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Defect Donor and Acceptor in GaN

D. C. Look,1 D. C. Reynolds,1 J. W. Hemsky,1 J. R. Sizelove,2 R. L. Jones,2 and R. J. Molnar3
1University Research Center, Wright State University, Dayton, Ohio 45435

2Avionics Directorate, WL/AADP, Wright-Patterson Air Force Base, Dayton, Ohio 45433
3Massachusetts Institute of Technology/Lincoln Laboratory, 244 Wood Street, Lexington, Massachusetts 02173

(Received 12 March 1997)

High-energy (0.7–1 MeV) electron irradiation in GaN grown on sapphire produces shallow donors
and deep or shallow acceptors at equal rates,1 6 0.2 cm21. The data, in conjunction with theory, are
consistent only with the shallow donor being the N vacancy, and the acceptor the N interstitial. The
N-vacancy donor energy is64 6 10 meV, much larger than the value of 18 meV found for the residual
donor (probably Si) in this material. The Hall-effect measurements also reveal a degeneraten-type
layer at the GaNysapphire interface which must be accounted for to get the proper donor activation
energy. [S0031-9007(97)04095-7]

PACS numbers: 61.72.Ji, 61.80.Fe, 71.55.Eq, 72.20.Fr

Rapid progress in the development of blue light emit-
ters, uv detectors, and high-temperature transistors in the
III-V nitride system (GaN, AlGaN, and InGaN) has led to
great activity in the growth and characterization of these
materials [1,2]. In the early days of GaN growth, the elec-
trical nature was nearly always stronglyn type, and it was
implicitly assumed that the donor was a native defect, the
N vacancy (VN) [3,4]. However, later studies have con-
cluded that O (Ref. [5]) and Si (Ref. [6]) may be the prime
candidates for residual donors, and, indeed, Si is known to
be an effective donor dopant up the1020 cm23 range [7].
Theory suggests that theVN defect has a level in the con-
duction band (CB) which, when occupied, autoionizes into
a hydrogenic configuration, i.e., with an energy about 30–
40 meV (plus central-cell correction) below the CB edge
[8,9]. High-pressure optical experiments areconsistent
with the residual donor in bulk GaN beingVN (Ref. [4]);
however, nobody, to our knowledge, hasproventhatVN is
indeed a shallow donor. We have irradiated GaN layers
grown on sapphire with 0.7–1 MeV electrons which are
expected to produce N and/or Ga vacancies. By fitting
the temperature dependences of both electron concentra-
tion (n) and mobility (m) it is possible to determine the
concentrations of donors (ND) and acceptors (NA) and the
energy (ED) of the donors [10]. We argue below that
the data presented here and theory presented elsewhere are
consistent only if the donor and acceptor are components
of the N Frenkel pair, i.e., the N vacancy, and N intersti-
tial, respectively. This model confirms the expected donor
nature ofVN and demonstrates the rare appearance of an
interstitial (NI) as an acceptor.

Although high-energy electron irradiation has been
used extensively in the past to study vacancy defects in
such semiconductors as Si [11], GaAs [12], and ZnSe
[13], no similar studies have been conducted in GaN,
to our knowledge (however, see note at end). Low-
energy (,30 keV) electron irradiation has been used to
activate Mg acceptor impurities in GaN [14], but these

energies are much too low to cause displacements. A
very recent irradiation study, using x rays and60Co g

rays, reported nearly no change in mobility, even though
the g rays decay to 0.6 MeV electrons, which should be
able to displace N atoms, and possibly Ga atoms also [15].
However, theg-ray dose,4.5 3 106 rads, was probably
too small to give an observable displacement effect.

A side result of the present study is the confirmation
of a degenerate,n-type layer at the highly dislocated
GaNysapphire interface. This layer modifies then vs
T (and to a lesser extentm vs T ) data such that the
main donor seems too shallow and a second, deeper donor
falsely appears at high temperatures (typically*300 K).
The presence of such a degenerate layer has been reported
recently [16], but the effects onn vs T and m vs T are
shown here for the first time.

The samples chosen for this study were thick
(20 60 mm), high-mobility (m . 700 900 cm2yV s),
GaN layers grown by the hydride vapor phase epitaxial
(HVPE) technique on sapphire [17]. The expected range
for 1 MeV electrons in GaN is about700 mm, from the
Katz-Penfold relationship [18,19]; thus, energy loss is
small in 60 mm and may be neglected. Electron fluences
F of 1 7 3 1016 cm22 were generated by a Van de
Graaff accelerator at a beam current of10 mAycm2. Hall-
effect measurements were carried out over a tempera-
ture range 10–400 K, using a magnetic field of 5 kG.
The experimental Hall-effect data are presented in Figs. 1
and 2 for a 60-mm-thick HVPE sample, 262D. In these
figures, the triangles denote an unirradiated sample, and
the circles, the same sample irradiated at a fluence of
5 3 1016 1-MeV electronsycm2. The curves at 1, 2,
3, and 4 3 1016 cm22 fall smoothly in between those
displayed, but are not included, for purposes of clarity.
In Fig. 1, the minima in theapparent carrier concen-
trations, nH  1yeR, where R is the Hall coefficient,
are similar to those commonly seen in semiconductors
when electrons freeze out on their parent donors, and the
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FIG. 1. Apparent Hall concentration (nH  1yeR, where R
is the Hall coefficient) vs inverse temperature for an unir-
radiated sample (), and a sample irradiated with5 3
1016 1-MeV electronsycm2 (s). The light solid lines are
theoretical fits of the raw data, and the heavy solid line is
the extracted, bulk carrier concentration (n1) for the irradiated
sample. Inset: Production rates for N and Ga Frenkel pairs vs
electron energy.

conduction changes from conduction-band transport to
donor-band or hopping transport (see Ref. [10], p. 115).
However, the latter explanations do not hold in this case
because hopping conduction would not be temperature
independent and would not exhibit a strong Hall coeffi-
cient at low temperature, as observed, and conduction in
a donor band would also not be temperature independent
at such a low (,1017 cm23) donor concentration. To
illustrate this latter point, we note that, for a Bohr radius
a0  0.511 eymp  24 Å, the Mott (critical) concentra-
tion [20] is Nc  s0.25ya0d3 . 1 3 1018 cm23, and the
concentration at which the Fermi level enters the con-
duction band [21] isNCB  1y4pa3

0 . 6 3 1018 cm23.
Thus, in order to have flat (degenerate) electrical
characteristics, the effective thickness of a layer with
ND , 1017 cm23 would have to be much less than
60 mm, and, in fact, no larger than60s1 3 1017y
6 3 1018d . 1 mm. Indeed, recent etching experiments
on material grown in the same reactor have demonstrated
a strong, “residual” conductance within a thickness
of ,1.2 mm from the GaNysapphire interface [16].
Transmission electron microscopy results show a highly
faulted interface region of about 0.3-mm thickness, and
our results are well explained if this region has a carrier
concentrationn . 1 3 1017 (60y0.3d . 2 3 1019 cm23.
The measured low-temperature mobility of56 cm2yV s is
realistic for such a concentration [7].

To account for this degenerate layer, we use a two-
layer analysis and note that the quantitiesshi andRhs

2
hi

are additive; i.e., sh  sh1 1 sh2, and Rhs
2
h 

Rh1s
2
h1 1 Rh2s

2
h2, where the symbol “h” denotes a

sheet concentration [10]. In terms of mobility and carrier
concentration, we can writemmeas  sn1m

2
1 1 n2m

2
2dy

FIG. 2. Mobility vs temperature. The symbols are the same
as those used in Fig. 1. The light solid lines are theoretical
fits of raw data, and the heavy solid line is the extracted, bulk
mobility (m1) for the irradiated sample. Inset: Inverse mobility
(at 77 K) vs annealing temperature. The anneals were each
10 min long, and the solid line is a theoretical fit assuming
first-order kinetics.

sn1m1 1 n2m2d and nmeas  sn1m1 1 n2m2d2ysn1m
2
1 1

n2m
2
2d, where subscript “1” denotes the bulk of the 60-

mm sample, and subscript “2”, the degenerate interface
layer. (For plotting purposes, we normalizen2 in the
full, 60-mm thickness, rather than in the actual 0.3-mm
thickness.) The bulk carrier concentrationn1 was found
from the charge-balance equation for a single donor:
n1sT d 1 NA  NDyf1 1 n1sTdyfsTdg, where fsTd 
g0yg1N 0

CT 3y2 exps2EDykT d. (For the irradiated sample,
a second donor was included.) HereN 0

C is the effective
density of states atT  1 K, g0 is the unoccupied-state
degeneracy, andg1 is the occupied-state degeneracy.
For ans-type state,g0  1 and g1  2. The bulk Hall
mobility m1 was accurately determined from an iterative
solution of the Boltzmann transport equation [22,23].
All of the relevant lattice-scattering parameters were
taken from the literature: acoustic deformation potential
[24] E1  9.2 eV; piezoelectric-potential constant [25]
e14  0.5 Cym2; static and high-frequency dielectric
constants e0 [26] and e` [27], 10.4e0 and 5.47e0,
respectively; Debye temperature [22]TD  1044 K;
and effective mass [28]mp  0.22m0. The only fitted
parameter was the acceptor concentrationNA. The
values ofn2 and m2 were directly determined from the
degenerate, low-temperature data:n2  1.3 3 1017 cm23

(normalized to 60mm), andm2  56 cm2yV s. Finally,
the equations fornmeas (n1, m1, n2, m2) and mmeas (n1,
m1, n2, m2), given earlier, were fitted to the data of
Figs. 1 and 2, respectively, to get fitting parametersND ,
NA, andED . The heavy solid line in Fig. 1 showsn1sT d
at F  5 3 1016 cm22, and the heavy solid line in Fig. 2
shows m1sT d at F  0. The effect of the degenerate
interface layer is clearly seen by comparison with the
light solid lines in these two figures, which are the fits to
nmeassTd andmmeassT d, respectively.
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A confirmation of the validity of our two-layer analysis
comes from a comparison of Hall measurements with
300-K capacitance-voltageC-V measurements. TheC-V
results are not affected by the interface layer, so thatnC-V

should equaln1 (heavy solid curve in Fig. 1). Indeed, we
find nC-V  n1 within 10% at 300 K.

The one-donor fits tonmeas and mmeas at F  0,
shown as light solid lines in Figs. 1 and 2, respec-
tively, give ND1  12.5 6 0.4 3 1016 cm23, ED1 
17 6 1 meV, andNA  3.1 6 0.2 3 1016 cm23. There
is evidence that Si is the residual donor in this material,
and indeed, the fitted value ofED1 agrees reasonably
well with the expected theoretical value:ED1  ED01 2

aN
1y3
D1 . 18.1 meV, with ED0 . 29 meV [26], and

screening factor a . 2.1 3 1025 meV cm [29] for
Si in GaN. The irradiation would not be expected
to affect the Si donors so that the irradiated sample
should be fitted with atwo-donor charge-balance equa-
tion [10], in which ND1 and ED1 are held constant.
The second donor, generated by the irradiation (F 
5 3 1016 cm22), has fitting parametersND2  5.1 6

0.4 3 1016 and ED2  64 6 10 meV, and the new
NA is 7.7 6 0.2 3 1016 cm23 (see relevant light solid
lines, Figs. 1 and 2). Thus,DND2  5.1 6 0.4 and
DNA  4.6 6 0.3 3 1016 cm23, or DND2  DNA 
4.9 6 0.6 3 1016 cm23, and the defect production rates
(DNyDF) aretA  tD  1.0 6 0.2 cm21. As a check,
a two-donor fit to 1-MeV data atF  3 3 1016 cm22

gives the sametA and tD , within 0.1 cm21, and the
sameED2, within 5 meV. Note that the defect donor
has a screened energyED2 . 64 6 10 meV, which
would probably translate to an unscreened value of
about 76 6 10 meV, clearly higher than theED0 for
SiGa (30 6 5 meV). Thus, there is evidently a large,
central-cell correction for this defect donor.

We now argue that the created donor and acceptor are
the N vacancyVN and N interstitialNI , respectively. No
other model is reasonable, as demonstrated below.

(i) Production rate.—Both N and Ga atoms are
expected to be displaced from the lattice by 1-MeV
electrons. The relativistic cross section for atomic
displacement, as a function of electron energyE, can be
written [19], in units of cm2,

ssEd  2.5 3 10225 Z2g2

sg2 2 1d2

3

Ω
Em

Ed
2 1 2 b2 ln

µ
Em

Ed

∂
1

pZ
137

sg2 2 1d1y2

g

3

∑
2

µ
Em

Ed

∂1y2

2 2 2 ln

µ
Em

Ed

∂∏æ
, (1)

where g  Eym0c2 1 1, b  sg2 2 1d1y2yg, Em 
2EsE 1 2m0c2dy1823Am0c2, Z is the atomic number,
A the atomic weight, andEd the energy necessary to
create a Frenkel (vacancy-interstitial) pair. For GaAs,
the experimental value ofEd is about 10 eV [12],

and for Si, about 13 eV [30]. The production rate
(DfNgyDF or DfGagyDF) is just t  N0s, where
N0  2.19 3 1022 cm23 is the lattice density of each of
the atomic species, Ga and N. To gettN  1 cm21, we
would require, from Eq. (1),EdsNd  10.8 eV, and to
get tGa  1 cm21, a valueEdsGad  20.5 eV is neces-
sary. For these values ofEd, the full energy dependences
of tN andtGa are plotted in the inset of Fig. 1. Clearly,
tGa is highly energy dependent forE . 0.5 1.5 MeV,
and tN is quite flat. At E  0.7 MeV, the lowest
practical energy for our accelerator, a two-donor fit
to data taken atF  3 3 1016 cm22 gives DND2 
3.1 6 0.5 3 1016 cm23, and DNA  2.7 6 0.3 cm23,
or tA  tD  1.0 6 0.2 cm21, thus confirming that
the displacements are in the N sublattice, not the Ga
sublattice. That is, for Ga displacement,tGa should
drop by a factor of 2 at 0.7 MeV. The value ofED2
is 57 6 10 meV, within error of the energy (64 meV)
determined from the 1-MeV data.

(ii) Theory.—Two different first-principles total-energy
calculations [8,9] have found thatVN is a single, shallow
donor (after autoionization), andNI is a single, deep
acceptor at approximatelyEV 1 1.0 eV. Our N Frenkel-
pair model is entirely consistent with this picture. For
the Ga Frenkel pair, on the other hand, GaI is a single
donor, andVGa, a triple acceptor, inn-type material.
Thus, in order to keep the high-temperaturen nearly
constant, as observed [seens400 Kd, Fig. 1], we would
have to produce exactly13 as many acceptors as donors.
Clearly, this is inconsistent with Frenkel-pair production
on a single sublattice, and such a constantn (at high
T ) would be highly improbable if both sublattices were
involved. It is possible that the singly charged GaI and
triply charged VGa, if formed, recombine immediately
after displacement, a scenario which is also postulated
to exist in GaAs [12]. On the other hand,EdsGad may
simply be too high to get significant Ga displacement at
0.7–1.0 MeV.

The 47-meV difference in energy betweenVN and our
residual donor (probably SiGa) represents a rather large,
but not unusual, central-cell correction for “effective-mass-
like” donors and acceptors. For example, group II acceptor
energies in GaAs range from 26 meV (Be) to 58 meV
(Hg). A defect potential could be expected to be even more
highly perturbed than the usual substitutional case.

(iii) Annealing.—An isochronal annealing study was
performed on a different HVPE layer, 289B, as shown in
the inset of Fig. 2. The solid line is a theoretical fit to the
mobility data at 80 K, achieved by a first-order annealing
analysis [31]:

m21
i  m21

` 1 sm21
i21 2 m21

` d exph2nt expf2EAykTigj ,

(2)

where the subscripti  1, 2, . . . , 6 denotes the annealing
step [T0  298 K (25±C), T1  523 K (250±C), etc.],
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t is the annealing time (t  600 s), n is a frequency
factor (n  1013 s21, commonly assumed), andEA is the
activation energy. To fit the data precisely, as shown,
EA was varied in a linear fashion from 1.67 eV at
250±C to 2.12 eV at 400±C. Such a variation would
be expected if the various Frenkel pairs have different
separations. Note that a first-order annealing is expected
if each vacancy recombines with itsoriginal interstitial,
as would be expected for a Frenkel pair. If all of the pairs
are greatly separated, and the recombination is random,
then a second-order process is expected [31]. We have
also fitted the data with second-order theory, but the fit
was not as good.

To summarize the data and analysis, the N Frenkel-
pair model is strongly supported by the following facts:
(1) shallow donors and deep or shallow acceptors are
produced at the same rate; (2) theory predicts thatVN is a
shallow donor, andNI , a deep acceptor inn-type material;
and (3) the annealing is well fitted with first-order theory,
expected for Frenkel-pair recombination. We believe that
this experiment constitutes the first proof of the donor
nature of the N vacancy. An analysis of optical data under
pressure by Perlinet al. [4] showed that the dominant
donor in their sample had a state in the conduction band,
but an absolute identification ofVN, as opposed to GaI ,
or even O impurity, could not be made. An important
implication of our results is that the frequently measured
donor energies in the range 25–35 meV (normalized to
ND  0) could not be due toVN, but are likely associated
with substitutional impurities. Finally, the existence of
NI as an acceptor is experimentally shown here for the
first time. Total-energy calculations suggest that neither
VN nor NI should exist in the large numbers inas-grown,
n-type material [8], but various complexes, which may
not change the electronic energy significantly, cannot be
excluded [8]. Further theory on the electronic energy
levels of such complexes would be helpful.

D. C. L. and D. C. R. were supported under U.S. Air
Force Contract No. F33615-95-C-1619, and R. J. M. by
DARPA and Air Force contracts. Opinions, interpreta-
tions, conclusions, and recommendations are those of the
authors and not necessarily endorsed by the U.S. Air
Force.

Note added.—Linde et al. [32] have recently stud-
ied a 1-mm-thick GaNyAl 2O3 layer irradiated with1 3

1018 cm22 of 2.5 MeV electrons. This heavy irradiation
produces two broad photoluminescence bands centered at
0.85 and 0.93 eV, respectively. The latter has been ten-
tatively identified as a Ga21

I complex by analysis of op-

tically detected magnetic resonance data. Because of the
much different irradiation conditions, it is difficult to com-
pare our results with theirs at this time.
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