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Abstract: Because of its unique characteristics of small specific gravity, high strength, and corrosion
resistance, the carbon fiber sucker rod has been widely used in petroleum production. However,
there is still a lack of corresponding online testing methods to detect its integrity during the process
of manufacturing. Ultrasonic nondestructive testing has become one of the most accepted methods
for inspection of homogeneous and fixed-thickness composites, or layered and fixed-interface-shape
composites, but a carbon fiber sucker rod with multi-layered structures and irregular interlayer
interfaces increases the difficulty of testing. In this paper, a novel defect detection method based on
multi-sensor information fusion and a deep belief network (DBN) model was proposed to identify
online its defects. A water-immersed ultrasonic array with 32 ultrasonic probes was designed to
realize the online and full-coverage scanning of carbon fiber rods in radial and axial positions. Then, a
multi-sensor information fusion method was proposed to integrate amplitudes and times-of-flight of
the received ultrasonic pulse-echo signals with the spatial angle information of each probe into defect
images with obvious defects including small cracks, transverse cracks, holes, and chapped cracks.
Three geometric features and two texture features from the defect images characterizing the four
types of defects were extracted. Finally, a DBN-based defect identification model was constructed
and trained to identify the four types of defects of the carbon fiber rods. The testing results showed
that the defect identification accuracy of the proposed method was 95.11%.

Keywords: carbon fiber sucker rod; multi-sensor information fusion; deep belief network; image
identification; defect identification

1. Introduction

The carbon fiber sucker rod is a typical composite material, which has the charac-
teristics of small specific gravity and high strength and corrosion resistance, and it has
been widely used in oil production sites [1,2], as shown in Figure 1. Some defects within
the carbon fiber sucker rod may arise during the manufacturing process, leading to a
significant decline in its performance and even serious accidents during the process of
application, so the online real-time defect detection of the carbon fiber rod during the
process of manufacturing is an urgent problem to be solved [3].
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The carbon fiber sucker rod is a typical composite material with a carbon fiber pul-
truded multi-layer structure, as shown in Figure 2. It is a hybrid fiber-reinforced-polymers
(FRPs) structure with a 22 mm diameter that combines the advantages of a carbon-fiber-
reinforced polymer (CFRP) core with a diameter of about 16 mm and longitudinal sound
velocity of about 2800 m/s, and a glass-fiber-reinforced polymer (GFRP) with a longitudinal
sound velocity of about 3300 m/s. The boundary of interface between the CFRP and GFRP
in cross-section is irregular, and the boundary changes along the axis. Due to the irregular
interfaces between the CFRP and GFRP, defect inspection of the carbon fiber sucker rod is
very difficult.
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Figure 2. Carbon fiber sucker rod.

Some Nondestructive Testing (NDT) techniques have been developed for composite
diagnostic purposes [4–6]. Because Ultrasonic Nondestructive Testing (UNDT) has the ad-
vantages of high detection accuracy, convenient use, simple operation, and wide application
range [7], it has become one of the most accepted methods for composite inspection. There
are many studies on the application of this method to composite inspection. Andrzej [8]
tested three composite structures made of glass-fiber-reinforced plastic, a hybrid composite
with a core made of the same material, and face sheets made of aluminum alloy and a
carbon-fiber-reinforced plastic structure by using various techniques including PZT sensing,
ultrasonic, thermography, and vibration-based inspection, but the testing is not suitable for
online testing of the carbon fiber sucker rod with irregular interface multilayer composites.
Cerniglia [9] proposed a laser ultrasonic technique for the in-line inspection of laser powder
deposition components. Asokkumar [10] compared different air-coupled ultrasonic testing
methods to characterize impact-type defects in a pultruded quasi-isotropic GFRP compos-
ite plate. However, this method is not suitable for the carbon fiber rod with the irregular
interlayer interface. Zeng [11] presented a hybrid system for detecting the microstructure
and defects in the braided CFRP that combines the advantages of laser-ultrasound and
air-coupled ultrasonic testing. Caminero [12] used phased-array ultrasonic testing for the
inspection of carbon-fiber-reinforced epoxy (CFRP) composite laminates with barely visible
impact damage. Castellano [13] performed ultrasonic goniometric immersion tests in order
to characterize mechanically the substrate and the new material obtained by the additive
manufactured process. Combined with the CT imaging principle, Zhou [14] developed
an imaging method based on probabilistic damage for the Lamb wave. However, this
method has strict requirements on the thickness of the material to be examined and is
not applicable to carbon fiber rods with an irregular interlayer interface. To improve the
ultrasonic testing capability for additively manufactured materials, Song [15] proposed the
time-dependent threshold to distinguish effectively the flaw echoes from the background
of structural noise. Meng [16] proposed a deep learning model based on the convolutional
neural network to classify carbon fiber polymer defects, and the wavelet packet method to
extract features. Nguyen [17] divided the original casting visual image into nine regions in
equal proportions, and then input it into the CNN to detect inclusions, pores, and cracks on
the surface of the casting. Khumaidi [18] collected ultrasonic inspection images of defects in
weldments as input, and used convolutional neural networks to achieve feature extraction
and classification.
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According to the characteristics of irregular interfaces in the sucker rod and the re-
quirements for follow-up online detection, in this paper, a novel alternative defect detection
method based on the multi-sensor information fusion and deep belief network model was
proposed to identify online its defects, as shown in Figure 3. A water-immersed ultrasonic
array with 32 ultrasonic probes was designed to realize the online and full-coverage scan-
ning of carbon fiber rods in radial and axial positions. Then, a multi-sensor information
fusion method was proposed to integrate the amplitude and time-of-flight of received
ultrasonic pulse-echo signals with the spatial angle information of each probe into an
ultrasonic defect image with obvious defects including small cracks, transverse cracks,
holes, and chapped cracks. A feature extraction method combining geometric features with
texture features was proposed to extract three geometric features and two texture features
characterizing the four types of defects from defect images. Finally, a DBN-based defect
identification model was constructed and trained to identify the four types of defects of the
carbon fiber rods.
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2. Experimental Setup and Testing
2.1. Water-Immersed Ultrasonic Detection System

According to the characteristics of irregular interfaces in the sucker rod and the
requirements for online inspection, a water-immersed ultrasonic detection system with
32 probes was specially designed to perform ultrasonic inspection, as shown in Figure 4.
Immersion testing provides testing flexibility as the sucker rod can move axially freely
underwater with the fabrication process and introduce a sound wave at different angles
without contacting the probes. The ultrasonic array includes 32 probes, and each probe is
an ultrasound focus probe with a center frequency of 2 MHz and focal column diameter of
2.2 mm, which ensures 360-degree full-coverage inspection of the sucker rod. The 32 probes
were cyclically scanned for inspection of carbon fiber rods in different radial angles with a
20 ms/s sampling rate and a 16 ms cycle time.
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2.2. Experimental Testing Based on Ultrasonic Array

Four representative defects of the carbon fiber sucker rod including small cracks,
transverse cracks, holes, and chapped cracks were selected for ultrasonic testing in this
experiment, as shown in Figure 5. The full coverage scan of the sucker rods in the
cross-section was performed, ultrasonic waves to encounter the interface with different
acoustic impedance materials were reflected, and the corresponding ultrasonic reflection
echoes were received by the same probes.
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Figure 5. Carbon fiber sucker rod: (a) small crack defect, (b) transverse crack defect, (c) hole defect,
(d) chapped defect, and (e) with no defect.

The ultrasonic pulse-echo signal uses the abscissa to represent the time-of-flight, and
the ordinate to represent the amplitude of the pulse-echo signal. Therefore, the internal
information of the material to be measured can be judged by the number and position of
reflected echoes. Each pulse peak of the pulse-echo signal represents the reflected echoes
from the interface between two materials with a significant difference of acoustic impedance.
When a single probe detects the intact carbon fiber rod, the ultrasonic reflection signal is
obtained, as shown in Figure 6. When the ultrasonic wave emitted by the probe enters the
carbon fiber rod, it generates the 1# reflected echo at its front surface; when the ultrasonic
wave passes through the front interface of the carbon fiber rod, it generates the 2# reflected
echo due to the change in impedance; when the ultrasonic wave passes through the rear
interface of the carbon fiber rod, it generates the 3# reflected echo; when the ultrasonic
wave propagates to the rear surface of the carbon fiber rod, it generates the 4# reflected
echo. As a result, for the intact carbon fiber rod, four reflected echoes corresponding to
each interface of the carbon fiber rod are received.
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In view of the characteristics of irregular interfaces in the sucker rod, an ultrasonic
array detection system containing 32 probes was designed to scan different angles from
the cross-section of the sucker rod, and the corresponding ultrasonic reflection waves from
different angles carry different defect information because the propagation direction of
ultrasonic waves is different. We take the hole defect as an example, as shown in Figure 7.
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The reflected echoes of the front surface and the front interface of the carbon fiber rod
mix together to form a long-lasting reflected wave, that is, the 1# waveform. Then, the
ultrasonic waves propagate to the hole defect to form the 2# reflected echo, that is, the
defect echo. Then, the ultrasonic waves reach the back interface of the carbon fiber rod to
form the 3# reflected echo. Finally, the ultrasonic waves propagate to the back surface of the
carbon fiber rod to form the 4# reflected echo. Compared with the intact carbon fiber rod,
the reflected echoes of the carbon fiber rod with the hole defect have one more defect echo.
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Figure 7. Ultrasonic reflection signal of carbon fiber rod with hole defect.

The ultrasonic wave emitted by probe A vertically passes through the defect area,
and the ultrasonic reflected wave contains the defect echo. However, the ultrasonic wave
emitted by probe B does not pass through the defect area, and the obtained ultrasonic
reflection signal does not contain the defect echo, as shown in Figure 6. Moreover, because
the interface between the CFRP and GFRP of the carbon fiber rod is irregular, the ultrasonic
echoes of the interface obtained by different probes emitting ultrasonic waves from different
positions are also different.

Experiments for carbon fiber sucker rods with no defect and four typical defects were
carried out, and 750 samples were obtained, including 150 samples for each defect type
and no defect. Each sample included 32 ultrasonic pulse-echo signals.

3. Multi-Sensor Information Fusion into Defect Images

A multi-sensor information fusion method was proposed to integrate the amplitude
and time-of-flight of received ultrasonic pulse-echo signals with the spatial angle infor-
mation of each probe into defect images with obvious defects including small cracks,
transverse cracks, holes, and chapped cracks. Taking the hole defect as an example, as
shown in Figure 8, the angles, amplitudes, and time-of-flight of the received ultrasonic
pulse-echo signals can be visually reflected on one image. The abscissa represents the angle
corresponding to the ultrasonic probe, the ordinate represents the time-of-flight, and the
color in the image represents the amplitude of signals.
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Figure 9. Ultrasonic images of sucker rods with different defects: (a) small crack defect, (b) trans-

verse crack defect, (c) hole defect, and (d) chapped defect. 

4. Feature Extraction of Defect Images 

4.1. An Image Enhancement Method Combining Bilateral Filtering and Laplace Operator 

Figure 8. Multi-information fusion into an image.

The cross-sectional defect image can be obtained when the ultrasonic probes complete
the radial scanning of the carbon fiber rod. With the movement of the carbon fiber rod, the
detections of the whole carbon fiber rod were completed, which meets the requirements
of online detection of the carbon fiber rod. In addition, the received pulse-echo signals
with different defect information were mapped into different defect images, in which the
ultrasonic probe angles, the amplitude, and the ultrasonic time-of-flight of the received
pulse-echo signals were fused. Then, many image recognition methods can be used to
identify the defects. Ultrasonic images of sucker rods with four different defects are shown
in Figure 9.
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Figure 9. Ultrasonic images of sucker rods with different defects: (a) small crack defect, (b) trans-

verse crack defect, (c) hole defect, and (d) chapped defect. 

4. Feature Extraction of Defect Images 

4.1. An Image Enhancement Method Combining Bilateral Filtering and Laplace Operator 

Figure 9. Ultrasonic images of sucker rods with different defects: (a) small crack defect, (b) transverse
crack defect, (c) hole defect, and (d) chapped defect.

4. Feature Extraction of Defect Images
4.1. An Image Enhancement Method Combining Bilateral Filtering and Laplace Operator

The obtained ultrasonic defect images from above are a more visual expression for
different defects of carbon fiber sucker rods, and then an image identification method
based on the deep belief network model can be used to identify different defects of carbon
fiber rods. After gray processing [19], an image enhancement method combining bilateral
filtering and the Laplace operator was proposed, as shown in Figures 10–12.



Sensors 2022, 22, 5189 7 of 15

Sensors 2022, 22, 5189 7 of 15 
 

 

The obtained ultrasonic defect images from above are a more visual expression for 

different defects of carbon fiber sucker rods, and then an image identification method 

based on the deep belief network model can be used to identify different defects of carbon 

fiber rods. After gray processing [19], an image enhancement method combining bilateral 

filtering and the Laplace operator was proposed, as shown in Figures 10–12. 

A significant feature of the image edge is the mutation of pixel value. As the deriva-

tive can represent a sharp change in pixel gray value on an image edge, image sharpening 

can be realized by using the differential operator. Commonly used differential operators 

include the first-order differential operator Sobel operator and second-order differential 

operator Laplace operator. As the Sobel operator has less response to isolated points in 

the image than the Laplace operator does [20], the Laplace operator is adopted to process 

the grayscale image by Laplace operator sharpening, as shown in Figure 13. Compared 

with Figure 11, the pixel brightness of the defect area and the interface area changes sig-

nificantly, but the existing noise in the image is enhanced and can be misjudged as the 

defect area. We focus on the image surface, interface region, and defect region, which need 

to retain the edge information during denoising. In view of the fact that bilateral filtering 

can retain image edge details during filtering, bilateral filtering is used to suppress image 

noise and compensate for the problem of excessive enhancement of noise area during im-

age enhancement by the Laplace operator [21]. 

As can be seen from Figure 10, the noise in the image is significantly reduced while 

the defects, surfaces, and edges of the interface region of the image are retained. Therefore, 

in order to avoid the misjudgment of defect area caused by using the Laplace operator 

alone, it is necessary to combine bilateral filtering with the Laplace operator, to preserve 

the boundary information and defect edge information in the image and reduce noise. The 

image enhancement effect of the combination of bilateral filtering and Laplace operator is 

shown in Figure 12. The image processing in Figure 12 sharpens the defect areas and 

boundaries to help to remove invalid areas and extract features in Section 4.2. 

    
(a) (b) (c) (d) 

Figure 10. The defect images processed by bilateral filtering: (a) small crack, (b) transverse crack, (c) 

hole defect, and (d) chapped defect. 

    
(a) (b) (c) (d) 

Figure 11. Grayscale images of four types of defects: (a) small crack, (b) transverse crack, (c) hole 

defect, and (d) chapped defect. 

Figure 10. The defect images processed by bilateral filtering: (a) small crack, (b) transverse crack,
(c) hole defect, and (d) chapped defect.

Sensors 2022, 22, 5189 7 of 15 
 

 

The obtained ultrasonic defect images from above are a more visual expression for 

different defects of carbon fiber sucker rods, and then an image identification method 

based on the deep belief network model can be used to identify different defects of carbon 

fiber rods. After gray processing [19], an image enhancement method combining bilateral 

filtering and the Laplace operator was proposed, as shown in Figures 10–12. 

A significant feature of the image edge is the mutation of pixel value. As the deriva-

tive can represent a sharp change in pixel gray value on an image edge, image sharpening 

can be realized by using the differential operator. Commonly used differential operators 

include the first-order differential operator Sobel operator and second-order differential 

operator Laplace operator. As the Sobel operator has less response to isolated points in 

the image than the Laplace operator does [20], the Laplace operator is adopted to process 

the grayscale image by Laplace operator sharpening, as shown in Figure 13. Compared 

with Figure 11, the pixel brightness of the defect area and the interface area changes sig-

nificantly, but the existing noise in the image is enhanced and can be misjudged as the 

defect area. We focus on the image surface, interface region, and defect region, which need 

to retain the edge information during denoising. In view of the fact that bilateral filtering 

can retain image edge details during filtering, bilateral filtering is used to suppress image 

noise and compensate for the problem of excessive enhancement of noise area during im-

age enhancement by the Laplace operator [21]. 

As can be seen from Figure 10, the noise in the image is significantly reduced while 

the defects, surfaces, and edges of the interface region of the image are retained. Therefore, 

in order to avoid the misjudgment of defect area caused by using the Laplace operator 

alone, it is necessary to combine bilateral filtering with the Laplace operator, to preserve 

the boundary information and defect edge information in the image and reduce noise. The 

image enhancement effect of the combination of bilateral filtering and Laplace operator is 

shown in Figure 12. The image processing in Figure 12 sharpens the defect areas and 

boundaries to help to remove invalid areas and extract features in Section 4.2. 

    
(a) (b) (c) (d) 

Figure 10. The defect images processed by bilateral filtering: (a) small crack, (b) transverse crack, (c) 

hole defect, and (d) chapped defect. 

    
(a) (b) (c) (d) 

Figure 11. Grayscale images of four types of defects: (a) small crack, (b) transverse crack, (c) hole 

defect, and (d) chapped defect. 
Figure 11. Grayscale images of four types of defects: (a) small crack, (b) transverse crack, (c) hole
defect, and (d) chapped defect.

Sensors 2022, 22, 5189 8 of 15 
 

 

    
(a) (b) (c) (d) 

Figure 12. The defect images processed by the combination of Laplacian operator and bilateral fil-

tering: (a) small crack, (b) transverse crack, (c) hole defect, and (d) chapped defect. 

    
(a) (b) (c) (d) 

Figure 13. The defect images processed by the Laplacian operator: (a) small crack, (b) transverse 

crack, (c) hole defect, and (d) chapped defect. 

4.2. Defect Image Segmentation and Invalid Area Elimination 

The image enhancement method above may sharpen the defect regions and bound-

aries. However, in order to better extract the defect features, we also need to remove the 

irrelevant areas. Aiming at the feature that the pixel value of the rear interface of the car-

bon fiber rod image is too small, the three-threshold maximum interclass variance method 

is used for image segmentation. As shown in Figure 14, four types of defect images ob-

tained the effective segmentation, especially after the interface region; they will no longer 

be mistaken for the background region, because the three most between-cluster variance 

threshold method uses different threshold segmentations for different areas of the image. 

However, there are still two invalid regions in the image: impurity region and to-be-filled 

region. In order to facilitate feature extraction, these two types of invalid regions need to 

be removed. 

As can be seen from Figure 15, redundant invalid areas are effectively removed and 

only the front surface, back interface, back surface, and defect area of the carbon fiber rod 

are retained. All boundary information and defect information in the image can be well 

identified, providing better conditions for subsequent feature extraction. 

    
(a) (b) (c) (d) 

Figure 14. The defect images processed by the three-threshold maximum inter-class variance 

method: (a) small crack, (b) transverse crack, (c) hole defect, and (d) chapped defect. 

Figure 12. The defect images processed by the combination of Laplacian operator and bilateral
filtering: (a) small crack, (b) transverse crack, (c) hole defect, and (d) chapped defect.

A significant feature of the image edge is the mutation of pixel value. As the derivative
can represent a sharp change in pixel gray value on an image edge, image sharpening
can be realized by using the differential operator. Commonly used differential operators
include the first-order differential operator Sobel operator and second-order differential
operator Laplace operator. As the Sobel operator has less response to isolated points in the
image than the Laplace operator does [20], the Laplace operator is adopted to process the
grayscale image by Laplace operator sharpening, as shown in Figure 13. Compared with
Figure 11, the pixel brightness of the defect area and the interface area changes significantly,
but the existing noise in the image is enhanced and can be misjudged as the defect area.
We focus on the image surface, interface region, and defect region, which need to retain
the edge information during denoising. In view of the fact that bilateral filtering can
retain image edge details during filtering, bilateral filtering is used to suppress image noise
and compensate for the problem of excessive enhancement of noise area during image
enhancement by the Laplace operator [21].
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As can be seen from Figure 10, the noise in the image is significantly reduced while
the defects, surfaces, and edges of the interface region of the image are retained. Therefore,
in order to avoid the misjudgment of defect area caused by using the Laplace operator
alone, it is necessary to combine bilateral filtering with the Laplace operator, to preserve
the boundary information and defect edge information in the image and reduce noise. The
image enhancement effect of the combination of bilateral filtering and Laplace operator
is shown in Figure 12. The image processing in Figure 12 sharpens the defect areas and
boundaries to help to remove invalid areas and extract features in Section 4.2.

4.2. Defect Image Segmentation and Invalid Area Elimination

The image enhancement method above may sharpen the defect regions and bound-
aries. However, in order to better extract the defect features, we also need to remove the
irrelevant areas. Aiming at the feature that the pixel value of the rear interface of the carbon
fiber rod image is too small, the three-threshold maximum interclass variance method is
used for image segmentation. As shown in Figure 14, four types of defect images obtained
the effective segmentation, especially after the interface region; they will no longer be
mistaken for the background region, because the three most between-cluster variance
threshold method uses different threshold segmentations for different areas of the image.
However, there are still two invalid regions in the image: impurity region and to-be-filled
region. In order to facilitate feature extraction, these two types of invalid regions need to
be removed.
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Figure 14. The defect images processed by the three-threshold maximum inter-class variance method:
(a) small crack, (b) transverse crack, (c) hole defect, and (d) chapped defect.

As can be seen from Figure 15, redundant invalid areas are effectively removed and
only the front surface, back interface, back surface, and defect area of the carbon fiber rod
are retained. All boundary information and defect information in the image can be well
identified, providing better conditions for subsequent feature extraction.



Sensors 2022, 22, 5189 9 of 15Sensors 2022, 22, 5189 9 of 15 
 

 

    
(a) (b) (c) (d) 

Figure 15. The defect images after removing the invalid area: (a) small crack, (b) transverse crack, 

(c) hole defect, and (d) chapped defect. 

4.3. A Feature Extraction Method Combining Geometric Features with Texture Features 

A feature extraction method combining geometric and texture features for sucker rod 

defects was used. Three geometric features and two texture features were well-chosen and 

extracted to represent typical defect features. 

4.3.1. Extraction of Geometric Features of Defect Images 

According to the characteristics of carbon fiber rods, area sum, maximum width sum, 

and length sum can effectively improve the accuracy of defect classification and identifi-

cation. 

For the four types of defects, there are different connected domains that represent the 

different echo-interfaces: front surface, rear surface, rear interface, or defect interface. The 

area S of the connected domain is expressed by the number of pixels contained in the 

connected domain. X is the abscissa of the center of mass of the connected domain, which 

represents the radial angle surrounded by the connected domain in °. Y is the ordinate of 

the center of mass of the connected domain, which represents the time of ultrasonic echo 

in μs. 

The width of the connected domain represents the time it takes for the ultrasonic echo 

to appear and disappear in μs. The length of the connected domain is the abscissa length 

of the connected domain of the image, which represents the radial angle surrounded by 

the connected domain in °. For different types of defect images, the widths and lengths of 

the different echo-interfaces have different characteristics. 

The length of the connected domain is the length of the connected domain on the 

abscissa of the image. The concepts of length and sum of length are introduced to indicate 

how many probes a defect can be detected by. For different types of defect images, the 

length and length of defect regions have different characteristics. 

The geometric characteristic information of four typical defects is shown in Tables 1–

4. It can be seen that the three geometric features, area, length, and maximum width, can 

effectively describe the defect area characteristics of small cracks, transverse cracks, and 

holes, but cannot effectively characterize the characteristics of crack defects. 

Table 1. Geometric feature information of selected small crack defect image. 

 
X Y S Length Width Maximum Width Sum of Length Sum of Area 

(°) (μs) (No.) (°) (μs) (μs) (°) (No.) 

Front surface 184.61 6.03 740 360.00 5.40 5.40 360.00 740 

Rear surface 178.99 21.41 139 360.00 1.60 1.60 360.00 139 

Rear interface 188.10 17.82 116 360.00 2.25 2.25 360.00 116 

Defect 
111.26 12.17 35 56.25 1.85 

1.85 123.75 73 
296.78 12.08 38 67.50 1.80 

  

Figure 15. The defect images after removing the invalid area: (a) small crack, (b) transverse crack,
(c) hole defect, and (d) chapped defect.

4.3. A Feature Extraction Method Combining Geometric Features with Texture Features

A feature extraction method combining geometric and texture features for sucker rod
defects was used. Three geometric features and two texture features were well-chosen and
extracted to represent typical defect features.

4.3.1. Extraction of Geometric Features of Defect Images

According to the characteristics of carbon fiber rods, area sum, maximum width
sum, and length sum can effectively improve the accuracy of defect classification and
identification.

For the four types of defects, there are different connected domains that represent
the different echo-interfaces: front surface, rear surface, rear interface, or defect interface.
The area S of the connected domain is expressed by the number of pixels contained in the
connected domain. X is the abscissa of the center of mass of the connected domain, which
represents the radial angle surrounded by the connected domain in ◦. Y is the ordinate of
the center of mass of the connected domain, which represents the time of ultrasonic echo
in µs.

The width of the connected domain represents the time it takes for the ultrasonic echo
to appear and disappear in µs. The length of the connected domain is the abscissa length of
the connected domain of the image, which represents the radial angle surrounded by the
connected domain in ◦. For different types of defect images, the widths and lengths of the
different echo-interfaces have different characteristics.

The length of the connected domain is the length of the connected domain on the
abscissa of the image. The concepts of length and sum of length are introduced to indicate
how many probes a defect can be detected by. For different types of defect images, the
length and length of defect regions have different characteristics.

The geometric characteristic information of four typical defects is shown in Tables 1–4.
It can be seen that the three geometric features, area, length, and maximum width, can
effectively describe the defect area characteristics of small cracks, transverse cracks, and
holes, but cannot effectively characterize the characteristics of crack defects.

Table 1. Geometric feature information of selected small crack defect image.

X Y S Length Width Maximum Width Sum of Length Sum of Area
(◦) (µs) (No.) (◦) (µs) (µs) (◦) (No.)

Front surface 184.61 6.03 740 360.00 5.40 5.40 360.00 740

Rear surface 178.99 21.41 139 360.00 1.60 1.60 360.00 139

Rear interface 188.10 17.82 116 360.00 2.25 2.25 360.00 116

Defect
111.26 12.17 35 56.25 1.85

1.85 123.75 73
296.78 12.08 38 67.50 1.80
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Table 2. Geometric feature information of selected transverse crack defect image.

X Y S Length Width Maximum Width Sum of Length Sum of Area
(◦) (µs) (No.) (◦) (µs) (µs) (◦) (No.)

Front surface 183.26 6.17 759 360.00 5.60 5.60 360.00 759

Rear surface

15.96 21.48 12 22.50 1.45

1.45 225.00 74168.53 21.60 46 135.00 1.40

350.21 20.95 16 33.75 1.20

Rear interface

11.36 18.30 6 11.25 1.25

2.20 146.25 66184.16 18.02 51 112.50 2.20

353.70 18.14 9 22.50 1.05

Defect

25.76 12.91 17 45.00 1.20

2.60 281.25 195184.95 13.42 158 191.25 2.80

344.59 12.76 20 45.00 1.45

Table 3. Geometric feature information of selected hole defect image.

X Y S Length Width Maximum Width Sum of Length Sum of Area
(◦) (µs) (No.) (◦) (µs) (µs) (◦) (No.)

Front surface 184.16 5.92 717 360.00 5.65 5.65 360.00 717

Rear surface
68.85 21.86 62 135.00 2.00

2.00 258.75 124
301.95 21.51 62 123.75 1.85

Rear interface

21.83 17.82 17 33.75 1.60

2.00 213.75 11190.79 17.64 44 78.75 2.00

316.35 17.56 50 101.25 1.85

Defect

32.06 12.35 53 56.25 2.60

4.45 292.50 344191.36 11.75 245 180.00 4.45

339.75 12.21 46 56.25 2.40

Table 4. Geometric feature information of selected chapped defect image.

X Y S Length Width Maximum Width Sum of Length Sum of Area
(◦) (µs) (No.) (◦) (µs) (µs) (◦) (No.)

Front surface 177.41 6.23 735 360.00 6.05 6.05 360.00 735

Defect 192.15 12.36 49 67.50 2.20 2.20 67.50 49

4.3.2. Extraction of Texture Features of Defect Images

In order to describe the features of chap defects effectively, texture features are intro-
duced in this paper. Texture features are widely used in the description of image informa-
tion to describe image laws from a macroscopic perspective. The gray co-occurrence matrix
is a common texture feature analysis method used to reflect the comprehensive information
of image gray level [22]. In this paper, the four statistics of energy, entropy, correlation,
and contrast constructed by the gray co-occurrence matrix were used to describe texture
features. When constructing the gray level co-occurrence matrix, co-occurrence matrices in
the four directions of 0 degrees, 45 degrees, 90 degrees, and 135 degrees were selected; the
characteristic quantities of the gray level co-occurrence matrix in these four directions were
obtained; their mean values were finally obtained [23].

As shown in Table 5, the difference in energy mean, entropy mean, contrast mean, and
correlation mean value of D1, D2, and D3 is small, while the texture characteristics of D4
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and the other three types of defects are quite different, because the number of boundaries
between D4 and other defect images has the same big difference. There are few interface
areas that can detect D4, so its contrast is smallest; the correlation reflects the local similarity
of the image, D4 has fewer internal boundaries, and the local similarity is high, so its
correlation average is largest. Therefore, the two texture features with maximum difference,
contrast mean and correlation mean, can effectively characterize the characteristics of D4.

Table 5. Texture feature information of selected defect image.

Defect Type Energy Mean Entropy Mean Contrast Mean Correlation Mean

D1 0.5622 0.7911 0.2511 1.1007
D2 0.5501 0.8034 0.2470 1.0742
D3 0.4992 0.8791 0.2925 0.9593
D4 0.6628 0.6068 0.1081 1.4684

D0, D1, D2, D3, and D4 represent, respectively, small crack defects, transverse crack defects, hole defects, chapped
defects, and no defects.

As shown in Table 6, the three geometric features can effectively distinguish small
cracks, transverse cracks, and hole cracks, and the two texture features can effectively
distinguish chap defects from other defects. Therefore, the features including the sum of
defect lengths, the sum of defect areas, the maximum defect width, the contrast mean, and
the correlation mean can characterize the characteristics of different defects, and can then
be used to identify the different defects of carbon fiber sucker rods. The feature vector T for
defect identification can be expressed:

T = [T1, T2, T3, T4, T5]
′ (1)

where the features T1, T2, T3, T4, and T5 represent, respectively, the sum of defect lengths,
the sum of defect areas, the maximum defect width, the average contrast, and the correlation
mean. The five features of some defect samples for carbon fiber sucker rods are shown
in Table 6.

Table 6. Features of some defect samples.

Sum of Length Sum of Area Maximum Width
Contrast Mean Correlation Mean(◦) (No.) (µs)

D1

101.25 68 2.43 0.2389 1.063

78.75 39 2.00 0.2511 1.101

90.00 62 2.25 0.2493 1.057

112.50 89 2.60 0.2352 1.055

168.75 124 2.45 0.2340 1.032

D2

281.25 195 2.80 0.2470 1.074

202.50 116 1.85 0.2084 1.085

213.75 183 3.00 0.2118 1.081

292.50 248 3.05 0.2214 1.062

247.50 181 2.40 0.2234 1.093

D3

292.50 344 4.45 0.2925 0.959

326.25 371 4.60 0.1986 1.086

247.50 195 3.15 0.2088 1.098

236.25 225 3.85 0.2249 1.103

360.00 446 4.00 0.1623 1.111
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Table 6. Cont.

Sum of Length Sum of Area Maximum Width
Contrast Mean Correlation Mean(◦) (No.) (µs)

D4

56.25 49 2.20 0.1081 1.468

112.50 47 1.95 0.0805 1.689

135.00 87 2.60 0.1065 1.446

146.25 63 1.75 0.0810 1.581

112.50 61 2.13 0.0940 1.546

5. DBN-Based Defect Identification Model

There are many networks that can be selected for deep learning application in struc-
tural testing, such as the Deep belief network (DBN) and convolutional neural network
(CNN) [24]. Because the DBN reconstructs original data through unsupervised training,
unlabeled samples can be used for model training, so it is suitable for processing data with
no significant correlation of adjacent features [25].

A DBN-based defect identification model was constructed to realize the defect iden-
tification of the carbon fiber sucker rod, as shown in Figure 16. The feature vector T was
set as inputs of the model with five input neuron nodes, while four different defects and
no defect were used as outputs of the model with five output neuron nodes. The Sigmoid
function was selected as the activation function [26]. According to experience, the learning
rate of each RBM in the pre-training process is generally set at 0.1, while the learning rate
of the BP algorithm is generally set at 0.01 [27]. After experimental testing, the number
of hidden layers was selected as 3, and the number of neuron nodes in each hidden layer
was 35. DBN construction and training were divided into three processes: parameter
setting, pre-training, and fine-tuning. The final defect identification model was obtained by
unsupervised pre-training and the supervised backpropagation algorithm. Datasets with
150 samples were collected for each of the four types of defects and no defect. A percentage
of 70 percent of them were selected as the training set and 30 percent as the test set.
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The DBN-based model was trained for the trained dataset and tested for the testing
dataset. The testing results show that the defect identification accuracy of the proposed
method is 95.11%, as shown in Table 7. For chapped defects, the texture features are obvious,
so the identification rate is high. However, due to bilateral filtering in the process of defect
image processing, some useful information in the ultrasonic B-scan image is removed.
Especially for hole defects, due to the random location, random size, and irregular edge
of holes, the defect area changes greatly. When extracting geometric features, it is close to
small cracks and transverse cracks that affect the accuracy of identification.

Table 7. Comparison of defect classification accuracy.

The Training Set The Test Set
Wrong Number Accuracy (%) Wrong Number Accuracy (%)

D0 0 100.00 0 100.00
D1 2 95.23 1 97.78
D2 5 92.38 3 93.33
D3 11 89.52 7 84.44
D4 0 100 0 100.00

Total number of errors 18 11
The total accuracy (%) 96.57 95.11

6. Conclusions

Due to their light weight, high strength, and corrosion resistance, carbon fiber sucker
rods are widely used in oil production. However, there is still a lack of effective online
testing methods to detect its integrity during the process of manufacturing. In this paper, a
novel DBN-based defect detection method based on ultrasonic multi-sensor information
fusion was proposed to identify online its defects. Based on the results of the above data
processing and analysis, the following conclusions can be made:

(1) According to the characteristics of irregular interlayer interfaces in carbon fiber sucker
rods and the requirements for online inspection, a water-immersed ultrasonic detec-
tion system with 32 probes was specially designed to perform ultrasonic inspections
in different radial and axial positions, in which the sucker rod can move freely under-
water with the fabrication process and introduce a sound wave at any desired angle
without contacting the probes.

(2) A multi-sensor information fusion method was proposed to integrate amplitudes and
times-of-flight of the received ultrasonic pulse-echo signals with the spatial angle
information of each probe into defect images with obvious defects including small
cracks, transverse cracks, holes, and chapped cracks. From this, many common image
recognition methods can be used to identify the defect types from the defect images.

(3) A feature extraction method combining geometric features with texture features was
proposed to extract three geometric features and two texture features characterizing
the four types of defects from the defect images. Then, the features can be used to
construct the model identifying the defects.

(4) A DBN-based defect identification model was constructed and trained to identify the
four types of defects of the carbon fiber rods. The testing results show that the defect
identification accuracy of the proposed method is 95.11%.

However, the dataset of the four typical defects from the experiment is not enough,
which may lead to a decrease in accuracy due to the weak network generalization ability. In
future trials, if supervised learning methods are adopted, such as using the convolutional
neural network to directly identify b-scan images obtained, the hole defects by which errors
are easy to identify can be labeled in advance to further improve the recognition rate.
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