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Defect Detection in Textured Materials
Using Gabor Filters
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Abstract—This paper investigates various approaches for auto-
mated inspection of textured materials using Gabor wavelet fea-
tures. A new supervised defect detection approach to detect a class
of defects in textile webs is proposed. Unsupervised web inspection
using multichannel filtering scheme is investigated. A new data fu-
sion scheme to multiplex the information from the different chan-
nels is proposed. Various factors interacting the tradeoff for per-
formance and computational load are discussed. This scheme es-
tablishes high computational savings over the previously proposed
approaches and results in high quality of defect detection. Final
acceptance of visual inspection systems depends on economical as-
pects as well. Therefore, a new low-cost solution for fast web in-
spection is also included in this paper. The experimental results
conducted on real fabric defects for various approaches proposed
in this paper confirm their usefulness.

Index Terms—Computer vision, defect detection, Gabor filters,
Gabor wavelets, industrial automation, multichannel filtering,
quality assurance, textile industry.

I. INTRODUCTION

V ISION-BASED inspection of industrial products offers
low-cost, high-speed, and high-quality detection of

defects. Some of the most challenging industrial inspection
problems deal with the textured materials such as textile
web, paper, and wood. The inspection problem encountered
in textured materials become texture analysis problems at
microscopic levels. Textured materials take many forms and
while there is a remarkable similarity in overall automation
requirements for visual inspection, the cost-effective solutions
are application specific and generally require extensive research
and development efforts [1]. Automated visual inspection of
textured materials,woven ornonwoven, such as paper [2], steel
roll [3], wood [4], [5], carpet [6], textile [7]–[23], etc., has been
used for defect detection and quality assurance.

In general, an image ofwoven fabric sample can be regarded
as a typical textured image. The detection of local fabric defects
is one of the most intriguing problems in computer vision and

Paper MSAD-S 01–39, presented at the 2000 Industry Applications Society
Annual Meeting, Rome, Italy, October 8–12, and approved for publication in the
IEEE TRANSACTIONS ONINDUSTRYAPPLICATIONSby the Industrial Automation
and Control Committee of the IEEE Industry Applications Society. Manuscript
submitted for review October 15, 2000 and released for publication December
27, 2001.

A. Kumar was with the Department of Electrical and Electronic Engineering,
The University of Hong Kong, Hong Kong. He is now with the Department of
Computer Science, Hong Kong University of Science and Technology, Hong
Kong (e-mail: ajaykr@cs.ust.hk).

G. K. H. Pang is with the Department of Electrical and Electronic
Engineering, The University of Hong Kong, Hong Kong (e-mail:
gpang@hkueee.hku.hk).

Publisher Item Identifier S 0093-9994(02)02683-X.

has received much attention over the years [7]–[23]. This paper
focuses on this problem and proposes some new techniques to
address the problem

In textile looms, the fabric produced is typically 8–10-ft wide
and rolls out at the speed of 5–6 ft/s. The fabric produced is
packed into rolls and later unrolled for inspection on the inspec-
tion table. The major reasons for this offline inspection is the
slow speed of production, which is insufficient to keep an in-
spector occupied, and the relatively hostile environment. The
majority of automated inspection systems currently available in
the market are offline. Typical of these is the I-TEX inspection
system available from Elbit Vision Systems [8], which can de-
tect fabric defects up to a speed of 100 m/min. Many other web
inspection systems available from commercial vendors are tai-
lored to detect and locate defects accurately while maximizing
the throughput. Each of these inspection systems has its own
limitations and defect detection is limited to a certain range of
defects. Fabric defect detection is still a topic of considerable
research and researchers have proposed different algorithm to
reduce the cost, and improve the throughput and range of de-
fects that can be detected.

A. Prior Work

Various approaches for fabric defect detection have been pro-
posed in the past two decades [7]–[23]. The texture analysis
techniques for fabric defect detection are intuitively appealing,
because they allow us to capture texture features, which are sta-
tistically used to segment fabric defects. Gray-level texture fea-
tures extracted from co-occurrence matrix [9], mean and stan-
dard deviations of subblocks [10], autocorrelation of subimages
[11], and Karhunen–Loève (KL) transform [12] have been used
for the segmentation of local fabric defects. Cohenet al. [13]
have characterized the fabric texture using the Gauss Markov
random field (GMRF) model and the textile web inspection
process is treated as a hypothesis-testing problem on the sta-
tistics derived from this model. Campbellet al. [14] use model-
based clustering to segment defects from the denim fabric.

The fabric texture exhibits a high degree of periodicity and,
hence, Fourier-domain features have been used for the detection
of fabric defects [15], [16]. Since the Fourier bases are of infinite
length, the contribution from each of the spectral components is
difficult to quantify. Therefore, Fourier analysis is not suitable
for detection of local defects. Instead, detection of local fabric
defects requires multiresolution decomposition of fabric images
across several scales. A feature vector composed of significant
features at each scales is used for the identification of defects.
Such a multiresolution analysis of fabric using Discrete wavelet
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(a) (b)

Fig. 1. Perspective view of (a) real and (b) imaginary components of a typical Gabor function in spatial domain.

transform (DWT) has been detailed in [17]–[19]. Jasperet al.
[20] use texture-adapted wavelet bases whose response is close
to zero for normal fabric texture and significantly different for
fabric defect, thereby enabling detection. Escofetet al. [21] use
multiscale Gabor filters for textile web defect detection. Ajay
and Pang [22] have demonstrated fabric defect detection using
only real Gabor functions.

B. Present Work

In this paper, fabric defect detection using Gabor filters is
further investigated. One common technique to implement
multiresolution analysis is to use wavelet transforms. However,
wavelet bases are shift invariant and, therefore, it is difficult
to characterize a texture pattern from the wavelet coefficients
since the wavelet descriptors depend on pattern location [24].
Gabor filters can also decompose the image into components
corresponding to different scales and orientations. Gabor filters
achieve optimal joint localization in spatial and spatial fre-
quency domain [25] and, therefore, have been used extensively
for texture analysis [26]–[29] and document analysis [30], [31],
and object detection [32].

Although researchers have not agreed on a precise definition
of texture, several definitions have been proposed in the liter-
ature [33], [34]. Many textures can be modeled as a collection
of similar, not necessarily identical, primitive objects calledtex-
tels. In uniform textures, thetextelsare identical and arranged
in repeating pattern with a constant displacement ofalong
the axis and along the axis. Dunnet al. [35], [36] have
found that when a texture containstextelsnot arranged in square
lattice , asymmetric Gabor filters are useful. The
textelspacing for real fabric samples is often not ar-
ranged in square lattice. This can be due to the presence of sto-
chastic turf/perturbations on the fabric surface, and/or due to the
underlying structure of the fabric itself as in the case of many
twill weave fabrics. The fabric defect detection using asym-
metric Gabor filters is investigated in this paper. For supervised
defect detection, no effective systematic method existed previ-
ously [22] for automatically selecting the desired Gabor filter.

The main contributions of this paper [37] are summarized as
follows.

1) A new supervised defect detection scheme to detect a
class of fabric defects is proposed.

2) A new multichannel filtering scheme for unsupervised
fabric defect detection using a class of self-similar Gabor
functions [27] is presented. As detailed in Section IV-G,
this scheme differs from existing techniques in five cru-
cial ways.

3) A new, low-cost solution for the web inspection using
only the imaginary part of the Gabor function is pre-
sented.

The organization of this paper is as follows. In Section II, a
review of Gabor filters is presented; the bank of Gabor filters
used for power spectrum sampling of the image is introduced.
In Section III, supervised defect detection to detect a class of
fabric defects is described. In Section IV, unsupervised defect
detection is described. This section includes a discussion on the
proposed multichannel filtering scheme and comparison of this
scheme with prior work [21]. In Section V, experimental results
from the proposed low-cost inspection scheme using imaginary
Gabor function are reported, which is followed by conclusions
in Section VI.

II. GABOR FUNCTION

In the spatial domain, the Gabor function is a complex expo-
nential modulated by a Gaussian function. The Gabor function
forms a complete but a nonorthogonal basis set and its impulse
response in the two–dimensional (2-D) plane has the following
general form [27], [28]:

(1)
where denotes the radial frequency of the Gabor function.
The space constants and define the Gaussian envelope
along the and axes. Fig. 1 shows the perspective plot of
a typical Gabor filter in the spatial domain. In the frequency
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domain, the Gabor function acts as a bandpass filter and the
Fourier transform of is given by

(2)

where

and

A class of self similar-functions, referred to as Gabor wavelets,1

which have been used for texture analysis [27], will be consid-
ered in this work. Using (1) as the mother Gabor wavelet, the
self-similar filter bank can be obtained by appropriate dilation
and rotation of through the generating function

(3)

where

The integer subscripts and represent the index for scale
(dilation) and orientation (rotation), respectively.is the total
number of scales andis the total number of orientations in the
self-similar Gabor filter bank. For each orientation, the angle

is given by

(4)

The scale factor ensures that the energy
is independent of [29].

Thus, all the filters in the Gabor filter bank have the same
energy, irrespective of their scale and orientation. In most cases
[21], [22], [28], [36], a reasonable design choice is to select
circularly symmetric Gabor filters, i.e., . However, as
discussed in Section I-A, asymmetric Gabor filters
can be useful for real fabric textures. As illustrated in [27],
the following formulas ensure that the half-peak magnitude
responses of adjacent asymmetric filters touch each other
(Fig. 6):

(5)

1The Gabor function do not exactly satisfy the requirements that the wavelet
be admissible and progressive [27], [29]. However, in the context of representing
a class of self-similar functions, this term is used.

where , and and are the lowest and highest fre-
quencies of interest. A bank of self-similar Gabor filters formed
by rotation (varying ) and dilation (varying ) of the basic
Gabor filter (1) is used to perform power spectrum sampling of
the inspection images.

Each of the complex Gabor filters has the real (even) and
imaginary (odd) parts that are conveniently implemented as the
spatial mask of sizes. In order to have a symmetric re-
gion of support, is preferred to be an odd number. For a given
input image , the magnitude of filtered image
is obtained by using Gabor filter as follows:

(6)

where “ ” denotes 2-D convolution operation, and
and represent the even and odd parts of the Gabor
filter separated from (3).

III. SUPERVISEDDEFECTDETECTION

Segmentation of a similar class of local fabric defects with
a priori knowledge about the orientation and size of a sample
defect can be regarded as supervised defect segmentation
[22], [37]. When the approximate orientation and size of
defects are known, the power spectrum-sampling of the re
spatial-frequency plane is not necessary. In such cases, he
segmentation has been achieved with only one Gabor filter,
from the Gabor filter bank that can provide best discrimination
of texture features against the defects. The encouraging results
in [22] have stressed the need for a heuristic algorithm that can
automatically select a Gabor filter to detect a class of fabric
defects. In order to choose the best Gabor filter, a cost function
that can represent an appropriate measure of discrimination of
texture features against that of defects has to be selected. The
cost function used in [28] has been found suitable and used
in the proposed algorithm. A Gabor filter is said to represent
a defect if, on average, it produces higher outputs for regions
corresponding to defect as compared with other defect-free re-
gions of the image. The following section describes a heuristic
algorithm to select the best representative Gabor filter from the
bank of Gabor filters to detect a class of fabric defects.

A. Filter Selection Algorithm

A bank of Gabor filters described in Section II, with
scales and orientations is

investigated for supervised defect detection. A real fabric image
sample with a defect, which can best represent the class of fabric
defects to be detected, is chosen. This image is divided into
nonoverlapping square (in our case) regions of size pixels.
Each of the , Gabor filters in the filter bank
is applied to each of the regions and a filtered
output using equation (6) is obtained. The average
output for every th filter in the region is
obtained as follows:

(7)
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For every filter , the maximum average output
and the minimum average output among all of the

regions is determined. A cost function
, which is designated as the normalized difference of two

outputs, is calculated for every filter in the filter bank

(8)

The filter that gives the highest cost function is
chosen as the best representative filter to detect a class of fabric
defects under consideration

(9)

The image under investigation is filtered with this filter
corresponding to the highest cost function in (9).

The magnitude of this filtered image is obtained using (6) and
is subjected to thresholding operation to segment the defects.

B. Thresholding

The thresholding limit is determined from a reference or
defect-free fabric image. This reference image is filtered with
Gabor filter and the magnitude of filtered image

is obtained. From this filtered image, the sholding
limit is obtained as follows:

(10)

where “ ” is a window centered at the image. Thus, he
threshold value is the maximum value of gray levels,
within a window “ ,” in the image obtained from
the reference image. The window size is chosen to avoid any
possible distortion effects from the image due to discontinuities
at the border. In this paper, the window size is obtained by
removing ten pixels (ad hoc) from each side of the image

. The magnitude of threshold value is such that
the unwanted spectral components from the fabric texture are
completely isolated from the output binary image.

C. Experiment and Results

Each of the filters in the filter bank is implemented as a 99
convolution mask for each of its real and imaginary components.
The highest frequency of the filter in the filter bank is
empirically selected. As in [27], the filters were placed one oc-
tave apart and, thus, for the Gabor filters distributed
at four scales. The images of twill weave fabric samples were
acquired under backlighting condition and covered 1.281.28
in area of fabric sample. The acquired images were digitized
into 256 256 pixels, with 8-bit resolution (256 gray levels).
Each of these images was divided into nonoverlap-
ping regions of 64 64 pixels. The Gabor filter selected on the
basis of the algorithm described in Section III-A successfully
detected the defects in fabric samples. Segmentation results for
the fabric samples having defectsbig-knot, wrong-draw, net-
ting-multiplies, andmispickare reproduced here.

Fig. 2 shows the plot of cost function for the different
fabric samples shown in Fig. 3. The numbering scheme for

Fig. 2. Selection of best representative filter for supervised defect
segmentation.

Gabor filters marked on the absicca of this plot is as follows:
filter numbers 1–6 are for filters with and
and, 7–13 are for and , and similarly for
the rest. As seen from this graph, image samples with defect
big-knot shown in Fig. 3(a), achieves the peak of its cost
function for Gabor filter number 9 , . Gabor
filter number 12 ( , ) achieved the peak of the cost
functions for the detection of fabric defectwrong-drawshown
in Fig. 3(d). Similarly, the fabric sample in Fig. 3(g) with defect
netting-multipliesachieves its peak at filter number 10 ,

and defectmispickat filter number 8 , .
These four Gabor filters were applied to their respective fabric
samples and the filtered images are shown in Fig. 3(b), (e), (h),
and (k).

The filtered images were thresholded with a thresholding
limit computed from the defect-free fabric sample and the
defect can be seen as segmented in the thresholded images
shown in corresponding Fig. 3(c), (f), (i), and (l). The Gabor
filters selected with the proposed scheme were found to be
robust and can segment similar kind of defects at different
positions on a textile web. An example of this is reproduced
here. Fig. 4(a) and (d) shows two different image samples with
the defectmispick; the best filter selected for the segmentation
of defect in Fig. 3(j) is applied to these image samples. The
segmented defect can be observed in Fig. 4(c) and (f).

D. Discussion

The heuristic algorithm used to choose the best representa-
tive Gabor filter is suitable for localrather thanglobal defect in
the image. If the defect in the inspection image is global, i.e.,
it occupies most of the image, then and for the fil-
ters will be approximately same. In such case, the magnitude of
the peak of the cost function will be smaller and reliable defect
segmentation will not be achieved. The size of nonoverlapping
regions ( ) should be sufficient to cover defect-free and defect
regions separately. Another alternative of using nonoverlapping
regions is to compute and in a finite region (for
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Fig. 3. Fabric samples with defectbig-knot, wrong-draw, netting-multiplies, andmispickin (a), (d), (f), and (j) respectively; corresponding filtered image with
the best representative Gabor filter in (b), (e), (h), and (k); segmented defects in (c), (f), (i), and (l).

example, ) for every Gabor filter at randomly sampled lo-
cations inside the image. Since the location and the size of real
fabric defect varies randomly, the finite nonoverlapping regions
were preferred as this is also computationally simpler.

Optimal Gabor filters based on decision theoretic formula-
tions can also be designed to detect a class of fabric defects. The
selection of an optimal Gabor filter involves the determination
of four parameters , which define the center fre-
quency and the bandwidth of the filter, which are optimal in the
sense that the resulting Gabor filter maximizes a selected cost
function. As in [36], the bandwidth can be determined
heuristically, and the center frequency can be found by
essentially an exhaustive search of all the possible center fre-
quencies. Primarily because of hanging constraints of compu-
tational simplicity and small-sized Gabor masks (77, or 9

9), the design of optimal Gabor filters was not attempted. Al-
though the present work does not address the problem of ex-
plicitly designing an optimal filter, our simple filter-selection
methodology suggested the best representative filter that per-
forms well in most cases.

IV. UNSUPERVISEDWEB INSPECTION

The dimension and orientation of local defects generated in
textile webs vary randomly. Therefore, a complete automation
of visual inspection process requires unsupervised defect detec-
tion that can be used for the online web inspection. The term
“unsupervised defect detection” refers to the detection of un-
known class of defects for which there is no training. Multi-
channel filtering theory for the processing of visual information



430 IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 38, NO. 2, MARCH/APRIL 2002

(a) (b) (c)

(d) (e) (f)

Fig. 4. Robustness of best representative Gabor filter obtained from the image in Fig. 3(j). Fabric samples withmispickin (a) and (d), corresponding filtered
images in (b) and (e), and the segmented defects in (c) and (f).

in the biological model of human visual system has inspired var-
ious texture segmentation algorithms [27], [32]. A variation of
this algorithm, which can be used for the detection of local fabric
defects, was presented in [21]. This section investigates another
variation of this algorithm using asymmetric Gabor filters de-
scribed in Section II. Any modification of multichannel filtering
algorithm for defect detection should lead to a reduction in com-
putational complexity and, false alarm, and offer high rate of
detection.

A. Multichannel Filtering

Unsupervised web inspection requires simultaneous web
inspection at local and global scales. Multichannel filtering
approach allows multiresolution analysis of fabric texture.
The block diagram of this approach is shown in Fig. 5. Every
acquired image from the imaging system is filtered with a bank
of self-similar Gabor filters detailed in Section II. Each of these
Gabor filters is selectively tuned to a narrow range of frequency
and orientation. The octave (dyadic) band decomposition
is commonly used for wavelet decomposition and was also
used in this work for the selection of frequency bands for the
frequency-domain sampling of acquired images. The issues
relating to the selection of mask size and number of Gabor
channels has been discussed in [37]. As a compromise between
computational complexity and performance, 18 asymmetric
Gabor filters distributed at three scales ( ) and six orien-
tations ( ), as shown in Fig. 6, were used in this work.
Each of these Gabor filters was implemented as a spatial mask
of 7 7 size. Every inspection image is filtered with
each of the 18 Gabor filters and the magnitude of every filtered
image is computed using (6).

B. Nonlinearity

Next, a local nonlinear function is used to rectify multi-
channel filter response. This nonlinear function transforms both

Fig. 5. Unsupervised defect segmentation in textured materials.

negative and positive amplitudes to positive amplitudes. Refer-
ence [26] has a good collection of prior texture segmentation
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Fig. 6. Location of 3� 6 Gabor filters in spatial-frequency plane.

work using the magnitude , the squaring , and rectified
sigmoid nonlinearity. The magnitude nonlinearity
requires minimum computations and is, therefore, preferred
in this work. This nonlinearity is inherent while computing
the magnitude of Gabor filter images (6), therefore, no extra
computational burden is added. The 18 images, ,
represents the features of image under inspection.

C. Feature Difference

An image of defect-free fabric (reference image) is also used
to compute 18 reference feature images, using a pro-
cedure similar to that used to obtain . These reference
feature images are computed at the beginning of inspection as
a part of the calibration operation. The first-order statistics are
fundamental for visual characterization of texture [38]. There-
fore, the mean ( ) and standard deviation ( ) from each of
these 18 images is used to locate defects in the image under in-
spection. It is now necessary to choose a decision rule for the
characterization of pixels in based on reference fea-
tures . An optimum decision procedure, in the sense
that it has a minimum acceptance region for a given probability
of false rejection, has been proposed in [12]. This optimum de-
cision rule [23], which is based on the assumption that features
extracted from the reference image is distributed according to
multivariate Gaussian distribution, can be simplified as

otherwise.
(11)

The parameter determines the sensitivity [22] and is chosen
to control the probability of false rejection. An empirically de-
termined value of was found suitable (and used) for the
high-resolution inspection images used in this work. The next
step is to combine pixels from the difference images
so as to reduce the probability of false alarm and ensure defect
detection in the final image output.

D. Data Fusion

Information gathered by different knowledge sources (chan-
nels) from the same image are often uncertain, fuzzy, or incom-
plete. Several nondeterministic approaches for data fusion using
different frameworks have been detailed in [39]. Casasent and
Ye [40] have performed qualitative and quantative analyses of
several binary and analog fusion algorithms. Bernouli’s rule of
combination, which is a special case of Dampster’s rule of com-
bination, has been used for fabric defect detection in [17] and
[22]. Escofectet al. [21] have used: 1) norm vector addition of
all pixels at the same scale(but different directions) followed
by 2) geometric mean of resultant pixel at adjacent scales. This
method is attractive because of its computational simplicity and,
therefore, a similar approach is pursued here. The following two
data fusion schemes were considered for this work:

(12)

(13)

The fusion scheme in (12) first generates six images
from the addition of pixels at the

same scale (). Then, the geometric mean of resultant pixels
at the adjacent orientations generates five images; pixels from
these five images are averaged to produce a unique fused image

. The scheme in (13) is similar to [21], where the vector
addition of pixels at the same orientations is computed first.
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(a) (c)

(b) (d)

Fig. 7. Image histograms forH (x; y) andH(x; y), in (a) and (c), and (b) and (d), respectively. Image shown in Fig. 8(a) is used to obtain histograms in Fig. 7(a)
and (b), while the histograms in Fig. 7(c) and (d) are obtained from the image in Fig. 8(b).

While working with both of these schemes, we have found that
scheme (12) generates much less noise in the output than the
scheme (13) and was, therefore, more suitable2 for this work.
The histograms of the image and for some of
the real fabric samples shown in Fig. 8 are reproduced here in
Fig. 7. The image sample with defectbig-knot [Fig. 8(a)] was
used to obtain output images and separately.
The respective gray-level histograms of these two images are
shown in Fig. 7(a) and (b). The noise level in the two output
images can be seen by observing the number of pixels between
zero (0.009 for Fig. 7) and threshold level in the histograms. It
can be observed from the histogram in Fig. 7(b) that most of
the pixels from the defects are clustered and the noise is nearly
zero. However, the results from the same image while using the
fusion scheme in (13) have much more noise [Fig. 7(a)] and the
thresholding operation is critical for the suppression of noise.
A similar set of results, from the image sample with the defect
slack-endshown in Fig. 8(b), is reproduced in Fig. 7(c) and (d).
These results (and subsequent results) suggest that the fusion
scheme in (12) works better in the suppression of noise in the
output image, than with the fusion scheme in (13). Therefore,
the fusion scheme in (12) is used for the further experimental
results reported in this paper.

2The fusion scheme in (12) cannot be used with the approach in [21], since
the Gabor filters at four orientations are nontouching and, therefore, geometric
mean of pixels at adjacent orientations is not relevant.

E. Thresholding

The fused image output is subjected to thresholding
in order to suppress the pixels not belonging to defect. This oper-
ation further reduces the probability of false alarm. The thresh-
olding limit is estimated using the procedure discussed in Sec-
tion III-B. A reference image (defect free) is used to produce
fused image output and the thresholding value is com-
puted from this image using (10).

F. Results

The performance of the multichannel filtering scheme de-
scribed in the above sections was evaluated on fabric samples
gathered from a textile loom. The images of plain and twill
weave fabric samples, having the same spatial and physical res-
olution as used in Section III-C, were used for this purpose.
The proposed scheme successfully segmented the defects of
varying size, orientation, and resolution and, therefore, proved
to be robust for online web inspection. The frequency range of
the 18 Gabor filters used at three scales was empirically chosen

, , and as shown in Fig. 6. Some
of the twill and plain weave fabric sample images along with
their segmented defects are reproduced here in Figs. 8 and 9,
respectively.

The segmentation of defects in Figs. 8 and 9 becomes more
exact as the mask size is increased from 77 to 9 9 or
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Fig. 8. Twill weave fabric samples withbig-knot, slack-end, dirty-yarn, and
netting-multipliesin (a)–(d), respectively; corresponding segmented defects in
(e)–(h).

11 11. The choice of the 7 7 mask was only a compu-
tational compromise. The frequency range of Gabor filters in
the filter bank depends on the range of defects to be detected.
Small-sized defects, such asslack-end, dirty-yarn, big-knot, and
slack-pickshown in Figs. 8 and 9, are better segmented with
the Gabor filters centered at higher frequencies (1/2 or 1/4).
However, large-sized defects such asnetting-multiplies, slubs,
or oil-stainshave been found to be easily segmented with the
Gabor filters centered at lower frequencies. The segmentation
of defects such asnetting-multiplies[Figs. 8(h) and 9(g)] and
slubs[Fig. 9(e)] was found to be much clearer when frequen-
cies of 18 Gabor filters distributed at , ,

. However, this frequency range was not sufficient
to give clear segmentation of other small-sized defects shown in
Figs. 8 and 9. The frequency range , , and

Fig. 9. Plain weave fabric samples withslubs, slack-pick, netting-multiplies,
andkinksin (a)–(d), respectively; corresponding segmented defects in (e)–(h).

chosen in this work was a compromise to simulta-
neously detect both large- and small-sized defects appearing on
the textile web. A large Gabor filter bank (e.g., with 24 or 28
filters), with a wide range of center frequencies (e.g., from 1/2
to 1/16 or from 1/2 to 1/32), was found to be more robust as
it gives the clear and laud segmentation of defects of varying
sizes. However, for the reason of computational simplicity, 18
Gabor filters were chosen and the results are demonstrated.

In this work, the frequency range of Gabor filter in the filter
bank was determined empirically. However, this range can be
suitably determined from the typical range (size) of defects to
be segmented from the textile web. The highest center frequency

or of Gabor filter required can be determined by using
the filter selection scheme detailed in Section III-A. This fre-
quency can be determined from the image of a typical fabric
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sample having the smallest defect (in either direction) to be seg-
mented. The center frequency of the best representative filter
(Section III-A) corresponding to the smallest defect to be seg-
mented should be chosen as or . Similarly, the frequency
of the best representative filter required to segment the largest
typical defect in fabric sample can be chosen asor . The
center frequencies of intermediate filters (i.e.,) in the filter
bank can be heuristically chosen from the computational and
performance tradeoff available for the system under implemen-
tation.

G. Discussion

Prior work [21] has also demonstrated the application of
Gabor filters for fabric defect detection. The approach used
in [21] is also another extension of the multichannel filtering
scheme used in this work. Two major issues arise in discussing
such a defect segmentation scheme: the design of individual
filters and the combination/fusion of the filter bank outputs. As
compared with the work in [21], there are several differences
in this work that have been justified either on computational or
performance gain. Firstly, the bank of asymmetric Gabor filters
used in this work was chosen such that the half-peak magnitude
response of adjacent filters touches each other. The circularly
symmetric, nontouching filters used in [21] were modified and
more narrowly tuned so that frequency components between
the filters are also sampled. Dunnet al.[35], [36] have also pro-
vided some grounds for the usefulness of nonsymmetric Gabor
filters for the texture segmentation, and this was discussed in
Section I-B. Secondly, in this work, defect segmentation has
been achieved without the usage of low-pass residual images,
which required computational intensive operation in [21]. The
generation of low-pass-filtered images for every image under
inspection required 4 times convolution with cubic B-spline
filters (5 5 mask, although separable). In this work, the above
computational savings have been achieved while achieving
similar results as in [21]. Thirdly, the reduction of Gabor filter
mask size from 9 9 in [21] to 7 7 in this work reduces
computational load by about 40% in the computation of every
Gabor filtered image. Fourthly, a new data fusion scheme
has been proposed for combining Gabor filtered images. As
detailed in Section IV-D, the fused image output from this
scheme gave a better result as compared with the scheme used
in [21]. Lastly, the thresholding method suggested in [22]
has been used in this work. As detailed in Section III-B, this
method does not require any morphological operation that is
needed with the thresholding method suggested in [21] and is,
therefore, computationally economic.

V. DEFECT DETECTION USING ONLY IMAGINARY

GABOR FUNCTION

A multichannel filtering approach for the detection of fabric
defects has been presented in the previous section. Despite
several efforts to reduce the computational time, real-time
implementation of this approach requires additional digital
signal processor (DSP) hardware. Low-cost web inspection
systems that can run on a simple PC are in increasing demand.
Such PC-based systems can perform only limited real-time

Fig. 10. Block diagram of the proposed defect detection scheme using IGFs.

computations. One possible solution to ease the computational
load is to reduce the search space. Due to the nature of weaving
process, most of the fabric defects occur either in the vertical or
horizontal direction [17]. Thus, the search space can be reduced
from a 2-D image to one-dimensional (1-D) signals, obtained
from horizontal and vertical projections of pixel values. Kimet
al. [19] have used such 1-D signals for the detection of fabric
defects using Mexican hat wavelet at three scales. In this sec-
tion, an efficient method of fabric defect detection using only
the imaginary part of Gabor function (IGF) is described [37].
In the next sections, this approach is detailed and experimental
results are presented.

A. Imaginary Gabor Function

In 1-D, Gabor functions were developed to define signals in
both time and frequency domains with minimum uncertainty. In
1-D, odd-symmetric Gabor function (IGF) is given by

(14)
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(a)

(b)

(c)

(d)

Fig. 11. (a) Fabric sample with defectnetting-multiplies. (b) Horizontal
projection signal. (c) Convolution of IGF with (b). (d) Defects detected after
thresholding.

where is the frequency of sinusoidal plane wave along the
axis (i.e., the 0 orientation), and is the space constant

of Gaussian envelope. The real part of the 2-D Gabor function
acts as a proven blob detector while the imaginary part of the
Gabor function acts as a proven edge detector [41]. The IGFs
are attractive as edge detectors, since they can be designed to
detect both smooth and sharp edge transitions. While analyzing
response of Gabor functions with 1-D signal from the fabric
defects, we have found that imaginary Gabor function also acts
as an edge detector in the 1-D case and is most suitable for
detection of defects. The choice , that
ensures one octave half-peak magnitude bandwidth [22] is used
in this work. With the empirical choice of , IGFs were
implemented as a 1 9 mask.

(a)

(b)

(c)

(d)

Fig. 12. Fabric sample with defectslack-end, (b) horizontal projection signal,
(c) convolution of IGF with (b), (d) defects detected after thresholding.

B. Methodology

The block diagram of the proposed method is shown in
Fig. 10. From the vibration-free image of fabric under
inspection, as in [19], two 1-D projection signals in each of the
horizontal and vertical directions are generated by summing up
image pixel values along columns and rows, respectively,

(15)
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(a)

Fig. 13. (a) Fabric sample with defectdirty-yarn. (b) Horizontal projection
signal. (c) Convolution of IGF with (b). (d) Detected defect after thresholding.

and are the mean values of signal and , re-
spectively, and are used to make and zero mean.
Similarly, and are the variance of signal and ,
respectively, and are used to make and of unity
variance. The 1-D signals and are filtered with
IGF masks (Section V-A) and, thus, two new signals and

are generated

(16)

These signals are subjected to the thresholding operation and the
resultant signal shows the location of defects in the fabric.

(a)

(b)

(c)

(d)

Fig. 14. (a) Fabric sample with defectthick-bar. (b) Vertical projection signal.
(c) Convolution with IGF. (d) Detected defect after thresholding.

The thresholding value is computed from a reference (defect
free) fabric sample. From this reference fabric image,
and using (15) and (16) are generated. The thresh-
olding value for each of the horizontal and vertical directions
is generated as follows [37]:

(17)

where “ ” is a window centered at the signal. Thus, the
threshold value is the maximum amplitude of signal,
within a window “ ,” in the signal obtained from the
reference image. The window size is chosen to avoid the effect
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(a)

(b)

(c)

(d)

Fig. 15. (a) Fabric sample with defectmispick. (b) Vertical projection signal.
(c) Convolution of IGF with (b). (d) Detected defect after thresholding.

from border distortion. This can be was obtained by removing
at least 9 pixels from each side of the signal when a
1 9 mask is used.

C. Experimental Setup and Results

For increased throughput, low-resolution images of about 45
pixels/in (640 pixels cover 14 in of fabric) are used so that larger
fabric area per frame can be processed. Using an Ominivision
digital OV7110 camera with 640 480 pixels, vibration-free
black-and-white images of fabric under inspection are acquired
under backlighting. The experimental results with these images
were excellent and some of these results are reproduced in
Figs. 11–16, and summarized in Table I.

(a)

Fig. 16. Fabric sample with defectshuttle-mark. (b) Vertical projection signal.
(c) Convolution with IGF (b). (d) Detected defect after thresholding.

Fig. 11(a) shows a fabric sample image with defectnetting-
multiplies. A 1 9 IGF mask is convolved with signal
generated from this image. As seen in Fig. 11(b), IGF mask
enhances the signal at locations corresponding to the defects.
Since the IGF has zero mean and the nonlinearity in (16) is
even-symmetric, both light and dark edges are equally detected
[37]. In Fig. 11(d), the thresholding operation segments the lo-
cation of signal corresponding to defect. Similarly, detection re-
sults for fabric samples withslack-endanddirty-yarn are re-
produced in Figs. 12 and 13, respectively. In order to avoid
border-effect distortion, the first and last 10 pixels have been
discarded from the signal [and ]. For fabric sam-
ples in Figs. 11–13, there is no detection of defects from the
vertical projection signal . Therefore, results from the ver-
tical projection signal are not shown for these images. As seen
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TABLE I
DEFECTDETECTION RESULTSFROM THE PROPOSEDMETHOD IN SECTION V

from the results in Figs. 11–13, the defects have been detected
quite accurately.

Figs. 14–16 shows fabric samples and detection results for
thick-bar, mispick, and shuttle-mark, respectively. As can be
seen from the Table I, defects in these images can only be de-
tected from vertical projection signal and, therefore, re-
sults from horizontal projection signal are not shown. Re-
sults from some other common fabric defects, whose figures are
not shown in this paper, are summarized in Table I. Some of the
blob-shaped defects likeoil-stain and shuttle-markwere also
detected, since the defect boundaries in the projection signal

and form edges. The computational time of this
algorithm as run on a Pentium III 450 MHz PC using a simple
C program is 94 ms. Therefore, no additional DSP hardware is
required for online inspection using the proposed algorithm.

D. Discussion

Our experimental results have suggested that detecting fabric
defects with 1-D projection signals becomes harder as the size of
the defects increases. As seen from the results in Fig. 14 and 16,
small blobs (near corners), which fail to form any subtle change
in projection signals, have not been detected. The creases (wrin-
kles) in fabric under inspection are detected as defects and,
therefore, generate a false alarm. Therefore, the imaging system
has to adjusted in such a way as to avoid wrinkles in the low-res-
olution images. Another observation from the experimental re-
sults is that the distortion introduced due to uneven illumina-
tion of the images does not have any effect on detection. The
effects of uneven illumination can be observed from projection
signals [ and ]. The low-frequency distortion signal,
superimposed on the high-frequency signal, has not generated
any problem (i.e., false alarm) in the detection of defects. This
is due to the fact that the IGF is zero mean and, hence, insen-
sitive to background illumination. The real part of the Gabor
function (RGF), which acts as a blob detector, is not zero mean
and, hence, is sensitive to background illumination. Although

the RGF is ideal for detecting blobs (e.g., Figs. 13 and 16) and
large-sized defects from the 1-D signal, it is not used in the pro-
posed defect detection method since its usage requires high-res-
olution images, which would increase the cost of the system.

VI. CONCLUSIONS

In this paper, a supervised defect detection approach to de-
tect a class of fabric defects has been demonstrated. The mul-
tichannel filtering scheme, hitherto used for texture segmenta-
tion, has been extended and tailored for unsupervised inspec-
tion of textile webs. The role of mask size, and the number and
frequency range of Gabor filters in the filter bank, on perfor-
mance and computational load has been discussed. A user can
appropriately select these parameters depending on the tradeoff
available in his or her system, between performance and com-
putational load. The results in this paper have shown that this
scheme is robust and ready to be used for online web inspec-
tion.

The online unsupervised inspection using the multichannel
filtering scheme requires additional DSP hardware. Therefore,
a low-cost inspection solution based on edge detection with
IGF has been developed for fabric defect detection. The perfor-
mance of this method has been extensively evaluated on a va-
riety of fabric defects. The results have shown that this method
is quite successful and offers a low-cost single-PC-based solu-
tion for online web inspection. From the various experiments
conducted on web inspection (discussed above), five important
factors on the success of real-time defect detection schemes can
be outlined. These are” 1) contrast associated with a defect; 2)
consistency of background; 3) image resolution; 4) size of de-
fect to be detected; and 5) speed of inspection. While 1) and
2) are affected by illumination conditions, factor 3) depends on
field of view and resolution of CMOS or charge-coupled-de-
vice (CCD) photosensor used for imaging. The computational
complexity of this method can be approximated as two opera-
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tions per pixel, which are due to the computations involved in
the generation of two projection signals. Although the results
of the proposed schemes have been demonstrated, for the fabric
inspection, these schemes can potentially be used for online in-
spection of other textured materials such as steel rolls, plastic,
or wood.
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