsdd hod from each side of the image The filtered images were thresholded with a thresholding
R(z, y). The magnitude of threshold valug,, is such that limit computed from the defect-free fabric sample and the
the unwanted spectral components from the fabric texture glefect can be seen as segmented in the thresholded images

completely isolated from the output binary image. shown in corresponding Fig. 3(c), (f), (i), and (I). The Gabor
filters selected with the proposed scheme were found to be
C. Experiment and Results robust and can segment similar kind of defects at different

Each of the filters in the filter bank is implemented asxa 9 positions on a textile web. An example of this is reproduced

convolution mask for each of its real and imaginary componen%‘?re' Fig. 4@ .and (d) shovys two different image samples W'th

The highest frequency of the filter in the filter bagik = 1/2 is the defecmlsplck the 'best fllf[er selected fpr the segmentation

empirically selected. As in [27], the filters were placed one o@-f defect in Fig. 3() is applied to thesg image samples. The

tave apart and, thug; = 1/16 for the Gabor filters distributed segmented defect can be observed in Fig. 4(c) and (f).

at four scales. The images of twill weave fabric samples were i

acquired under backlighting condition and covered 2828 D- Discussion

in? area of fabric sample. The acquired images were digitizedThe heuristic algorithm used to choose the best representa-

into 256 x 256 pixels, with 8-bit resolution (256 gray levels)tive Gabor filter is suitable for locahther thanglobal defect in

Each of these images was divided imto = 16 nonoverlap- the image. If the defect in the inspection image is global, i.e.,

ping regions of 64x 64 pixels. The Gabor filter selected on thet occupies most of the image, thé¥, . and D! . for the fil-

basis of the algorithm described in Section IlI-A successfullgrs will be approximately same. In such case, the magnitude of

detected the defects in fabric samples. Segmentation resultstfer peak of the cost function will be smaller and reliable defect

the fabric samples having defedifg-knot wrong-draw net- segmentation will not be achieved. The size of nonoverlapping

ting-multiplies andmispickare reproduced here. regions {x!) should be sufficient to cover defect-free and defect
Fig. 2 shows the plot of cost functiof(:) for the different regions separately. Another alternative of using nonoverlapping

fabric samples shown in Fig. 3. The numbering scheme faegions is to computé? .. and D’ . in a finite region (for

max min
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Fig. 3. Fabric samples with defelsig-knot wrong-draw netting-multiplies andmispickin (a), (d), (f), and (j) respectively; corresponding filtered image with
the best representative Gabor filter in (b), (e), (h), and (k); segmented defects in (c), (f), (i), and (I).

example/] x [) for every Gabor filter at randomly sampled 10-9), the design of optimal Gabor filters was not attempted. Al-
cations inside the image. Since the location and the size of rdaugh the present work does not address the problem of ex-
fabric defect varies randomly, the finite nonoverlapping regiomdicitly designing an optimal filter, our simple filter-selection
were preferred as this is also computationally simpler. methodology suggested the best representative filter that per-
Optimal Gabor filters based on decision theoretic formulderms well in most cases.
tions can also be designed to detect a class of fabric defects. The
selection of an optimal Gabor filter involves the determination
of four parameter$u, v, o,, o), which define the center fre-
quency and the bandwidth of the filter, which are optimal in the The dimension and orientation of local defects generated in
sense that the resulting Gabor filter maximizes a selected ctisttile webs vary randomly. Therefore, a complete automation
function. As in [36], the bandwidtfy,, o,,) can be determined of visual inspection process requires unsupervised defect detec-
heuristically, and the center frequen@y, v) can be found by tion that can be used for the online web inspection. The term
essentially an exhaustive search of all the possible center ffeasupervised defect detection” refers to the detection of un-
quencies. Primarily because of hanging constraints of compgunown class of defects for which there is no training. Multi-
tational simplicity and small-sized Gabor masksq7, or 9x channelfiltering theory for the processing of visual information

IV. UNSUPERVISEDWEB INSPECTION
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Fig. 4. Robustness of best representative Gabor filter obtained from the image in Fig. 3(j). Fabric sampteispiikin (a) and (d), corresponding filtered
images in (b) and (e), and the segmented defects in (c) and (f).

in the biological model of human visual system has inspired var- mage under
ious texture segmentation algorithms [27], [32]. A variation of inspéction
this algorithm, which can be used for the detection of local fabric m

defects, was presented in [21]. This section investigates another Bank of Gabor filt
variation of this algorithm using asymmetric Gabor filters de- ank of Gabor fllters
scribed in Section II. Any modification of multichannel filtering f J l >I
algorithm for defect detection should lead to areductionincom- [~ [ [ | ~——-

: i - Filtered
putational complexity and, false alarm, and offer high rate of ki imBges
detecton. L _JL__ 1 e——

¥ v ¥ v
A. Multichannel Filtering J J 3 )

Unsupervised web inspection requires simultaneous web [~ 1 ][ | -——-
inspection at local and global scales. Multichannel filtering —— 1, (%))
approach allows multiresolution analysis of fabric texture. —_—
The block diagram of this approach is shown in Fig. 5. Every v v v . v Reference
acquired image from the imaging system is filtered with a bank =~ Feature difference -~ [¥f°tg', ]
of self-similar Gabor filters detailed in Section Il. Each of these ¢ i —
Gabor filters is selectively tuned to a narrow range of frequency | || || |~ = Dy
and orientation. The octave (dyadic) band decomposition - o
is commonly used for wavelet decomposition and was also ~ ~ v 4
used in this work for the selection of frequency bands for the Data fusion
frequency-domain sampling of acquired images. The issues
relating to the selection of mask size and number of Gabor
channels has been discussed in [37]. As a compromise between H(x,y)
computational complexity and performance, 18 asymmetric
Gabor filters distributed at three scales £ 3) and six orien- v
tations C = 6), as shown in Fig. 6, were used in this work. Threiddi"g
Each of these Gabor filters was implemented as a spatial mask
of 7 x 7 size. Every inspection imag&z, y) is filtered with e
each of the 18 Gabor filters and the magnitude of every filtered defects (it ary)
imageI;fq(x, y) Is computed using (6).

Fig. 5. Unsupervised defect segmentation in textured materials.
B. Nonlinearity

Next, a local nonlinear function is used to rectify multinegative and positive amplitudes to positive amplitudes. Refer-
channel filter response. This nonlinear function transforms bathce [26] has a good collection of prior texture segmentation
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A

1
Cly

Fig. 6. Location of 3x 6 Gabor filters in spatial-frequency plane.

work using the magnitudé|, the squaring.|?, and rectified D. Data Fusion

sigmoid | tanh(x)| nonlinearity. The magnitude nonlinearity | ation gathered by different knowledge sources (chan-

requires minimum computations and is, therefore, preferrﬁgls) from the same image are often uncertain, fuzzy, or incom-

in this wqu. This nonhne_anty_ is inherent while computin lete. Several nondeterministic approaches for data fusion using
the magnitude of Gabor filter images (6), therefore, no ext

. ) . tf ks have been detailed in [39]. C t and
computational burden is added. The 18 imagg§(z, v), erent frameworks have been detailed in [39]. Casasent an

ts the feat £ deri i Ye [40] have performed qualitative and quantative analyses of
represents tne features of image under inspection. several binary and analog fusion algorithms. Bernouli’s rule of

) combination, which is a special case of Dampster’s rule of com-
C. Feature Difference bination, has been used for fabric defect detection in [17] and

An image of defect-free fabric (reference image) is also usé#?]. Escofectet al. [21] have used: 1) norm vector addition of
to compute 18 reference featu}']’%(w7 Z/) images' using a pro- all piXG'S at the same scaybdbutdiffergnt directipnq) followed .
cedure similar to that used to obtdif) (x, ). These reference by 2) geometric mean of resultant pixel at adjacent scales. This
feature images are Computed at the beginning of inspectionragthod is attractive because of its Computational Slmp|ICIty and,
a part of the calibration operation. The first-order statistics afi@erefore, a similar approach is pursued here. The following two
fundamental for visual characterization of texture [38]. Therélata fusion schemes were considered for this work:
fore, the mean:f;,) and standard deviatiopy(, ) from each of
these 18 images is used to locate defects in the image under in- s
spection. It is now necessary to choose a decision rule for thig (x, y) = Z Dy (z, y)
characterization of pixels irﬁ;fq(a:, y) based on reference fea- p=1
turesI (z, y). An optimum decision procedure, in the sense . 1
that it has a minimum acceptance region for a given probabilit _ 1/2
of false rejection, has been proposed in [12]. This optimum dgj—q(x’ )= (L—-1) [Z {Co(z, ¥)Co1(z, y)} ] 12)
cision rule [23], which is based on the assumption that features
extracted from the reference image is distributed according tg, Lt
multivariate Gaussian distribution, can be simplified as Cplz, y) = 221 Dpq(, )

a=

q=1

S—1

d d o r 1 1/2

Dpglz, y) = {Im(x’ Yh gl _y) Vial Z 70 1) Hzy= S-D lE ACH @, )Chy(x y) } / ] - (13)
0 otherwise. p=1

7

The parameter determines the sensitivity [22] and is chosen The fusion scheme in (12) first generates six images
to control the probability of false rejection. An empirically de<Cy(z, v), ..., Cs(z, y) from the addition of pixels at the
termined value of- = 3 was found suitable (and used) for thesame scalez. Then, the geometric mean of resultant pixels
high-resolution inspection images used in this work. The neat the adjacent orientations generates five images; pixels from
step is to combine pixels from the difference imagkg(x, ) these five images are averaged to produce a unique fused image
S0 as to reduce the probability of false alarm and ensure defékfz, ). The scheme in (13) is similar to [21], where the vector
detection in the final image output. addition of pixels at the same orientations is computed first.
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Fig. 7. Image histograms fd{’(x, y) andH(«, y), in (a) and (c), and (b) and (d), respectively. Image shown in Fig. 8(a) is used to obtain histograms in Fig. 7(a)
and (b), while the histograms in Fig. 7(c) and (d) are obtained from the image in Fig. 8(b).

While working with both of these schemes, we have found thit Thresholding
scheme (12) generates much less noise in the output than th?he fused image outpuf

scheme (13) and was, therefore, more suitalite this work. in order to suppress the pixels not belonging to defect. This oper-

The histograms of the imagTé(x,_ v) gndH’(x, y) for some of ation further reduces the probability of false alarm. The thresh-
the real fabric samples shown in Fig. 8 are reproduced here

. . : : ! oll'aing limit is estimated using the procedure discussed in Sec-
Fig. 7. The image sample with defdmg-kr)ot[Flg. 8(a)] was tion IlI-B. A reference image (defect free) is used to produce
used to obtain output imagés(x, y) andH'(z, y)

! : sepgrately. fused image outpul (x, y),- and the thresholding value is com-
The respective gray-level histograms of these two images Hted from this image using (10)

shown in Fig. 7(a) and (b). The noise level in the two output
images can be seen by observing the number of pixels betw?:erh
zero (0.009 for Fig. 7) and threshold level in the histograms. It
can be observed from the histogram in Fig. 7(b) that most of The performance of the multichannel filtering scheme de-
the pixels from the defects are clustered and the noise is neadyibed in the above sections was evaluated on fabric samples
zero. However, the results from the same image while using thathered from a textile loom. The images of plain and twill
fusion scheme in (13) have much more noise [Fig. 7(a)] and tiveave fabric samples, having the same spatial and physical res-
thresholding operation is critical for the suppression of noiselution as used in Section 1lI-C, were used for this purpose.
A similar set of results, from the image sample with the defethe proposed scheme successfully segmented the defects of
slack-endshown in Fig. 8(b), is reproduced in Fig. 7(c) and (d)varying size, orientation, and resolution and, therefore, proved
These results (and subsequent results) suggest that the fusidme robust for online web inspection. The frequency range of
scheme in (12) works better in the suppression of noise in ttiee 18 Gabor filters used at three scales was empirically chosen
output image, than with the fusion scheme in (13). Thereforgfy = 1/2, f» = 1/4, andf3; = 1/8) as shown in Fig. 6. Some
the fusion scheme in (12) is used for the further experimenta the twill and plain weave fabric sample images along with
results reported in this paper. their segmented defects are reproduced here in Figs. 8 and 9,
2The fusion scheme in (12) cannot be used with the approach in [21] sinrt%SpeCtlvely' . A—
the Gabor filters at four orientations are nontouching and, therefore, gec;metricThe segmentation of defects in Figs. 8 and 9 becomes more
mean of pixels at adjacent orientations is not relevant. exact as the mask size is increased fronx 7 to 9 x 9 or

(z, y) is subjected to thresholding

esults
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Fig. 8. Twill weave fabric samples withig-knot slack-eng dirty-yarn, and  Fig. 9.  Plain weave fabric samples wihubs slack-pick netting-multiplies
netting-multipliesin (a)—(d), respectively: corresponding segmented defects #tdkinksin (a)—(d), respectively; corresponding segmented defects in (e)—(h).

(e)—(h).

11 x 11. The choice of the & 7 mask was only a compu- f3 = 1/8) chosen in this work was a compromise to simulta-
tational compromise. The frequency range of Gabor filters imeously detect both large- and small-sized defects appearing on
the filter bank depends on the range of defects to be detectérb textile web. A large Gabor filter bank (e.g., with 24 or 28
Small-sized defects, suchslack-enddirty-yarn, big-knot and filters), with a wide range of center frequencies (e.g., from 1/2
slack-pickshown in Figs. 8 and 9, are better segmented with 1/16 or from 1/2 to 1/32), was found to be more robust as
the Gabor filters centered at higher frequencies (1/2 or 1/#)gives the clear and laud segmentation of defects of varying
However, large-sized defects suchreting-multipliesslubs  sizes. However, for the reason of computational simplicity, 18
or oil-stainshave been found to be easily segmented with thl@abor filters were chosen and the results are demonstrated.
Gabor filters centered at lower frequencies. The segmentatiorin this work, the frequency range of Gabor filter in the filter
of defects such asetting-multipliegFigs. 8(h) and 9(g)] and bank was determined empirically. However, this range can be
slubs[Fig. 9(e)] was found to be much clearer when frequersuitably determined from the typical range (size) of defects to
cies of 18 Gabor filters distributed &f; = 1/8, f» = 1/16, be segmented from the textile web. The highest center frequency
f3 = 1/32). However, this frequency range was not sufficientf;, or f1) of Gabor filter required can be determined by using
to give clear segmentation of other small-sized defects showrtlire filter selection scheme detailed in Section Ill-A. This fre-
Figs. 8 and 9. The frequency rangf = 1/2, f» = 1/4, and quency can be determined from the image of a typical fabric
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sample having the smallest defect (in either direction) to be seg 1
mented. The center frequency of the best representative filte
(Section Il1-A) corresponding to the smallest defect to be seg- 640x480
mented should be chosen(g or f;). Similarly, the frequency "'b:';}f"égee
of the best representative filter required to segment the larges 9
typical defect in fabric sample can be choseri 4r f3). The 1
center frequencies of intermediate filters (i.£) in the filter
bank can be heuristically chosen from the computational anc Jv
performance tradeoff available for the system under implemen Hofizontal Vettical
tation. P‘;’:ﬂf " projection
signal
Sae S, )
G. Discussion ‘
Prior work [21] has also demonstrated the application of a
Gabor filters for fabric defect detection. The approach used g:r:!:ion :;:T::f::idon
in [21] is also another extension of the multichannel filtering undy wariance) unly variance)
scheme used in this work. Two major issues arise in discussini
such a defect segmentation scheme: the design of individue i ¢
filters and the combination/fusion of the filter bank outputs. As
pompared with the work in '[21],. therg are several dlffgrences f;";‘a’;‘{‘__g‘r‘n “::(“ f:";"ﬂ';‘;;;ﬁ“::’
in this work that have been justified either on computational or
performance gain. Firstly, the bank of asymmetric Gabor filters i l
used in this work was chosen such that the half-peak magnitud
response of adjacent filters touches each other. The circularl
symmetric, nontouching filters used in [21] were modified and Nonl"‘niaﬁty Non'“;‘lmy
more narrowly tuned so that frequency components betweel
the filters are also sampled. Dugnal.[35], [36] have also pro- J' ‘
vided some grounds for the usefulness of nonsymmetric Gabo
filters for the texture segmentation, and this was discussed it Thresholding at Thresholding at
Section I-B. Secondly, in this work, defect segmentation has P 3
been achieved without the usage of low-pass residual image:
which required computational intensive operation in [21]. The ¢ l
generation of low-pass-filtered images for every image undetl
inspection required 4 times convolution with cubic B-spline Loocation of defects (if Location of defects (if
filters (5 x 5 mask, although separable). In this work, the above | 3™} ir horizontal direction any) in vertical direction

computational savings have been achieved while achieving!
similar results as in [21]. Thirdly, the reduction of Gabor filter . _ _ ,
mask size from 9 9 in [21] to 7 x 7 in this work reduces Fig. 10. Block diagram of the proposed defect detection scheme using IGFs.
computational load by about 40% in the computation of every ] ) ) )
Gabor filtered image. Fourthly, a new data fusion schen§®@mputations. One possible solution to ease the computational
has been proposed for combining Gabor filtered images. Joad is to reduce the search space. Due to the nature of weaving
detailed in Section IV-D, the fused image output from thiBrocess, most of the fabric defects occur either in the vertical or
scheme gave a better result as compared with the scheme Ud#zontal direction [17]. Thus, the search space can be reduced
in [21]. Lastly, the thresholding method suggested in [23]om @ 2-D image to one-dimensional (1-D) signals, obtained
has been used in this work. As detailed in Section I11-B, thi§0m horizontal and vertical projections of pixel values. Kam
method does not require any morphological operation thatds [19] have used such 1-D signals for the detection of fabric

needed with the thresholding method suggested in [21] and§§fects using Mexican hat wavelet at three scales. In this sec-
therefore, computationally economic. tion, an efficient method of fabric defect detection using only

the imaginary part of Gabor function (IGF) is described [37].
In the next sections, this approach is detailed and experimental
results are presented.

V. DEFECT DETECTION USING ONLY IMAGINARY
GABOR FUNCTION

A multichannel filtering approach for the detection of fabrié. Imaginary Gabor Function
defects has been presented in the previous section. Despitg, 1.p Gabor functions were developed to define signals in

several efforts to reduce the computational time, real-tifigyth time and frequency domains with minimum uncertainty. In
implementation of this approach requires additional digitgl.p odd-symmetric Gabor function (IGF) is given by
signal processor (DSP) hardware. Low-cost web inspection

systems that can run on a simple PC are in increasing demand. ; _ 1 [ z? (2 14
Such PC-based systems can perform only limited real-time (@)p0. = expy =5 | o5 ) sinZraf) (14)

T
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(d) Fig. 12. Fabric sample with defesfack-end(b) horizontal projection signal,

(c) convolution of IGF with (b), (d) defects detected after thresholding.
Fig. 11. (a) Fabric sample with defeaetting-multiplies (b) Horizontal
projection signal. (c) Convolution of IGF with (b). (d) Defects detected aftdd. Methodology

thresholding. The block diagram of the proposed method is shown in

where f is the frequency of sinusoidal plane wave along th,'éig' 10'_ From the vibration-free im.agém, ”,) of fapric under
= axis (i.e., the O orientation), and, is the space constant/NsPection, as in [19], two 1-D projection signals in each of the

of Gaussian envelope. The real part of the 2-D Gabor functi@gfizontal and vertical directions are generated by summing up
acts as a proven blob detector while the imaginary part of t{82g€ pixel values along columns and rows, respectively,

Gabor function acts as a proven edge detector [41]. The IGFs M

are attractive as edge detectors, since they can be designed to sh(n) = Z I(m, n)
detect both smooth and sharp edge transitions. While analyzing m=1

response of Gabor functions with 1-D signal from the fabric N

defects, we have found that imaginary Gabor function also acts si,(m)=>_ I(m, n)

as an edge detector in the 1-D case and is most suitable for n=1

detection of defects. The choieg = (3v21n2)/(2n f), that 1,

ensures one octave half-peak magnitude bandwidth [22] is used sn(n)= on {sh(n)—pn}

in this work. With the empirical choice of = 1/32, IGFs were T )_i{ ! () — iy} (15)
implemented as a ¥ 9 mask. S\ =" 18, \T) = [lv -
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signal. (c) Convolution of IGF with (b). (d) Detected defect after thresholding %, 20 160 240 320 200 180
w1, andy,, are the mean values of signgl(n) ands),(m), re- (d)

spectively, and are used to makg(m) ands,(n) zero mean.

Similarly, o7, ando,, are the variance of signs] (n) ands/,(m),
respectively, and are used to makgm) and s,(n) of unity
variance. The 1-D signals, () and s,(n) are filtered with
IGF masks (Section V-A) and, thus, two new signglér) and
fu(m) are generated

N
fu(n) = (@) x sn(n)| = | sn(Dh(z = 1)
=1
M
folm) = (@) = so(m)] = > su(k)h(z — k)| . (16)
k=1

Fig. 14. (a) Fabric sample with defeabick-bar. (b) Vertical projection signal.
(c) Convolution with IGF. (d) Detected defect after thresholding.

The thresholding value is computed from a reference (defect
free) fabric sample. From this reference fabric image,, (n)

and f,_.(m) using (15) and (16) are generated. The thresh-
olding value for each of the horizontal and vertical directions

is generated as follows [37]:

17

pr = max{fu (n)} po=max{f, (m)}
meR nchk

where “R” is a window centered at the signal. Thus, the
threshold valuep;, is the maximum amplitude of signal,

These signals are subjected to the thresholding operation andtfittin a window “R,” in the signalf;, . (n) obtained from the
resultant signal shows the location of defects in the fabrieference image. The window size is chosen to avoid the effect
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Fig. 15. (a) Fabric sample with defetiispick (b) Vertical projection signal.
(c) Convolution of IGF with (b). (d) Detected defect after thresholding.

from border distortion. This can be was obtained by remov
at least 9 pixels from each side of the sigrfal . (v) when a
1 x 9 mask is used.

C. Experimental Setup and Results
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Fig. 16. Fabric sample with defesthuttle-mark(b) Vertical projection signal.
(c) Convolution with IGF (b). (d) Detected defect after thresholding.

Fig. 11(a) shows a fabric sample image with defeetting-
.multiplies A 1 x 9 IGF mask is convolved with;,(n) signal
IrZ;%nerated from this image. As seen in Fig. 11(b), IGF mask

enhances the signal at locations corresponding to the defects.
Since the IGF has zero mean and the nonlinearity in (16) is
even-symmetric, both light and dark edges are equally detected
[37]. In Fig. 11(d), the thresholding operation segments the lo-

For increased throughput, low-resolution images of about 4&tion of signal corresponding to defect. Similarly, detection re-
pixels/in (640 pixels cover 14 in of fabric) are used so that largsults for fabric samples witklack-endand dirty-yarn are re-
fabric area per frame can be processed. Using an Ominivisiproduced in Figs. 12 and 13, respectively. In order to avoid

digital OV7110 camera with 648 480 pixels, vibration-free

border-effect distortion, the first and last 10 pixels have been

black-and-white images of fabric under inspection are acquirdtscarded from the signat,(») [and s,,(m)]. For fabric sam-
under backlighting. The experimental results with these imaggles in Figs. 11-13, there is no detection of defects from the
were excellent and some of these results are reproducedvémtical projection signal, (). Therefore, results from the ver-

Figs. 11-16, and summarized in Table I.

tical projection signal are not shown for these images. As seen
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TABLE |
DeFECT DETECTION RESULTS FROM THE PROPOSEDMETHOD IN SECTION V
S.No. Name of the defect Result from Results from Comments

Horizontal projection | vertical projection
1. Netting-multiplies Full detection No detection Figure 11
2. Slack-end Full detection No detection Figure 12
3. Dirty-yarn Fuli detection No detection Figure 13
4. Thick-bar No detection Full detection Figure 14
5. Mispick No detection Full detection Figure 15
6. Shuttle-mark No detection Full detection Figure 16
7. Wavy-face No detection Full detection
8. Wrong-draw Partial detection No detection Very small (subtle) defect,

therefore partial detection.

9. Thin-bar No detection Full detection
10. Thick-yarn Full detection No detection
11. Oil-stain Partial detection Full detection
12. Break-out Detection with false | Full detection False alarm, because of

alarm creases in the image.
13. Kink Partial detection Full detection

from the results in Figs. 11-13, the defects have been detedieel RGF is ideal for detecting blobs (e.g., Figs. 13 and 16) and
quite accurately. large-sized defects from the 1-D signal, it is not used in the pro-
Figs. 14-16 shows fabric samples and detection results farsed defect detection method since its usage requires high-res-
thick-bar, mispick and shuttle-mark respectively. As can be olution images, which would increase the cost of the system.
seen from the Table I, defects in these images can only be de-
tected from vertical projection signa),(m:) and, therefore, re-
sults from horizontal projection signs| (n) are not shown. Re-
sults from some other common fabric defects, whose figures arén this paper, a supervised defect detection approach to de-
not shown in this paper, are summarized in Table I. Some of tteet a class of fabric defects has been demonstrated. The mul-
blob-shaped defects likeil-stain and shuttle-markwere also tichannel filtering scheme, hitherto used for texture segmenta-
detected, since the defect boundaries in the projection sigfigh, has been extended and tailored for unsupervised inspec-
5;,(n) ands;,(m) form edges. The computational time of thigion of textile webs. The role of mask size, and the number and
algorithm as run on a Pentium 1l 450 MHz PC using a simplgequency range of Gabor filters in the filter bank, on perfor-
C program is 94 ms. Therefore, no additional DSP hardwarerifance and computational load has been discussed. A user can
required for online inspection using the proposed algorithm. gpnropriately select these parameters depending on the tradeoff
available in his or her system, between performance and com-
putational load. The results in this paper have shown that this
Our experimental results have suggested that detecting falsitieme is robust and ready to be used for online web inspec-
defects with 1-D projection signals becomes harder as the sizdioh.
the defects increases. As seen from the results in Fig. 14 and 16[he online unsupervised inspection using the multichannel
small blobs (near corners), which fail to form any subtle chanditering scheme requires additional DSP hardware. Therefore,
in projection signals, have not been detected. The creases (warlow-cost inspection solution based on edge detection with
kles) in fabric under inspection are detected as defects ai@F has been developed for fabric defect detection. The perfor-
therefore, generate a false alarm. Therefore, the imaging systaance of this method has been extensively evaluated on a va-
has to adjusted in such a way as to avoid wrinkles in the low-retety of fabric defects. The results have shown that this method
olution images. Another observation from the experimental ries-quite successful and offers a low-cost single-PC-based solu-
sults is that the distortion introduced due to uneven illumingion for online web inspection. From the various experiments
tion of the images does not have any effect on detection. Tbenducted on web inspection (discussed above), five important
effects of uneven illumination can be observed from projectidactors on the success of real-time defect detection schemes can
signals kj,(n) ands/,(m)]. The low-frequency distortion signal, be outlined. These are” 1) contrast associated with a defect; 2)
superimposed on the high-frequency signal, has not generatedsistency of background; 3) image resolution; 4) size of de-
any problem (i.e., false alarm) in the detection of defects. THisct to be detected; and 5) speed of inspection. While 1) and
is due to the fact that the IGF is zero mean and, hence, ins@hare affected by illumination conditions, factor 3) depends on
sitive to background illumination. The real part of the Gabdteld of view and resolution of CMOS or charge-coupled-de-
function (RGF), which acts as a blob detector, is not zero megice (CCD) photosensor used for imaging. The computational
and, hence, is sensitive to background illumination. Althougtomplexity of this method can be approximated as two opera-

VI. CONCLUSIONS

D. Discussion



KUMAR AND PANG: DEFECT DETECTION IN TEXTURED MATERIALS

tions per pixel, which are due to the computations involved in23]
the generation of two projection signals. Although the results
of the proposed schemes have been demonstrated, for the fabgig
inspection, these schemes can potentially be used for online in-
spection of other textured materials such as steel rolls, plastiﬁz,s]
or wood.
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