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Abstract

Automated defect inspection is critical for effective and

efficient maintenance, repair, and operations in advanced

manufacturing. On the other hand, automated defect in-

spection is often constrained by the lack of defect samples,

especially when we adopt deep neural networks for this

task. This paper presents Defect-GAN, an automated de-

fect synthesis network that generates realistic and diverse

defect samples for training accurate and robust defect in-

spection networks. Defect-GAN learns through defacement

and restoration processes, where the defacement generates

defects on normal surface images while the restoration re-

moves defects to generate normal images. It employs a

novel compositional layer-based architecture for generat-

ing realistic defects within various image backgrounds with

different textures and appearances. It can also mimic the

stochastic variations of defects and offer flexible control

over the locations and categories of the generated defects

within the image background. Extensive experiments show

that Defect-GAN is capable of synthesizing various defects

with superior diversity and fidelity. In addition, the syn-

thesized defect samples demonstrate their effectiveness in

training better defect inspection networks.

1. Introduction

Automated visual defect inspection aims to automati-

cally detect and recognize various image defects, which

is highly demanded in different industrial sectors, such as

manufacturing and construction. In manufacturing, it is

one key component in maintenance, repair, and operations

(MRO) that aims to minimize the machinery breakdown and

maximize production. It is also important for quality control

for spotting anomalies at different stages of the production

pipeline. In construction, it is critical to public safety by

identifying potential dangers in various infrastructures such

as buildings, bridges, etc. Although automated visual defect

inspection has been studied for years, it remains a challeng-
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Figure 1. Mimicking the defacement and restoration processes

over the easily collected normal samples, Defect-GAN generates

large-scale defect samples with superior fidelity and diversity. The

generated defect samples demonstrate great effectiveness in train-

ing accurate and robust defect inspection network models.

ing task with a number of open research problems.

One key challenge in automated visual defect inspec-

tion lies with the training data, which usually manifests

in two different manners. First, collecting a large number

of labeled defect samples are often expensive and time-

consuming. The situations become much worse due to

the poor reusability and transferability of defect samples,

i.e., we often have to re-collect and re-label defect samples

while dealing with various new defect inspect tasks. Sec-

ond, collecting defect samples is not just about efforts and

costs. In many situations, the defect samples are simply

rare, and the amount available is far from what is required,

especially when training deep neural network models. The

availability of large-scale defect samples has become one

bottleneck for effective and efficient design and develop-

ment of various automated defect inspection systems.



An intuitive way to mitigate the defect insufficiency is-

sue is to synthesize defect samples. Though Generative

Adversarial Networks (GANs) have achieved superior im-

age synthesis in recent years, synthesizing defect samples

using GANs is still facing several challenges. First, ex-

isting GANs usually require large-scale training data, but

large-scale defect samples are not available in many situ-

ations. Second, GANs tend to generate simpler structures

and patterns by nature [3] and so are not good at synthe-

sizing defects that often have complex and irregular pat-

terns with large stochastic variations. Third, defect sam-

ples with different backgrounds are very difficult to collect,

and GANs thus tend to generate defect samples with similar

backgrounds as the collected reference samples. As a re-

sult, the GANs synthesized defect samples often have simi-

lar feature representation and distribution as those reference

samples and offer little help while facing various new defect

samples on various different backgrounds.

Inspired by [36] that collects defect samples by manu-

ally damaging the surface of normal work-pieces, we de-

sign a Defect-GAN that aims for automated generation of

high-fidelity defect samples for training accurate and robust

defect inspection networks. Defect-GAN simulates the de-

facement and restoration processes, which greatly mitigates

the defect-insufficiency constraint by leveraging large-scale

normal samples that are often readily available. We de-

sign novel control mechanisms that enable Defect-GAN to

generate different types of defects at different locations of

background images flexibly and realistically. We also intro-

duce randomness to the defacement process to capture the

stochastic variation of defects, which improves the diver-

sity of the generated defect samples significantly. Addition-

ally, we design a compositional layer-based network archi-

tecture that allows for generating defects over different nor-

mal samples but with minimal change of normal samples’

background appearance. As a result, the model trained with

such generated defect samples is more capable of handling

new defect samples with variously different backgrounds.

Extensive experiments show that Defect-GAN can generate

large-scale defect samples with superior fidelity and diver-

sity as well as effectiveness while applied to train deep de-

fect inspection networks.

The contributions of this work can be summarized in

three aspects. First, we design a compositional layer-based

network architecture to generate defects from normal sam-

ples while preserving the appearance of normal samples,

which improves the defect diversity by simulating how de-

fects look like on various normal samples. Second, we

propose a Defect-GAN that synthesizes defects by simu-

lating defacement and restoration processes. It offers supe-

rior flexibility and control over the category and spatial lo-

cations of the generated defects in the image background,

achieves great defect diversity by introducing stochastic

variations into the generation process, and is capable of

generating high-fidelity defects via defacement and restora-

tion of normal samples. Third, extensive experiments show

that the Defect-GAN generated defect samples help to train

more accurate defect inspection networks effectively.

2. Related Works

Image Synthesis. GANs [13] are a powerful generative

model that simultaneously trains a generator to produce re-

alistic faked images and a discriminator to distinguish be-

tween real and faked images. Early attempts [13, 46, 2, 23,

4] focus on synthesizing images unconditionally. Recently,

more and more works emerge to perform image synthesis

conditioned on input images, which has wide applications

including style translation [33, 20, 26, 75, 35, 28], facial ex-

pression editing [7, 45, 6, 60, 59], super-resolution [30, 58,

48], image inpainting [66, 67, 44, 63], etc. Another trend is

multi-modal image synthesis [24, 25, 19, 8, 76]. However,

existing methods fail to generalize well on defect synthe-

sis. Our Defect-GAN is designed to generate defect sam-

ples by simulating the defacement and restoration processes

and incorporating randomness to mimic the stochastic vari-

ations within defects. Besides, inspired by [64, 50, 42, 69],

it deems defects as a special foreground and adopts a layer-

based architecture to compose defects on normal samples,

thus reserve the normal samples’ style and appearance and

achieving superior synthesis realism and diversity.

Learning From Limited Data. Deep learning based tech-

niques [47, 71, 68] usually require a large amount of an-

notated training samples, which are not always available.

Recent researches have proposed many attempts to mitigate

the data-insufficiency issue. They can be broadly catego-

rized as few-shot learning and data augmentation.

Few-shot learning [51, 52, 12, 5, 31, 22, 62, 57, 70, 10,

55] refers to learning from extremely limited training sam-

ples (e.g., 1 or 3) for an unseen class. However, their perfor-

mances are quite limited and thus far from practical applica-

tion. Besides, few-shot learning techniques usually require

large amounts of samples from the same domain, which

does not lift the data-insufficiency constraint. Data augmen-

tation aims to enrich the training datasets in terms of quan-

tity and diversity such that better deep learning models can

be trained. Several recent research attempts [1, 56, 61, 40]

adopt GANs as data augmentation methods to synthesis re-

alistic training samples. The proposed Defect-GAN also

works as a data augmentation method to train better defect

inspection networks by synthesizing various defect samples

with superior diversity and fidelity.

Defect Inspection. Surface defect inspection refers to the

process of identifying and localize surface defects based

on machine vision, which is an important task with ex-

tensive real-life applications in industrial manufacturing,
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Figure 2. Generation pipeline of the proposed Defect-GAN: It adopts an encoder-decoder structure to synthesize defects by mimicking

defacement and restoration processes. The Spatial & Categorical Control Map generated from category vectors controls where and what

kind of defects to generate within the provided normal sample. The Adaptive Noise Injection introduces stochastic variations into the

generated defects to improve the diversity of the generated defects. In addition, Defect-GAN adopts a Layer-Wise Composition strategy

that produces defect and repaint foregrounds according to the corresponding spatial distribution maps. This helps preserve the style and

appearance of the normal samples and achieve superior realism in defect synthesis.

safety inspection, building construction, etc. Before deep

learning era, traditional methods [39, 54, 29, 74, 53] de-

sign hand-crafted feature extractors and heuristic pipelines,

which needs specialized expertise and not robust. In deep

learning era, many works [32, 9, 41, 38] adopt Convolu-

tional Neural Networks (CNNs) based models for defect in-

spection and achieve remarkable performances.

However, in practical scenarios, limited number of de-

fect samples has always been a bottleneck issue. To miti-

gate such defect-insufficiency issue, [36] manually destroys

work-pieces to collect defect samples; [37, 18] further adopt

Computer-Aided Drawing (CAD) to synthesis defect sam-

ples. However, such methods can only handle simple cases.

The recently proposed SDGAN [40] adopts GANs to per-

form defect sample synthesis for data augmentation. We

also propose to synthesis defect samples with GANs for

training better defect inspection networks. By simulating

the defacement and restoration processes with a layer-wise

composition strategy, our proposed Defect-GAN can gen-

erate defect samples with superior realism, diversity, and

flexibility. It can further provide better transferability by

imposing learnt defect patterns on unseen surfaces.

3. Methodology

In this section, we discuss the proposed method in de-

tails. As illustrated in Fig. 1, our proposed method consists

of two parts: (1) Defect-GAN design for automated synthe-

sis of defect samples, and (2) defect inspection by using the

synthesized defect samples.

3.1. DefectGAN for Defect Synthesis

We hypothesis that there are sufficient amount of normal

samples, and only a limited number of defect samples since

defects are usually rare and difficult to capture. Based on

this hypothesis of data availability, we propose to perform

defect synthesis following the paradigm of unpaired image-

to-image translation [75, 7], which usually requires less

training data and can produce better synthesis fidelity. Our

proposed Defect-GAN is based on the intuition that defects

do not exist out of thin air, i.e., there is always a defacement

process to generate defects over those normal samples, and

there also exists a restoration process to restore the defect

samples back to normal samples. By mimicking the deface-

ment and restoration processes as mentioned above, we are

able to leverage the large number of normal samples to gen-

erate required defect samples.

The Defect-GAN architecture consists of a generator G

and a discriminator D. During the training stage, Defect-

GAN performs image translation using G in two cycles:

n → d → n̂ and d → n → d̂, where n ∈ RH×W×3

denotes a normal sample, d ∈ RH×W×3 denotes a defect

sample, and n̂, d̂ ∈ RH×W×3 denote restored normal and

defect sample, respectively. Since the two cycles are iden-

tical and simultaneously conducted, we only describe the

cycle n → d → n̂ in the following sections for simplicity.

The generator G is illustrated in Fig. 2. It employs an

encoder-decoder architecture. The major architecture of G

mainly follows the commonly used image-to-image transla-

tion networks [20, 75, 7], which first encodes the input im-



age by a stride of 4, and then decodes it to its original size.

To improve synthesis realism and diversity for defect gen-

eration, we specifically design spatial and categorical con-

trol, stochastic variation and layer-based composition for G.

The network architecture of D is the same as StarGAN [7],

which includes a Dsrc to distinguish faked samples from

real ones using PatchGAN [21] and a Dcls to predict the

categories of generated defects.

Spatial and Categorical Control for Defect Generation.

Different types of defects can exist on different locations

of normal samples. To provide better attribute (spatial and

categorical) control over the generated defects, we feed an

attribute controlling map A ∈ RH×W×C into G to add spe-

cific kind of defects to specific location, where Ax,y ∈ RC

represents the presence of defects at the corresponding lo-

cation, and C denotes the number of defect categories. A

is imposed into the network via SPADE normalization [43]

and is fed into every block in the decoder part of G.

Note that since we only assume image-level annotations

available, during training stage, the attribute controlling

map A should be constant for all locations of the image,

i.e., A is acquired by spatial-wisely repeating the target de-

fect label c ∈ RC . This restriction can be lifted during

inference stage, which enables Defect-GAN to add defects

at different location(s) in a context-compatible manner.

Stochastic Variation of Defects. Unlike general objects,

defects are known to possess complex and irregular pat-

terns with extremely high stochastic variations that are ex-

tremely challenging to model using GANs. To mitigate this

issue, we employ an adaptive noise insertion module in each

block of the encoder-decoder architecture, which explicitly

injects Gaussian noise into the feature maps after each con-

volutional block. For each noise injection, it learns a ex-

clusive scalar to adjust the intensity of the injected noise.

By explicitly mirroring the stochastic variations within de-

fects, Defect-GAN can generate more realistic defect sam-

ples with much higher diversity.

Layer-Wise Composition. As illustrated in Fig. 2, Defect-

GAN is also different from existing image-to-image trans-

lation GANs [20, 75, 7, 40] in that we consider the final

generation as composition of two layers. Specifically, in

the defacement process, final defects samples are generated

by adding a defect foreground layer on top of the provided

normal samples. Similarly, in the restoration process, final

restored normal samples are generated by adding a repaint

foreground layer on top of the defect samples.

The defacement process can be formulated as:

fd,md = G(n,An→d) (1)

d = n⊙ (1−md) + fd ⊙md (2)

where ⊙ denotes spatial-wise multiplication, fd denotes

generated defect foreground, and md ∈ [0, 1] denotes the

corresponding spatial distribution map of fd. Similarly, the

restoration process can be formulated as:

fn̂,mn̂ = G(d,Ad→n̂) (3)

n̂ = d⊙ (1−mn̂) + fn̂ ⊙mn̂ (4)

where n̂ denotes restored normal sample without defects.

The intuition behind this layer-wise composition strategy

is that defects can be deemed a special kind of foreground

composed on the background (normal samples). Similarly,

the restoration process that removes defects from the back-

ground can also be considered a ‘repainting’ process to

cover the defect areas. Instead of generating synthesized

images directly, Defect-GAN separately generates defect

foregrounds along with the corresponding spatial distribu-

tion maps, and then performs an layer-wise composition to

produce the synthesized defect samples.

The novel compositional layer-based synthesis can sig-

nificantly improve defect synthesis in terms of both realism

and diversity. This is mainly because by taking normal sam-

ples as background, our model implicitly focuses on genera-

tion of defects, without considering the generation of back-

grounds. This feature provides our model with more ca-

pability to generate more realistic defect samples. Further-

more, defects can potentially exists on various backgrounds.

Due to the rarity of defect samples, we can only collect spe-

cific defects on a very limited number of backgrounds. As

a result, typical image synthesis methods lack defect trans-

ferablity, i.e., they can only synthesize defect samples under

a constrained number of contexts. Our proposed layer-wise

composition strategy can mitigate this issue. This is because

it is able to sufficiently preserve the identities (appearances,

styles, etc.) of backgrounds, which forces the model to sim-

ulate how defects would interact with the exact provided

backgrounds. This significantly improves the defect trans-

ferability, which means our model is capable of generating

new defect samples within variously different backgrounds.

Training Objective. To generate visually realistic images,

we adopt adversarial loss to make the generated defect d

indistinguishable from real defect sample dreal.

Ladv = min
G

max
Dsrc

Edreal
[logDsrc(dreal)]

+Ed[log(1−Dsrc(d))]
(5)

Our Defect-GAN aims to generate defects conditioned

on target defect label c ∈ RC . To make the generated de-

fects align with the target category, we impose a category

classification loss, which consists of two terms: Lr
cls to op-

timize D by classifying real defect sample dreal to the cor-

responding category c′, and Lf
cls to optimize G to generate

defect sample of target category c.

Lr
cls = Edreal,c′ [−log(Dcls(c

′|dreal))] (6)



Lf
cls = Ed,c[−log(Dcls(c|d))] (7)

Additionally, we impose a reconstruction loss Lrec that

helps preserve the content of input images as much as pos-

sible. We adopt L1 loss for the reconstruction loss.

Lrec = En,n̂[||n− n̂||1] (8)

The layer-wise composition strategy will generate spa-

tial distribution maps in both defacement and restoration

process to guide the final compositions. We further im-

prove composition by introducing two additional spatial

constraints (beyond spatial distribution maps), namely, a

cycle-consistency loss and a region constrain loss.

To precisely restore the generated defect samples to nor-

mal samples, the repaint spatial distribution map shall be

ideally the same as the defect spatial distribution map.

Thus, we design a spatial distribution cycle-consistency loss

Lsd−cyc between the defect spatial distribution map and the

repaint spatial distribution map.

Lsd−cyc = Emn,mn̂
[||mn −mn̂||1] (9)

Meanwhile, to avoid the defect foreground and the re-

paint foreground to take over the whole image area, we in-

troduce a region constrain loss Lsd−con to penalize exces-

sively large defect and foreground distribution maps:

Lsd−con = Emn,mn̂
[||mn − 0||1 + ||mn̂ − 0||1] (10)

The overall training objectives for G and D are:

LD = −Ladv + λr
clsL

r
cls (11)

LG = Ladv + λ
f
clsL

f
cls + λrecLrec

+λconLsd−cyc + λcLsd−con

(12)

where λr
cls, λ

f
cls, λrec, λsd−cyc, λsd−con are hyper-

parameters that are empirically set as 2.0, 5.0, 5.0, 5.0, 1.0,

respectively.

3.2. Boosting Defect Inspection Performance

The large amounts of defect samples generated by the

aforementioned Defect-GAN can be further used to train the

state-of-the-art visual recognition models for defect inspec-

tion. We adopt the most commonly used image recognition

models ResNet [15] and DenseNet [17] to perform defect

inspection. The generated defect samples are mixed with

the original dataset to train the recognition models.

However, we notice that although Defect-GAN can syn-

thesize realistic defect samples, there still exists a domain

gap between the generated samples and the original sam-

ples. Naively training a recognition model over the aug-

mented data will lead the model to learn to distinguish

fθ fcls

fsrc

Defect / Normal?

What Defect?

Real or

Synthesized?
GRL

Synthesized Dataset

Real Dataset

Figure 3. We introduce a source classifier fsrc (connected to the

network backbone fθ through a Gradient Reversal Layer) for ex-

plicitly distinguishing synthesized and real samples. With this the

defect inspection network will not learn for such task undesirably.

these two domains undesirably. We attach an additional

source classifier fsrc to distinguish synthesized samples

from real ones explicitly, and connect this domain classifier

to the network backbone through a Gradient Reversal Layer

(GRL) [11] as illustrated in Fig.3. Therefore, there will be

no distinguishable difference between the features extracted

by fθ for the synthesized samples and the real samples,

which ensures all training data are effectively learnt.

4. Experiments

This section presents experimentation of our methods.

We first evaluate Defect-GAN’s defect synthesis perfor-

mance, and then demonstrate its capacity in boosting defect

inspection performance as a data augmentation method.

Dataset. We evaluate Defect-GAN on CODEBRIM1 [38]

– a defect inspection dataset in context of concrete bridges,

which features six mutually non-exclusive classes: crack,

spallation, efflorescence, exposed bars, corrosion and nor-

mal samples. It provides image patches for multi-label clas-

sification as well as the full-resolution images from which

image patches are cropped. Compared with existing open

datasets for defect inspection [49, 65, 34], CODEBRIM is

the most challenging and complex one to the best of our

knowledge, which can better reflect the practical scenarios.

4.1. Defect Synthesis

Implementation Details. We use all images from the clas-

sification dataset to train Defect-GAN. Besides, we col-

lect extra 50,000 normal image patches by simply cropping

from the original full-resolution images. All images are re-

sized to 128×128 for training. To stabilize the training and

generate better images, we replace Eq. 5 with Wasserstein

GAN objective with gradient penalty [2, 14] and perform

one generator update every five discriminator updates. We

use Adam optimizer [27] with β1 = 0.5 and β2 = 0.999

1Dataset available at https://doi.org/10.5281/zenodo.2620293



Methods FID Scores ↓

StackGAN++ [72] 111.1

Conditional StackGAN++ [72] 132.1

StyleGAN v2 [25] 148.2

StyleGAN v2 [25] + DiffAug [73] 142.4

CycleGAN [75] 94.5

StarGAN [7] 295.1

StarGAN [7] + SPADE [43] 103.0

Defect-GAN (Ours) 65.6

Ideal Defect Synthesizer 25.0

Table 1. Quantitative comparison of Defect-GAN with existing

image synthesis methods in Fréchet Inception Distance (FID).

to train Defect-GAN with the learning rate starting from

2 × 10−4 and reducing to 1 × 10−6. We set batch size at

4 and the total training iteration at 500,000. The training

takes about one day on a single NVIDIA 2080Ti GPU.

Evaluation Metric. We adopt the commonly used Fréchet

Inception Distance (FID) [16] to evaluate the realism of syn-

thesized defect samples. Lower FID scores indicate better

synthesis realism.

Quantitative Experimental Results. Table 1 show quan-

titative experimental results regarding defect synthesis fi-

delity, in which the first block includes direct synthesis

methods (image synthesis from a randomly sampled latent

code), and the second block includes image-to-image trans-

lation methods. We also present the FID score of a perfect

defect synthesizer in the third block by randomly separating

the real defect samples into two sets and computing the FID

score between them. As Table 1 shows, the direct synthesis

methods generally have unsatisfactory performances due to

the lack of defect training samples as well as their limited

capacities to capture the complex and irregular patterns of

defects. As a comparison, by mimicking the defacement

and restoration processes following Defect-GAN, existing

image-to-image translation methods can generate defects

with significantly better quality. This is because, with more

information as input, such methods are generally more data-

efficient. Besides, they can utilize the large amount of nor-

mal samples in training. On the other hand, Defect-GAN

achieves significantly better synthesis FID, which demon-

strate its superiority in defect synthesis. Interestingly, mod-

els with categorical control tend to perform worse in terms

of FID scores than models without. We believe introducing

additional categorical control can limit model’s synthesis

realism. However, even with such constraint, Defect-GAN

still achieves the best performance.

We further demonstrate the effectiveness of our proposed

designs in Defect-GAN by presenting quantitative ablative

experiments in Table 2. Without our designed components,

Design Choices
FID Scores ↓

SCC ANI LWC SC

× × × × 295.1

X × × × 103.0

X X × × 99.7

X × X × 76.8

X × X X 69.5

X X X X 65.6

Table 2. Ablation studies of the proposed Defect-GAN: Our de-

signed Spatial and Categorical Control (SCC), Adaptive Noise

injection (ANI), Layer-Wise Composition (LWC), and additional

Spatial Constraints (SC) are complementary and jointly beneficial

to the quality of the synthesized defects.

Defect-GAN degrades to StarGAN [7] – a widely used

multi-domain image-to-image translation model. However,

it fails to converge on this task and cannot synthesize any

defect-like patterns. By incorporating Spatial and Categori-

cal Control (SCC), it can converge and generate defect sam-

ples with comparable quality with existing methods. Based

on this, the Layer-Wise Composition (LWC) can signifi-

cantly improve the synthesis realism. We believe the reason

is twofold: (1) it lifts the defect-insufficiency constraint by

allowing the networks to fully focus on defect generation;

(2) it can generate contextually more natural defects. Fur-

thermore, Adaptive Noise Injection (ANI) and additional

Spatial Constraints (SC) for training can also boost defect

synthesis performance. These proposed components are

proved to be complementary to each other, enabling Defect-

GAN to achieve state-of-the-art defect synthesis quality.

Qualitative Experimental Results. Fig. 4 shows quali-

tative results of Defect-GAN and comparisons with other

synthesis methods. Rows 1-2 show the synthesis by state-

of-the-art direct synthesis methods: StackGAN++ [72] and

StyleGAN v2 [25] with DiffAug [73]. We can see that many

generated samples do not contain clear defects, and some

samples are not visually natural. This verifies the aforemen-

tioned limitation of GANs for defect synthesis. For image-

to-image translation methods, we choose StarGAN [7] with

SPADE [43] as the competing method since it offers cat-

egorical control as Defect-GAN. And other methods like

CycleGAN [75] and SDGAN [40] produce visually similar

results. As shown in Row 4-5, StarGAN w/ SPADE and

Defect-GAN can produce visually realistic and diverse de-

fect samples conditioned on normal samples. Defect sam-

ples by StarGAN w/ SPADE look comparable with Defect-

GAN, except that it tends to alter the background identity,

while Defect-GAN can preserve the appearance and style

of normal samples thanks to the layer-wise composition

strategy. On the other hand, StarGAN w/ SPADE com-

pletely fails to transfer the learnt defect patterns to novel
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Figure 4. Qualitative comparison of Defect-GAN with state-of-the-art image synthesis methods: Rows 1-2 show direct defect synthesis

from random noises by two latest image synthesis methods. Rows 4-5 compare defect generation over Normal Samples in Row 3 (used

in network training) by StarGAN with SPADE and our Defect-GAN, while Rows 7-8 compare defect generation over Unseen Normal

Samples in Row 6 (not used in network training) by StarGAN with SPADE and our Defect-GAN.

backgrounds that are not seen during training, while Defect-

GAN shows superb defect transferability and synthesis re-

alism as shown in Rows 7-8. This property is essential for

introducing new information into the training data.

In addition, we show Defect-GAN’s categorical control

in defect generation in Fig. 5, where different types of de-

fects can be generated conditioned on the same normal im-

age. Fig. 6 also shows Defect-GAN’s spatial control in de-

fect generation, where red boxes denote the intended places

to generate defects. Defect-GAN can generate defects on

specific locations while maintaining contexts natural.

4.2. Defect Inspection

Implementation Details. We use the training set and ad-

ditional 50,000 normal images to train Defect-GAN. Then,

Defect-GAN expands the training samples by synthesizing

50,000 defect samples. The generated defect samples are

mixed with the original training data to train the defect in-

spection networks, with the extra restored normal samples

also included to avoid data imbalance. All images are re-

sized to 224 × 224. We adopt SGD with a learning rate of

1× 10−3 to train the network until convergence. Batch size

is set to 16. We use the validation set to select the best per-

forming model and report the performance on the test set.
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Figure 5. Illustration of categorical control in defect generation by

Defect-GAN: For each normal sample in Row 1, Rows 2-3 and 4-

5 show the generated defect samples conditioned on a single and

multiple target categories, respectively.

Figure 6. Illustration of spatial control in defect generation by

Defect-GAN: Each row shows defect samples generated with dif-

ferent normal samples but the same spatial control, while each col-

umn shows defect samples generated with the same normal sample

but different spatial controls.

Quantitative Experimental Results. As CODEBRIM fea-

tures a multi-label classification task, we can only adopt

methods with categorical control to expand the training

samples. Results for defect inspection is shown in Table 3.

The first row of each block shows defect inspection perfor-

mance only with original training data, and the rest three

rows of each block present defect inspection performance

with original training data and the augmented samples gen-

erated by different synthesis methods. For fair comparison,

Networks Augmentation Methods Accuracy(%)

ResNet34 [15]

None 70.25

Conditional StackGAN++[72] 62.59

StarGAN[7]+SPADE[43] 71.90

Defect-GAN (Ours) 75.48

DenseNet121 [17]

None 70.77

Conditional StackGAN++[72] 58.68

StarGAN[7]+SPADE[43] 72.61

Defect-GAN (Ours) 75.79

Table 3. Quantitative experimental results for defect inspection.

50,000 synthesised defect samples are augmented for all

synthesis methods. As the results shows, the synthesized

defect samples from Conditional StackGAN++ [72] greatly

drop the defect inspection performance. This is because

that StackGAN++ is not even able to generate realistic de-

fect samples due to its limited capacity in defect modeling.

StackGAN++ generated defect samples are harmful to net-

work training. On the other hand, StarGAN[7]+SPADE[43]

generated samples can slightly boost the inspection perfor-

mance. And our proposed Defect-GAN can further signif-

icantly improve the accuracy of trained defect inspection

networks. Although both methods can generate defect sam-

ples with good visual realism, our proposed Defect-GAN

is capable of simulating the learnt defects on backgrounds

that are not seen during training. This feature makes Defect-

GAN generated samples much more diverse, thus can intro-

ducing new information into the training data, significantly

improving the performance of trained models. The results

also demonstrate the superiority of Defect-GAN for defect

synthesis in terms of fidelity, diversity and transferability.

5. Conclusion

This paper presents a novel Defect-GAN for defect sam-

ple generation by mimicking the defacement and restoration

processes. It can capture the stochastic variations within de-

fects and can offer flexible control over the locations and

categories of the generated defects. Furthermore, with a

novel compositional layer-based architecture, it is able to

generate defects while preserving the style and appearance

of the provided backgrounds. The proposed Defect-GAN is

capable of generating defect samples with superior fidelity

and diversity, which can further significantly boost the per-

formances of defect inspection networks.
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