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1 Introduction

Recent progress in resolving black hole information paradox shows hint towards a new

understanding of certain black hole interior as part of the Hawking radiation, which was

called island. In particular the island formula for the Von Neumann entropy of Hawking

radiation is consistent with unitarity. The black hole evaporation process is expected to be

unitary, therefore the Von Neumann entropy of the radiation should follow Page curve [1–3],

which shows that the entropy first increases and then decreases at so-called Page time. This

happens because, treated as entanglement entropy, the entropy of the radiation can not

exceed the black hole entropy for a global pure state.

In recent breakthrough works, a Page curve was computed in AdS black hole plus

conformal field theory reservoir [4, 5]. One key step to reproduce Page curve is to em-

ploy the island formula [6] for the fine grained entropy of radiation, which was inspired

from the quantum extremal surface (QES) formula in computing holographic entanglement

entropy [7–10]. For recent related works, see [11–68].
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Once promoted to be valid for general quantum system glued with gravity region, the

QES formula seems very powerful. In 2d Jackiw-Teitelboim (JT) gravity plus CFT model,

the QES formula can be derived from the Euclidean path integral computation, which is

often called replica wormhole calculation [12]. However some puzzles such as JT/ensemble

relation arise if one takes the replica wormhole solutions seriously [13]. It is still quite

interesting to ask how we can test QES formula precisely. Similar situation happens in

AdS/CFT, the original Engelhardt-Wall proposal for holographic entanglement entropy

has not been proved yet. It is generally believed that QES formula is correct for a bulk

with a large c matter, because in that case, both the geometric area term and the leading

bulk entanglement are well defined, therefore a generalized minimization procedure for

entanglement entropy leads to QES. One can also ask whether it is possible to verify bulk

QES formula using boundary CFT techniques, such as conformal bootstrap. In any case,

it is still important to find different approaches to derive or even improve QES formula.

In this paper we propose a holographic counterpart for a boundary QES formula, which

we call defect extremal surface (DES) formula. This was motivated by the fact that the

gravity region relevant in computing QES can be localized on a brane. According to the

brane world holography, this can be dual to a brane embedded in a one-dimension higher

bulk. On the other hand, the quantum field theory (QFT without gravity) region can

also be dual to a one-dimension higher bulk if it is holographic. The boundary condition

between gravity region and QFT region can have a higher dimensional dual if it is simple

enough such as transparent. Very similar models have been constructed already in the

seminal paper by Almheiri, Mahajan, Maldacena and Zhao [6]. However we stress that

there are two major differences here: first, we do not replace the matter in the gravity

region by its holographic dual. Rather we consider it as the defect theory on the brane

embedded in the bulk. Second, we do not add additional 2d gravity action such as JT action

on the brane, rather we consider the 2d gravity on the brane purely from the reduction of

the bulk. To summarize, compared with [6], we replace the gravity itself by some part of

the bulk instead of the matter in the gravity region.

Our main idea is to treat the brane as a defect in an AdS bulk. In general there is a

quantum theory living on the defect, which is often called defect theory. The defect theory

should be considered as part of the full bulk theory since it is coupled to the bulk. We

focus on the contribution to the holographic entanglement entropy from the defect theory.

This contribution is particularly interesting when the classical Ryu-Takayanagi surface

crosses the defect or terminates on the defect, in which case the additional entanglement

entropy coming from the defect theory can be computed straightforwardly. Inspired by the

quantum extremal surface proposal [10], we propose the entanglement entropy including

defect contribution is given by the defect extremal surface,

SDES = min
Γ,X

{

extΓ,X

[

Area(Γ)

4GN
+ Sdefect[D]

]}

, X = Γ ∩ D , (1.1)

where Γ is co-dimension two surface in AdS and X is the lower dimensional entangling

surface given by the intersection of Γ and the defect D.

– 2 –
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From the boundary point of view, we have a gravity region glued to a QFT region

without gravity, where we can employ QES formula to compute the entanglement entropy

(fine grained entropy). We compare the results from two approaches and find that they

agree with each other precisely. We consider this agreement as strong evidence that the

DES formula is the holographic dual of the QES in the context of defect AdS/CFT. Notice

that a simple example of defect AdS/CFT is AdS/BCFT proposed by Takayanagi [69].

Above the original AdS/BCFT, we include QFT matter on the bulk brane and extend the

previous RT formula of holographic entanglement entropy by the defect version (1.1). We

also go beyond the boundary entropy interpretation of certain part of RT surface and treat

them generally as area terms in the gravity on the brane.

This paper is organized as follows. In section 2, we briefly review the setup of

AdS/BCFT proposed by Takayanagi [69]. In section 3, we propose a defect extremal

surface (DES) formula and apply it to calculate the entropy of intervals on the asymptoti-

cal boundary, including the contribution of the defect theory in the AdS bulk. In section 4,

we use QES formula to compute the entropy of the same intervals on the boundary. We

compare the result with that obtained by DES in section 3 and find precise agreement. We

conclude and discuss future questions in section 5.

Note added. While this paper was completed, [62] appeared in arXiv, which has some

overlap with our discussion on the brane world.

2 Review of AdS/BCFT

In this section, we briefly review the setup of AdS/BCFT model proposed by Takayanagi [69].

Consider a 2-dimensional BCFT defined on a half space (x ≥ 0). The holographic dual

of this BCFT in the large central charge limit is a part of a classical AdS3 geometry with

a boundary Q where the Neumann boundary condition was imposed. The bulk action is

given by [69]

I =
1

16πGN

∫

N

√−g(R − 2Λ) +
1

8πGN

∫

Q

√
−h(K − T ) , (2.1)

where N stands for the bulk and Q the boundary. The Neumann boundary condition

demands a tension for the brane Q, which is denoted by a constant T . The Neumann

boundary condition reads

Kab = (K − T )hab , (2.2)

where hab is the induced metric and Kab is the extrinsic curvature of the Q brane. The

metric of AdS3 geometry can be written as

ds2 = dρ2 + cosh2 ρ

l
· ds2

AdS2

= dρ2 + l2 cosh2 ρ

l
· −dt2 + dy2

y2
,

(2.3)

– 3 –



J
H
E
P
0
3
(
2
0
2
1
)
0
0
8

Figure 1. Holographic dual of a BCFT2 defined on half space (x > 0).

where l is the AdS radius. The Poincare metric of AdS3 can be recovered by replacing the

coordinates ρ, y with x, z

z = −y/ cosh
ρ

l
, x = y tanh

ρ

l
. (2.4)

If the Q brane is at ρ = ρ0, where ρ0 is a positive constant, it is straightforward to calculate

that

Kab =
tanh

(ρ0

l

)

l
hab . (2.5)

Thus, by combining (2.2) with (2.5), one can determine the relation between the tension

and ρ0, i.e.

T =
tanh

(ρ0

l

)

l
. (2.6)

It is also convenient to choose the polar coordinate θ with 1
cos(θ) = cosh(ρ

l ). Then, the

brane is located at θ0 = arccos(cosh ρ0

l ) > 0, as shown in figure 1.

For an interval I := [0, L] in BCFT, which contains the boundary, the entanglement

entropy can be calculated holographically using (H)RT formula. The minimal surface γI

terminates on the Q brane. The result is

SI =
Area (γI)

4GN
=

c

6
log

2L

ǫ
+

c

6
arctanh(sin θ0), (2.7)

where c is the CFT central charge and ǫ is the UV cut off. The RT surface is shown in

figure 1. The second term was interpreted as the boundary entropy of BCFT in [69]. We

will give this term an alternative interpretation in the following.

– 4 –
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3 Bulk defect extremal surface

If the tension of the Q brane is zero, the brane will be orthogonal to the asymptotic

boundary, as denoted by the dashed line in figure 1. By adding matter or turn on the

tension in the viewpoint of [69], the brane can move to a position with constant θ angle. We

consider the matter on the Q brane as a two-dimensional conformal field theory following [6]

and call it the end of the world (EOW) brane from now on. But we stress that the model

considered here is different from that in [6] in the sense that, the authors there first consider

the Dirichlet boundary condition on the boundary brane and then integrated the induced

metric respecting to JT gravity. In this work we instead consider Neumann boundary

condition on the EOW brane. With CFT matter on the EOW brane, the bulk action is

given by

I =
1

16πGN

∫

N

√−g(R − 2Λ) +
1

8πGN

∫

Q

√
−h(K − T ) + ICFT , (3.1)

and the vacuum one point function of the CFT stress tensor is of the form

〈Tab〉AdS2 = χhab . (3.2)

This type of one-point function is reasonable because AdS2 is a maximally symmetric space.

The Neumann boundary condition then reads,

Kab − hab(K − T ) = 8πGN χhab . (3.3)

Notice that χ can be solved from above equation and is also constrained by the trace

anomaly on AdS2 [72]

〈T a
a〉 =

c′

24π
R . (3.4)

For the EOW brane located at a constant ρ0, the metric on the brane is determined, we

can therefore compute the scalar curvature

R = − 2

l2 cosh2 ρ0

l

. (3.5)

Combining the one-point function and the trace formula, one can get the relation between

the brane central charge and the tension. Using the Neumann boundary condition, one

can further obtain

c′ =
3l cosh2 ρ0

l

GN

(

tanh
ρ0

l
− lT

)

= 2 cosh2 ρ0

l

(

tanh
ρ0

l
− lT

)

c , (3.6)

where the second equality comes from the fact that the CFT central charge on the asymp-

totic boundary is related to the bulk Newton constant by 3l
2GN

= c [73].
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3.1 EE for an interval [y1, 0] on the brane

Now we consider an interval [y1, 0] on the brane and calculate the entanglement entropy

for the ground state of the brane CFT. Notice that CFT on AdS2 can be mapped to a

BCFT in flat space via a Weyl transformation [5, 74]. One can read off the Weyl factor

from the induced metric on the brane, ds2
brane = Ω−2(y)ds2

flat, i.e.

Ω(y) =

∣

∣

∣

∣

y cos θ0

l

∣

∣

∣

∣

. (3.7)

To compute the entanglement entropy of an interval [0, a] on the brane, one can use the

one-point function of the twist operator Φn inserted at y = a [5]. We first consider a BCFT

on an upper half plane y > 0 with the boundary y = 0. From conformal invariance one

can fix the one-point function of the twist operator,1

〈Φn (y)〉flat =
gn

|2y/ǫy|dn
, (3.8)

where dn = c′

12

(

n − 1
n

)

is the conformal dimension of the twist operator. We also include

a UV regulator ǫy for the correlation function.

From the Weyl transformation (3.7), one obtains

〈Φn(y)〉Q =

∣

∣

∣

∣

y cos θ0

l

∣

∣

∣

∣

dn

〈Φn (y)〉flat = gn

∣

∣

∣

∣

cos θ0ǫy

2l

∣

∣

∣

∣

dn

. (3.9)

Finally, the entanglement entropy of an interval [0, y1] on the brane can be computed from

the one-point function with the limit of n → 1 as follows

Sbulk([y1, 0]) = lim
n→1

1

1 − n
log 〈Φn (y1)〉Q

=
c′

6
log

2l

cos θ0ǫy
+ log g

=
c′

6
log

2l

cos θ0ǫy
,

(3.10)

where log g ≡ limn→1
log gn

1−n is the boundary entropy [75]. For the boundary without physical

degrees of freedom, we set log g = 0. From this result we see that the entanglement entropy

of an interval including the boundary point on the brane is a constant. In particular, it

does not depend on the length of the interval. Similar result on AdS2 space has been

obtained in [5].

3.2 EE for an interval [y1, y2] on the brane

Now we calculate the entanglement entropy of an interval [y1, y2] that does not contain the

boundary y = 0 on the brane. We insert twist operators at both y = y1 and y = y2. From

1From the conformal invariance of (2y)dΦflat → ( 2y

Ω
)dΩdΦflat = (2y)dΦflat, one can fix the form of the

one-point function of an arbitrary operator Φflat to be 〈Φflat〉 = gΦ

(2y)d
with gΦ a constant.

– 6 –
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the Weyl transformation (3.7), the two-point function on the brane is related to that on

flat space,

〈

Φn (y1) Φ̄n (y2)
〉

Q
=

∣

∣

∣

∣

y1y2 cos θ0

l2

∣

∣

∣

∣

dn 〈

Φn (y1) Φ̄n (y2)
〉

flat
. (3.11)

To compute the two-point function
〈

Φn (y1) Φ̄n (y2)
〉

flat
in half flat space, we notice that

there are possibly two channels corresponding to bulk operator product expansion (OPE)

and boundary operator product expansion (BOE) respectively [22]. Which channel domi-

nates can be determined from the cross ratio2

η(y1, y2) =
(y1 − y2)2

4y1y2
. (3.12)

When η → 0, namely Φn (y1) and Φ̄n (y2) are much closer to each other than to the

boundary, the OPE channel dominates so that

〈

Φn (y1) Φ̄n (y2)
〉

flat
=

ǫ2dn
y

(y1 − y2)2dn
. (3.13)

Then, with the two-point function on the brane via (3.11), we have the entanglement

entropy

S([y1, y2]) =
c′

6
log

l2(y1 − y2)2

y1y2ǫ2
y cos2 θ0

. (3.14)

When η → ∞, namely Φn (y1) or Φ̄n (y2) is much closer to the boundary than to the other,

the BOE channel dominates so that the two-point function is given by

〈

Φn (y1) Φ̄n (y2)
〉

flat
=

g2(1−n)ǫ2dn
y

(4y1y2)dn
. (3.15)

Thus, the two-point function on the brane can be obtained via (3.11) and the entanglement

entropy is

S([y1, y2]) =
c′

3
log

2l

ǫy cos θ0
+ 2 log g

=
c′

3
log

2l

ǫy cos θ0
,

(3.16)

where we set again log g = 0 for the boundary without additional degrees of freedom.

Again this result does not depend on the position or the length of the interval.

In the large central charge limit, the valid regime of (3.16) and (3.14) can be loosen to

η < ηc and η > ηc respectively, where ηc is the critical value at which S([y1, y2]) changes

from (3.14) to (3.16). By equating these two formulae, one can find that ηc = 1. Therefore,

when c′ → ∞, the entropy for the brane interval is

S([y1, y2]) =







c′

6 log l2(y1−y2)2

y1y2ǫ2
y cos2 θ0

, η < 1

c′

3 log 2l
ǫy cos θ0

, η > 1 .
(3.17)

2In general, for a couple of points z1 ≡ x1 + iy1 and z2 ≡ x2 + iy2, the cross ratio in BCFT is defined

as η = |z1−z2|2

4y1y2
.
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3.3 Bulk DES: the proposal

In this subsection we propose a defect extremal surface (DES) formula for holographic

entanglement entropy. This is particularly useful if the AdS bulk contains a defect D.

Generally there is a quantum theory living on the defect, which is often called defect

theory. As emphasized before, the defect theory should be considered as part of the full

bulk theory since it is coupled to the bulk. We focus on the contribution to the holographic

entanglement entropy from the defect theory. This contribution is particularly interesting

when the classical Ryu-Takayanagi surface crosses the defect or terminates on the defect,

in which case the additional entanglement entropy coming from the defect theory can be

computed straightforwardly. Inspired by the quantum extremal surface proposal [10], we

would like to propose the entanglement entropy including defect contribution is given by

the defect extremal surface,

SDES = min
Γ,X

{

extΓ,X

[

Area(Γ)

4GN
+ Sdefect[D]

]}

, X = Γ ∩ D , (3.18)

where Γ is co-dimension two surface in AdS and X is the lower dimensional entangling

surface given by the intersection of Γ and D. Notice that in general the defect can have

any dimension lower than the AdS bulk, but X should be co-dimension two on the defect.

In the present work we only focus on the case that D is the boundary of AdS, but the

formula (3.18) should be understood as the proposal for most general cases.

3.4 Bulk DES for an interval [0, L]

Now we perform the DES calculation for the holographic entanglement entropy corrected

by the brane matter in AdS/BCFT. In this case we can use the entanglement entropy on

the brane computed in section 3.1. Notice that if there is only one brane in the bulk, then

Sdefect is given by the brane contribution since the rest part is classical AdS without matter

field. Also note that when taking extremization, the shape of Γ will always be a part of

some circle (geodesics) which intersects with the EOW brane at A.

Depending on the matter distribution on the brane, the position of A can vary on

the brane. In general the new extremal surface following DES is not the previous Ryu-

Takayanagi surface. However, there is a convenient way to compute the area term since it

is still a part of some circle with center located at asymptotic boundary. One can treat the

new surface (after balance) as the RT surface in some new BCFT′ as shown in figure 2.

Let |OB| = L, |O′B| = L′ and |OA| = a, one can solve L′ and θ′ by simple geometric

relations,
{

a cos θ = L′ cos θ′

L′ − L = −L′ sin θ′ + a sin θ .
(3.19)

The result is


















L′ =
a2 + L2 + 2aL sin θ

2(L + a sin θ)
,

θ′ = arcsin
L2 + 2aL sin θ − a2 cos 2θ

L2 + 2aL sin θ + a2
.

(3.20)

– 8 –
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Figure 2. DES in original BCFT treated as the RT surface in BCFT′.

Then the two terms in (3.18) can be calculated as

Sgen(a) = SRT + Sdefect =
c

6
log

2L′

ǫ
+

c

6
arctanh(sin θ′

0) +
c′

6
log

2l

ǫy cos θ0
, (3.21)

where θ′
0 denotes the value of θ′ when taking θ = θ0 and we consider the defect entropy to

be the entanglement entropy of the interval y ∈ [−a, 0] on the brane.

By extremizing Sgen(a) with respect to a, i.e. ∂aSgen(a) = 0, we get the location of the

intersection point between defect extremal surface and EOW brane

a = L , (3.22)

which means that the extremal surface is the same as the RT surface. This is expected

because Sdefect coming from brane matter is a constant. The final result of the total

entanglement entropy is

SQES =
c

6
log

2L

ǫ
+

c

6
arctanh(sin θ0) +

c′

6
log

(

2l

ǫy cos θ0

)

. (3.23)

3.5 Bulk DES for an interval [M, L] with M > 0

Now we consider an interval [M, L] which does not contain the boundary x = 0. In this

case, we can use the formula derived in section 3.2. For simplicity, we will choose to work

at c′ = c.

Note that there are two phases of the defect extremal surface, one is connected and

the other is disconnected. We will compute the entropy for the two phases respectively

and then compare them. For the connected phase, the extremal surface does not intersect

with the brane. Therefore, there is no Sdefect in this case and the entropy is given by the

area term, i.e.

SDES =
c

3
log

(L − M)

ǫ
. (3.24)

– 9 –
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Figure 3. Defect extremal surface in the disconnected phase.

For the disconnected phase, the DES terminates on the brane as shown in figure 3 and the

entanglement entropy of an interval [−a, −b] on the brane contributes. The generalized

entropy includes Sdefect given by (3.17) (note that the central charge c′ = c is large). When

the cross ratio on the brane η < 1,

Sgen(a, b) = SRT1 + SRT2 + Sdefect

=
c

6

(

log
a2 + L2 + 2aL sin θ0

(L + a sin θ0)ǫ
+ arctanh

L2 + 2aL sin θ0 − a2 cos 2θ0

L2 + 2aL sin θ0 + a2

+ log
b2 + M2 + 2bM sin θ0

(M + b sin θ0)ǫ
+ arctanh

M2 + 2bM sin θ0 − b2 cos 2θ0

M2 + 2bM sin θ0 + b2

+ log
l2(a − b)2

abǫ2
y cos2 θ0

)

.

(3.25)

By extremizing Sgen(a, b) with respect to a and b, we find that ∂bSgen(a, b) < 0 for any a

and b. Thus, there is no extremal solution. When η > 1,

Sgen(a, b) = SRT1 + SRT2 + Sdefect

=
c

6

(

log
a2 + L2 + 2aL sin θ0

(L + a sin θ0)ǫ
+ arctanh

L2 + 2aL sin θ0 − a2 cos 2θ0

L2 + 2aL sin θ0 + a2

+ log
b2 + M2 + 2bM sin θ0

(M + b sin θ0)ǫ
+ arctanh

M2 + 2bM sin θ0 − b2 cos 2θ0

M2 + 2bM sin θ0 + b2

+ 2 log
2l

ǫy cos θ0

)

.

(3.26)

By extremizing Sgen(a, b) with respect to a and b, i.e. ∂aSgen(a, b) = ∂bSgen(a, b) = 0, we

– 10 –
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get the location of the intersection between defect extremal surface and the EOW brane

{

a = L

b = M .
(3.27)

Following DES proposal

SDES = Sgen(M, L) =
c

6

(

log
2L

ǫ
+ log

2M

ǫ
+ 2 arctanh(sin θ0) + 2 log

2l

ǫy cos θ0

)

. (3.28)

Let us compare (3.24) with (3.28). It turns out that the critical point is at ηc(M, L) =

e2arctanh sin θ0( 2l
ǫy cos θ0

)2. To summarize,

SDES =







c
3 log (L−M)

ǫ , η(M,L) < ηc(M,L)
c
6

(

log 4LM
ǫ2 +2arctanh(sinθ0)+2log 2l

ǫy cosθ0

)

, η(M,L) > ηc(M,L) .
(3.29)

One can also check that in the disconnected phase, the cross ratio for the endpoints (3.27)

on the brane satisfies

η(a, b) = η(M, L) > e2arctanh sin θ0

(

2l

ǫy cos θ0

)2

> 1 . (3.30)

Hence, the constant phase in (3.17) does give the correct defect contribution in (3.26).

4 Boundary quantum extremal surface

In this section we discuss the 2d description of the set up in the previous section. A direct

way to go from 3d to 2d is by AdS/CFT correspondence. However in our set up there is

EOW brane in the bulk, which should be treated as part of the bulk. This is because we

impose Neumann boundary condition on the brane, which allows the matter on the brane

contact with bulk gravity through boundary condition. Note that this is very different

from Dirichlet boundary condition [76]. If there is no matter on the brane, in which case

the brane is orthogonal to the asymptotic boundary, the 2d dual of the bulk is simply a

BCFT with zero boundary entropy. If we now turn on the tension of the brane by adding

some matter, this would correspond to a non-local deformation for the previous BCFT.

Because the matter on the brane is distributed deeply into the bulk, which means that the

boundary deformation covers both UV and IR region. So an exact BCFT description of

our set up with an nontrivial EOW brane is challenging.

Instead of searching for an exact BCFT description, now we want to find an effective 2d

description. The “effective” here is essentially in the same spirit of semiclassical description

of black hole evaporation. The difference is that here we only consider the static situation.

To get the 2d description for the 3d bulk in our set up, we can decompose the bulk into

two parts as shown in figure 4. This can be done by inserting an imaginary boundary Q′.

Notice that there is no physical degrees of freedom on Q′. Now W2 of our bulk is almost

the same as the bulk dual of a BCFT with a zero boundary entropy (where the brane is

– 11 –
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Figure 4. Bulk decomposition by inserting an imaginary boundary Q′.

Figure 5. Effective description with Neumann boundary condition.

orthogonal to the asymptotic boundary), except for that now the boundary condition on

Q′ is transparent. Therefore we choose the dual description of W2 in terms of BCFT at

the half-space boundary, now with a transparent boundary condition. For W1 we employ

the brane world description.

4.1 Brane world

To find the 2d description of W1, one can use the brane world description, i.e. Randall-

Sundrum model [77–79]. Brane world description is stated as follows. Consider a Poincare

AdSd+1 with a brane. The Neumann boundary condition is imposed so that on the brane a

d dimensional gravity is localized. One can find the effective Newton constant on the brane

by doing a Randall-Sundrum reduction along the extra dimension. In our case the Randall-

Sundrum reduction is taken along ρ direction for wedge W1 [71], then the 2d gravity theory

on Q comes from the reduction of the 3d bulk. Together with the brane matter on Q, we get

the full 2d brane theory to be a gravity theory plus CFT on the brane. Now the boundary

condition between the brane theory and the half-space CFT should be transparent. This

boundary condition is essentially the dual of the bulk boundary condition along Q′. Putting

everything together, we get the 2d effective description as shown in figure 5.
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4.2 Area term

When we do reduction along ρ direction, d+1-dimensional gravity on the wedge is reduced

to a d-dimensional gravity on the brane and we focus on the curvature term

Ieff ⊃ 1

16πGN

(

cosh
ρ0

l

)2−d ∫ ρ0

0
dρ

(

cosh
ρ

l

)d−2 ∫

Q

√

−g(d)R(d)

≡ 1

16πG
(d)
N

∫

Q

√

−g(d)R(d) ,
(4.1)

where the superscript (d) denotes the quantities for the effective d-dimensional gravity

theory on the brane. One can thus find the effective d dimensional Newton constant to be

1

G
(d)
N

=
1

GN

(

cosh
ρ0

l

)2−d ∫ ρ0

0
dρ

(

cosh
ρ

l

)d−2

. (4.2)

Note that in two dimensions, the area of a point can be determined by the coefficient in

front of the Einstein-Hilbert action [6]. Thus the area for a point on the brane in our case

is equal to 1, which gives

1

4G
(2)
N

=
ρ0

4GN
=

c

6
arctanh(sin θ0) . (4.3)

This was interpreted as boundary entropy in the original AdS/BCFT proposal [69]. Notice

that the area term on brane Q is independent of the position and therefore topological.

4.3 Boundary QES for an interval [0, L]

Given that the 2d effective description contains a brane theory glued with a flat space CFT,

now we compute the fine grained entropy from 2d perspective by employing the quantum

extremal surface (QES) advocated in [10] (we verify the QES formula for our set up in

appendix A). We stress that the 2d computation here is independent of holography. For

simplicity, we choose to work in the case c′ = c. We also rescale the flat region coordinates

following [12] so that the metric becomes ds2
flat = −dx+dx−, where x± = t ± x.

Due to the transparent boundary condition (see appendix B), the entanglement entropy

from CFT can be computed using formula [5, 12]

SCFT (x1, x2) =
c′

6
log

(

|x1 − x2|2
ǫ1,UV ǫ2,UV Ω (x1, x̄1) Ω (x2, x̄2)

)

, (4.4)

which is the formula for an interval [x1, x2] in the metric ds2 = Ω−2dxdx̄. The result for

the interval [−a, L] in our case is given by

Smatter([−a, L]) =
c

6
log

(L + a)2l

a cos θ0ǫǫy
. (4.5)

Taking into account the area term (4.3), we obtain the generalized entropy,

Sgen(a) = Sarea(y = −a) + Smatter([−a, L])

=
c

6
arctanh(sin θ0) +

c

6
log

(L + a)2l

a cos θ0ǫǫy
.

(4.6)
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The extremization condition is ∂aSgen(a) = 0 and the quantum extremal surface is found

to be

a = L , (4.7)

which is the same as the end point of the defect extremal surface in section 3.3. The fine

grained entropy is

SQES =
c

6
arctanh(sin θ0) +

c

6
log

4Ll

cos θ0ǫǫy

=
c

6
log

2L

ǫ
+

c

6
arctanh(sin θ0) +

c

6
log

2l

ǫy cos θ0
.

(4.8)

By comparing the three terms of the above result with (3.23), we find that the bulk defect

extremal surface result agrees with the boundary quantum extremal surface result precisely.

We consider this precise agreement as a strong support of our DES proposal. This also

provides a holographic derivation of the boundary QES formula.

4.4 Boundary QES for an interval [M, L] with M > 0

Now we move to the case for an interval [M, L] which does not contain the boundary x = 0.

Similar to section 3.5, there are two possible phases in the 2d QES computation, one of

which contains no contribution from the brane while the other includes the area term as

well as the matter entropy from the brane.

Without contribution from the brane, the entropy of [M, L] is just the matter

entropy, i.e.

SQES = Smatter([M, L]) =
c

3
log

(L − M)

ǫ
. (4.9)

Since the brane CFT is coupled to gravity, there is also a possibility that the matter

term receives an interval contribution on the brane, denoted as [−a, −b]. And the two end

points of the interval will also bring area terms, i.e.

Sarea = 2 × 1

4G
(2)
N

=
c

3
arctanh(sin θ0) . (4.10)

By employing the entropy formula of two disjoint intervals at large central charge [80] and

combining with the area term, the generalized entropy is given by

Sgen(a, b) = Sarea + Smatter

(

[−a, −b] ∪ [M, L]
)

=
c

3
arctanh(sin θ0)

+ min

{

c

6
log

(a − b)2(L − M)2l2

ab cos2 θ0ǫ2ǫ2
y

,
c

6
log

(L + a)2(M + b)2l2

ab cos2 θ0ǫ2ǫ2
y

}

.

(4.11)

Notice that for the first choice in the “min”, ∂bSgen(a, b) < 0, which means that there is

no extremal point. If the second choice is picked, under the condition (L+a)(M+b)
(a−b)(L−M) < 1, the
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extremization procedure gives

{

a = L

b = M .
(4.12)

And the final entropy is given by

SQES = Sgen(M, L) =
c

3
arctanh(sin θ0) +

c

6
log

16MLl2

cos2 θ0ǫ2ǫ2
y

. (4.13)

By comparing (4.9) with (4.13), one can get the critical point at η = ηc. To summarize,

SQES =







c
3 log (L−M)

ǫ , η(M,L) < ηc(M,L)
c
6

(

log 4LM
ǫ2 +2arctanh(sinθ0)+2log 2l

ǫy cosθ0

)

, η(M,L) > ηc(M,L) ,
(4.14)

which is exactly the same as (3.29). It can also be checked that in the second phase,

(L + a)(M + b)

(a − b)(L − M)
=

(2M)(2L)

(L − M)2
=

1

η(M, L)
<

1

ηc(M, L)
< 1 , (4.15)

which means that the second choice in the “min” term of (4.11) does give the correct matter

contribution.

5 Conclusion and discussion

In this paper we proposed a holographic counterpart of the island formula in the context

of defect AdS/CFT. The pioneer work has been done by Almheiri, Mahajan, Maldacena

and Zhao [6] in computing Page curve of the radiation. In the present work we limited

ourselves to static case and found a precise holographic derivation of the boundary Island

formula. The derivation relies on the bulk defect extremal surface formula we proposed

for holographic entanglement entropy including the contribution from the defect. The

derivation also relies on a decomposition of the AdS bulk. From our approach, a 2d effective

theory including both gravity region and QFT region naturally appears. This is basically

because we dualize one part of the bulk by traditional AdS/CFT and do reduction for the

remaining part of the bulk using brane world holography. For the 2d effective theory, QES

formula naturally emerges and we check that the bulk DES and the boundary QES give

exactly the same results for different types of single interval entanglement entropy.

Even though we restricted our analysis to the simple case in two dimensions, we expect

the results will be similar in higher dimensions.

A few future questions are in order: first, extend our set up to more general cases. So

far we focus on the EOW brane located at a constant angle. It would be interesting to

generalize the discussion to brane with nontrivial embedding function. A bulk reduction

in that case will lead to a different effective 2d gravity on the brane. Second, generalize

our conjecture DES = QES on boundary to time dependent cases. This can provide a

precise holographic dual for a boundary Page curve. In our set up, observables can be

computed independently from both the bulk and the boundary, therefore we can use the
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duality to understand either side physics. Last, one can use our framework to understand

the gravity/ensemble relation. Our framework suggests that the ensemble appears in the

gravity region because we integrated out part of the bulk. In other words, the 2d effective

gravity is UV completed by a higher dimensional bulk. We hope to report the progress in

future publications.
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A Boundary QES from replica wormhole

As shown in [12], QES formula for a system of Jackiw-Teitelboim gravity coupled to CFT

can be derived from replica trick, where a replica wormhole needs to be considered as a

saddle point. In this appendix, we apply this technique to rederive the boundary QES

formula in our set up.

To compute the fine-grained entropy of an interval in the non-gravitational region, we

need to use the replica trick to compute the partition function Zn of a non-trivial manifold

(shown in figure 6 and figure 7 as examples) which contains n copies of the original system.

The relationship between the entropy and the partition function can be shown as follows.

S = −∂n

(

log Zn

n

) ∣

∣

∣

∣

n=1

. (A.1)

For the non-trivial manifold of replica, there is likely to be many possible saddle points with

different topology. One is the Hawking saddle as shown in figure 6, where we simply make

a branch cut on the interval in the flat region, glue the n-replica cyclically and compute

the Euclidean path integral to get Zn = Tr(ρn). This saddle point corresponds to the

usual replica trick for calculating the entanglement entropy of an interval in cases without

gravity. Another saddle point contains a wormhole, which reproduces the entropy from

island formula. It permits the gravity region in different copies to dynamically glue with

each other, as long as appropriate boundary conditions are satisfied, shown in figure 7.

Now we closely follow [12] to derive boundary QES from replica wormhole and will

quote some of the conclusions there directly. For readers who are interested in more details

we refer to [12].

For our set up, the total action in effective boundary theory is

log Ztot =
1

16πGN

∫

Q

√−gR +
1

8πGN

∫

∂Q

√
−hK + log ZCFT[g] , (A.2)

where the action of the CFT depends on the metric g in the gravity region and is rigid

in the flat region. Note that here we write quantities like G
(2)
N as GN for short, not to be
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Figure 6. Replica trick without replica wormhole for n = 2 replicas.

Figure 7. Replica wormhole that connects gravity region of the two copies.

confused with 3-dimensional quantities in the context. We will restore them in the last

step. Consider an n-fold covering surface of this theory, replica wormhole will cause the

emergence of an island in the gravity region and we denote the endpoint of the island by

y = −a (see figure 8), which is fixed by the saddle point of path integral dynamically. At

y = −a, there is a conical singularity at which the twist operator of matter field is inserted.

After the Zn quotient, the gravitational action becomes

−Igrav

n
=

1

16πGN

∫

Q

√−gR +
1

8πGN

∫

∂Q

√
−hK −

(

1 − 1

n

)

S(ω), (A.3)

where the last term comes from the conical singularity and depends on the position of

singularity ω in general. Here it is just a constant that equals to 1
4GN

.

We define a complex coordinate u in the gravity region such that the region is given

by a disk |u| ≤ 1 with the boundary u = eiα (α is real). Outside the disk is the flat region

x ≥ 0 with v = eix̃ = ex+iτ (where τ is real) as the coodinate so that |v| ≥ 1. Then,

by using the technique of solving the so called “conformal welding problem” [83], one can

find two functions U and V which map the coordinates u and v to another coordinate z
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Figure 8. n-fold cover of effective boundary configuration in Lorentzian signature (left) and Eu-

clidean signature (right).

holomorphically. More explicitly,

z =







U(u), |u| ≤ 1

V (v), |v| ≥ 1 .
(A.4)

It implies that the condition U
(

eiα(τ)
)

= V
(

eiτ
)

should be satisfied at the interface

|u| = |v| = 1. Note that the functions U and V are holomorphic inside and outside the

disk respectively.

Now we find one equation of motion by varying the total action with respect to

α(τ) since it is a reparametrization mode. Because the gravity action has no dynam-

ical boundary term and the bulk part is topological, δIgrav = 0. Combining it with

δICFT = −i
∫

dτ (Tx̃x̃ − T¯̃x¯̃x) δα
α′ [12], we can thus determine the equation of motion to be

Tx̃x̃ = T¯̃x¯̃x, (A.5)

where the stress tensors are for one copy of the CFT.

In the z plane, the insertion of twist operators will give non-trivial stress tensors

Tzz(z) and Tz̄z̄(z̄). Then Tx̃x̃ and T¯̃x¯̃x can be obtained from Tzz(z) and Tz̄z̄(z̄) through the

conformal anomaly

Tx̃x̃ =

(

dV
(

eix̃
)

dx̃

)2

Tzz − c

24π

{

V
(

eix̃
)

, x̃
}

, (A.6)

and a conjugate expression for T¯̃x¯̃x.

Assume that the functions U and V map the two branch points u∗ = e−a and v∗ = eL

to z = 0 and z = ∞ respectively. Then, in a new coordinate z̃ = z1/n, there is no branch

point so that the stress tensor is zero. Thus,

Tzz(z) = − c

24π

{

z1/n, z
}

= − c

48π

(

1 − 1

n2

)

1

z2
. (A.7)
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Then from equation (A.6), we can get Tx̃x̃ and T¯̃x¯̃x explicitly and finally the equation of

motion (A.5) becomes

1

2

(

1 − 1

n2

)

V ′
(

eiτ
)2

V (eiτ )2 e2iτ +
{

V
(

eiτ
)

, eiτ
}

e2iτ − c.c. = 0 . (A.8)

As the map V depends on the gluing function α(τ), this equation is hard to solve generally.

However, one can solve it in n → 1 limit as follows.

When n = 1, the first term in (A.8) (as well as its complex conjugate) vanishes.

Therefore, the second term is also equal to zero, which means that V is an SL(2,C) trans-

formation. Then, we can construct the functions as follows.

U(u) = V (v) =
v − u∗

v∗ − v
, u = v . (A.9)

It can be checked that this function does map two branch points u∗ and v∗ to z = 0

and z = ∞.

Then, we go near n = 1 and equate terms of order n − 1. For the first term in (A.8),

the n − 1 term is just that with (A.9) plugged in because of the overall n − 1 coefficient.

The second term does not vanish, but the term of order n − 1 is zero after the Fourier

transformation with the mode k = 1 which switches the coordinate τ → k. Hence, the

Fourier transformation with k = 1 of the first term (plus its complex conjugate) should

also be zero, more explicitly,

0 =

∫ 2π

0
dτe−iτ

(

V ′
(

eiτ
)2

V (eiτ )2 e2iτ − c.c

)

=

∫ 2π

0
dτ

(

eiτ (u∗ − v∗)

(eiτ − u∗)2(eiτ − v∗)2
− eiτ (u∗ − v∗)

(u∗eiτ − 1)2(v∗eiτ − 1)2

)

= 4π
u∗v∗ − 1

(u∗ − v∗)2
.

(A.10)

The solution is

u∗ =
1

v∗

, (A.11)

namely a = L, which gives exactly the same QES point as in section 4.3.

To calculate entropy, we evaluate the partition function in n → 1 limit. It turns out

that

log Zn

n
=

1

4G
(2)
N

+
log ZCFT

n

n
. (A.12)

Therefore, from (A.1) we can get the entropy by substituting a = L

S =
1

4G
(2)
N

+ Smatter([−L, L]) (A.13)

which gives the QES formula used in section 4.3.
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Note that one can also achieve the extremization condition from another perspective.

By varying the total action with respect to the moduli of the Riemann surface, or the

position of the conical singularity ω, we can also get an equation of motion, i.e.

0 = −
(

1 − 1

n

)

∂ωS(ω) + ∂ω

(

log ZCFT
n

n

)

= (1 − n)∂ω

(

1

4G
(2)
N

+ Smatter([a(ω), L])

)

= (1 − n)∂ωSgen(ω) .

(A.14)

The last line gives the extremization of the generalized entropy.

B Gluing conditions

In this appendix we clarify the gluing condition between the CFT on the brane and that

on the asymptotic boundary for the effective boundary description.

As shown in figure 4, the vertical brane Q′ without physical degrees of freedom divides

the bulk into wedges W1 and W2, and energy can propagate freely across Q′. Thus in the

bulk point of view, the gluing condition is transparent. And we insist that the transparent

boundary condition is maintained when switching to the boundary point of view.

In order to satisfy the transparent boundary condition, stress tensors on the two sides

should be related as [11]

(

∂x+

∂y+

)2

T
(x)
++ = T

(y)
++ +

c

24π

{

x+, y+
}

, (B.1)

where y± = t ± y denotes the coordinate on the brane and y± = t ± y the coordinate on

the asymtotic boundary. There is also a similar equation is for T−− by replacing each plus

sign with a minus sign. Notice that state on the asymptotic boundary is taken to be in

vacuum, thus the stress tensor vanishes, i.e. T
(x)
++ = T

(x)
−− = 0. And from (3.2), both the

left-moving and right-moving components of the stress tensor on the brane vanishes, i.e.

T
(y)
++ = T

(y)
−− = 0. Therefore, (B.1) gives

{

x±, y±
}

= 0 , (B.2)

which means that the coordinates x and y can be related to each other through an SL(2,C)

transformation. For our set up, the relation is simply x+ = y+ and x− = y−. In other

words, x = y in this effective 2d boundary theory.
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