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Abstract
Additive manufacturing (AM) technology is considered one of the most promising
manufacturing technologies in the aerospace and defense industries. However, AM components
are known to have various internal defects, such as powder agglomeration, balling, porosity,
internal cracks and thermal/internal stress, which can significantly affect the quality, mechanical
properties and safety of final parts. Therefore, defect inspection methods are important for
reducing manufactured defects and improving the surface quality and mechanical properties of
AM components. This paper describes defect inspection technologies and their applications in
AM processes. The architecture of defects in AM processes is reviewed. Traditional defect
detection technology and the surface defect detection methods based on deep learning are
summarized, and future aspects are suggested.

Keywords: additive manufacturing, defect inspection, machine learning, deep learning,
neural network

1. Introduction

At the start of the development of additive manufacturing
(AM) technology in the 1990s (AM was called ‘rapid pro-
totyping technology’ at that time), researchers attempted to
prepare non-metallic parts based on various rapid prototyp-
ing manufacturing methods [1–3]. Following this, the pre-
paration of metal parts was realized through subsequent pro-
cesses [2]. Compared with traditional metal manufacturing
technologies such as forging machining, forging, and welding,
AM technology has advantages such as no need for tools or
molds, high material utilization, short product manufacturing
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cycle, and the ability to manufacture complex structures
[1]. All AM systems work on the same principal of build-
ing a structure additively from a substrate. Each method
has advantages and disadvantages [4]. According to the
ASTM standard, the AM processes can be divided into seven
categories: Binder Jetting, Material Extrusion, VAT Photo-
polymerization, Material Jetting, Sheet Lamination, Directed
Energy Deposition (DED), and powder bed fusion (PBF) [5].
These AM processes have the ability to print various materials
including polymers, metals, ceramics, and composites. Table 1
summarizes the commercial names and principal operations of
AM processes [6].

Metal products can be printed by binder jetting, sheet
lamination, PBF, and DED. These processes are not lim-
ited to metals [7]. Metal AM technology differs from tradi-
tional machining and other manufacturing technologies that
remove materials step by step. AM is based on the principle
of discrete accumulation, using alloy powder or wire as raw
materials and high-energy beams, such as lasers or electron
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Table 1. AM process categories [6].

AM technology Types Description

Material extrusion FDM Material is extruded
through a heated
nozzle

Vat
photopolymerization

Stereolithography
apparatus (SLA),
digital light pro-
cessing (DLP) and
continuous liquid
interface produc-
tion (CLIP)

Selective curing of
liquid photopolymer
using light activated
polymerization

Powder bed fusion Selective laser
sintering (SLS),
SLM, direct metal
laser-sintering
(DMLS), elec-
tron beam melting
(EBM), select-
ive hot sintering
(SHS) and laser
beam melting
(LBM)

Selective thermal
fusion of powder
using a laser or an
electron beam

Binder jetting Three-dimension
printing (3DP),
binder jetting (BJ)
and powder bed
and inkjet head
(PBIH)

Deposition of liquid
bonding droplets to a
powder bed using an
inkjet print head

Material jetting Material jetting
(MJ) and drop on
demand (DOD)

Deposition of mater-
ial droplets by an
inkjet print head

Sheet lamination Laminated object
manufacturing
(LOM)

An AM process
in which sheets of
material are bonded
to form a part

Directed energy
deposition

Laser metal depos-
ition (LMD), elec-
tron beam free-
form fabrication
(EBF), laser engin-
eered net shaping
(LENS), directed
laser deposition
(DLD) and direct
metal deposition
(DMD)

Wire or powder is
extruded or blown
from a nozzle and
melted by an elec-
tron beam or a laser

beams, for in-situ metallurgical melting [8]. The goal of the
manufacturing industry is to produce functional parts that meet
industrial requirements [9]. AM is especially suitable for low-
cost, short-cycle, rapid prototyping of large and complexmetal
structures for aerospace and defense equipment, such as space-
craft, missiles and satellites [10–13]. In the PBF processes, the
melted material rapidly solidifies, resulting in a stack of bound
layers that constitute the final part. When the feed material
is deposited onto the substrate, it is fused following a given
pattern. Near-net-shape manufacturing of high-performance
metal parts is completed directly from the digital model of the
part [14].

As shown in figure 1(a), the PBF system employs a powder
deposition methodology, spreading powder on the substrate
layer by layer. Once the powder is distributed, the PBF sys-
tem utilizes energy from an electron beam or laser to sinter the
powder following a cross-sectional pattern defined by a digital
3D model of the part. After a layer is completed, the building
platform is lowered, and the manufacturing operation is car-
ried out continuously [15]. DED is a metal-based AM process
that can create 3D parts by melting materials during the depos-
ition process. This process consists of two categories accord-
ing to the material delivery mechanism: powder feeding and
wire feeding. As represented in figure 1(b), the DED system
does not melt powder that is already spread on the manufactur-
ing platform. Instead, the material deposition and melting pro-
cesses occur simultaneously, where a cladding nozzle delivers
powder to the focus of a high-power laser beam that concur-
rently melts it [16].

At present, AM alone is not capable of producing parts with
acceptable mechanical properties and surface roughness that
meet the requirements of most applications [17, 18]. Insuffi-
cient knowledge of the process dynamics significantly affects
the application of additively manufactured parts. For example,
the metallurgy and thermophysical phenomena that occur
within selective laser melting (SLM), a widely used process,
are still not fully understood. More specifically, the interac-
tions between the laser beam and powder and the molten pool
and powder bed and the melting process are very complicated.
In the SLM processes, the phenomenon of rapid solidification
under the ultra-high temperature gradient and the strong bond-
ing forces in the manufactured area need in-depth assessment.
In addition, the evolution of a component’s internal structure
and the thermal stresses that occur under cycling conditions
require more exploration. During printing operation, various
internal defects, such as powder agglomeration, balling, poros-
ity, cracks, powder volatilization, and thermal stresses, occur
between different powder layers and within individual lay-
ers, which significantly affects the internal microstructure,
mechanical properties, and quality of the final part [19–24].
Although AM technology has been relatively successful at
attaining sufficientmechanical properties, defects and geomet-
ric inaccuracy still limit component adoption in the industry.
Defects often occur in built components due to discontinuities
in the printing process and other extraneous factors [25, 26].
As a result, defect detection technologies have been widely
used in AM processes. These technologies detect defects such
as surface spots, pits, holes, scratches, chromatic aberrations,
and the internal structure of the tested sample [27–29]. Even-
tually, relevant information is obtained, such as the depth, size,
contour, and the category of the surface or internal defect [30].

Detection technology must meet the following require-
ments for metal AM technology: low cost, rapid detection,
adaptation to complex geometric structures and poor sur-
face quality, and detection of multiple types of defects [31].
Methods of detecting metal AM can be divided into tradi-
tional non-destructive defect detection technology and defect
detection technology based on machine learning. The first
type of detection technology, the monitoring of materials
in the AM process, focuses on abnormal phenomena of
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Figure 1. Schematic diagrams of (a) the PBF system [15] and (b) the DED system [16].

materials by detecting the characteristic quantities. This detec-
tion method has a certain predictive effect on the occur-
rence of defects [32]. Timely detection of defects in the AM
process can help adjust the manufacturing process and take
certain measures to remove the defects or stop manufacturing
directly to reduce material and time loss [33]. Following
the advancement timeline of defect detection technologies,
non-destructive techniques evolved from infrared imaging
defect detection, penetrant testing, and eddy current testing
to ultrasonic inspection and x-ray testing [34]. In addition
to traditional ultrasonic testing methods, many scholars have
conducted research on laser ultrasonic testing methods [35].
The advantage of non-destructive techniques is that the test
results reflect the final quality of the parts, which ensures
the reliability of the parts during use. Post-testing can also
establish the relationship between process conditions and part
quality [36, 37]. Recently, machine learning defect detection
has emerged as a technology that uses advanced equipment
and deep learning methods to conduct in-process imaging for
defect identification [38]. Machine learning detection for AM
is still in its infancy [39–41].

This study aims to summarize different categories of
defects and defect inspection technologies in AM processes
by introducing various widely applied defect detection meth-
odologies. Some defects that appear in general AM processes
are also presented. Section 2 illustrates a detailed description
of defects. Section 3 summarizes different traditional defect
inspection technologies. Section 4 discusses machine learn-
ing defect detection technologies. Section 5 presents the latest
research of defect detection technologies. Section 6 proposes
the future prospects of defect detection technology. Finally,
section 7 presents the authors’ conclusions.

2. Categories of defects

The large number of input manufacturing parameters in
AM technology processes optimize product quality, thereby

reducing observed material discontinuities. Despite the
enormous benefits of AM, various defects limit the process
in terms of precision, repeatability, and resulting mechanical
properties. Although, in some cases post-processing tech-
niques can reduce or eliminate defects in AM processed parts.
Improving the processing quality of parts is important to meet
challenging industrial requirements. Understanding defects
and their causes represents the first step to inspect and reduce
them. Most of the defects, such as cracking, residual stresses,
porosity and balling, have been researched and discussed.
The categories of defect causes include equipment, manu-
facturing processes, build preparation choices, and powder.
Equipment-induced defects are caused by improper setting
and calibration of the main system components. Manufactur-
ing process-induced defects are connected to the interaction
between the powder, the beam and the previous layer [13].

2.1. Cracking

Internal cracks are common defects that appear in AM com-
ponents andmainly result from thermal stresses. These defects
significantly impact part performance and restrict the applic-
ation of AM products [42–45]. Therefore, the occurrence of
cracks must be controlled. Many researchers have conducted
research on the formationmechanism of cracks, its influencing
factors, and treatment methods to reduce and eliminate cracks
from the AM process. Studies have shown that the cracks typ-
ically generate when continuous and semi-continuous liquid
films form on the grain boundaries of the heat-affected zone
and when tensile stresses form within parts [46–49]. AM pro-
cess parameters are the main factors that affect the occur-
rence of cracks in components. Additionally, the direction of
the grains determines the growth direction of the crack [49].
During the manufacturing process, once a crack has occurred,
it spreads along the molten layer, significantly affecting the
mechanical properties of the component, and even risking its
disposal [50, 51].
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Figure 2. The cracking phenomenon in selective laser melted parts: (a) apparent liquation cracking in the DS substrate and liquation
penetration into the Inconel 738 deposition layer; (b) liquation cracking in the DS substrate but crack penetration into the Inconel 738
deposition layer without liquation; (c) cracking in the DS substrate and crack penetration into the Inconel 738 without liquation;
(d) cracking in the DS substrate without liquation and no crack penetration into the Inconel 738 deposition layer; (e) no cracking in the DS
substrate but crack originates in the interface and propagates into the Inconel 738 deposition layer [52].

The cracking phenomenon is presented in [52], as shown
in figure 2. The results show that significant cracking occured
between Inconel 738 layers and a directionally solidified (DS)
substrate when the AM process energy was high enough to
cause over-melting on the substrate surface. The cracks origin-
ated from and expanded along the grain boundaries of the DS
superalloy matrix, spreading throughout the deposited layer
and the entire interface.

2.2. Residual stresses

In AM processes, the temperature of the metal powder var-
ies considerably and thermal stresses easily form within the
component, causing significant uncertainty with regards to the
quality of the final part. When the stresses trapped inside the
component are suddenly released, cracks emerge on the sur-
face, affecting the performance and life of the component.
Residual stresses in SLMhave been associatedwith two differ-
ent mechanisms, including the cool-down phase of molten top
layers and the thermallayers and the thermal gradient mech-
anis gradient mechanism [53]. Thermal stresses induced by
powder melting are particularly significant during the SLM

process. Thermal stresses cause warpage and cracking and
ultimately deform the component [54]. A schematic diagram
of residual stress formation during AM processes is shown in
figure 3. Figure 3(a) shows the accumulation of residual stress
in the first layer of a metal sample during cooling and solidi-
fication. The force balance produces compression at the cen-
ter, while the surface tension produces the maximum stress.
After the first layer solidifies, the second layer of powder is
added and immediately melted by the laser beam. As shown
in figure 3(a), the bottom of the first layer contains stress,
while the top part is exposed to the heat of the melted layer.
The heated top part expands, but it is limited by the cold bot-
tom part of the first layer. As shown in figure 3(b), mixed
mechanisms form residual stresses in the fabricated metal
components [55].

Relevant studies have found that the most influential factors
in the development of residual stresses are material properties,
component height, powder layer thickness, scanning strategy,
and related process parameters [53, 56]. Obviously, the con-
trol and elimination of residual stresses in components is a
key factor in determining the quality of AM products [53]. In
recent years, researchers have considered reducing and elim-
inating residual stresses through selecting appropriate process
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Figure 3. Residual stress formation during AM process of metallic parts: (a) first layer and (b) second layer [55].

parameters to curb the formation of cracks [57] and other con-
trol methods.

2.3. Porosity

Porosity is a common phenomenon in both PBF and DED pro-
cesses. Pores originate from a lack of fusion and trapped gas,
which directly affects the density and mechanical properties
of finished components and determines their performance
[58–60]. Generally, components with higher performance
requirements also have higher porosity requirements. How-
ever, there are components that are required to achieve a
certain degree of porosity for specific applications. Some
researchers have studied the porosity of PBF manufactured
components, paying attention to the control of porosity. When
the demand for functional parts is high, component dens-
ity requirements are also high. Therefore, it is necessary
to adopt effective methods and processes that reduce pores.
To achieve that, understanding the formation mechanism of
pores is critical [61]. Pores form when a material undergoes
rapid melting and solidification during PBF processes, which
entraps gases in the molten pool and prevents their timely
release. Pores are generally small and spherical in shape.
Pores are not only process-induced, but may exist even before
the melting process, especially if the feed material was pre-
pared using atomization, where the preparation environment
is argon purged, inevitably leaving traces on the solidified
powder particles. On this basis, gas forms in metal powder
due to the melting process or as a byproduct of powder pro-
duction. If these gases are not released on time, pores can
form in the component [62, 63]. Günther et al studied the
impact of two different AM routes, i.e. EBM and SLM on
the fatigue life of the titanium alloy Ti–6Al–4V in the high
cycle fatigue and very high cycle fatigue regimes [64]. As
shown in figure 4, the fracture surfaces of the failed speci-
mens of batches SLM-1b, SLM-2, and EBMwere investigated
by SEM.

(a) (b)

100 μm 100 μm

(c) (d)

50 μm 50 μm

(e) (f)

100 μm 100 μm

Figure 4. Different representative defect types in SLM-1b, SLM-2,
and EBM batches: (a)–(c) batches of SLM-1b, (d) batches of
SLM-2, and (e), (f) batches of EBM [64].

Zhang et al carefully studied the relationships between sur-
face pore defects and bubbles originating on the melt pool
surface in DED processes using high-speed photography at
up to 20 000 frames per second [65]. Gas-atomized powder
(nominal composition of Ni–8Cr–6Al–6Co–5W in wt.%) with
a particle size of 50 ± 10 µm was supplied at a feeding
rate of 15.5 g min−1. Figures 5(a) and (b) show the sporadic
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Figure 5. Morphology of a single-track. (a) Top view showing the pore defects (yellow arrows) distribution along the track edges. The laser
source was scanned from left to right. (b) Three surface pores (1–3) are indicated by circles [65].

occurrence of several macroscopic, surface-opening pores
along the track edges. These spherical pores seemed to be lin-
early distributed along the laser scanning direction, with a dia-
meter of 300–400 µm.

2.4. Balling

Melt ball formation, a.k.a. balling, occurs when molten mater-
ial solidifies into spheres instead of solid layers, which is a
severe impediment to interlayer connection [50]. Generally,
balling formation occurs when spherical particles are pro-
duced in the component due to interactions between the mol-
ten pool and the metal powder. This happens under the influ-
ence of the manufacturing environment and prevents the full
melting of some powder particles that mix within the com-
ponent [66–69]. Metal balls form independently and are eas-
ily generated in the layer-by-layer scanning process, resulting
in a rough, bead-shaped surface that produces irregular layer
deposition that adversely affects the density and quality of the
part [13]. In addition, balling also affects the normal operation
of the powder spreading roller, and in severe cases can hinder
the spreading mechanism [12]. Balling can increase the sur-
face roughness of the component and reduce its density and
mechanical properties. Therefore, it is necessary to explore
and study the suppression and elimination of the balling prob-
lem in PBF manufactured components and possible treatment
methods.

Qiu et al performed SLM of alumina with pressure assist-
ance on the powder bed. They investigated defects such as
balling [70]. They used three types of commercial alumina
powders (purity of 99.5 wt%, provided by Henan Jiyuan
Brother Material, China) with different particle size distri-
butions. Figure 6 shows optical images of the balling phe-
nomenon under different laser energy densities. The balling
diameter increases as the laser energy density increases, which
indicates that the particle size has no significant influence on
the microbead diameter. The balling phenomenon influences
the geometric accuracy of the component and increases poros-
ity and affects mechanical properties.

In recent years, defect detection technology has been
widely used in various industrial scenarios. Defect detection
technology refers to the detection of defects, such as sur-
face spots, holes, scratches, and the internal structure of the

tested sample; it also obtains relevant information such as
the depth, size, contour, and the category of the defect on
the surface or inside of the tested sample [71–74]. Accord-
ing to the development process of defect detection techno-
logy, it can be divided into traditional defect detection tech-
nology and machine learning defect detection technology
based on deep learning that has emerged in recent years,
which uses machine vision equipment to obtain images and
identify whether defects are present in the collected images.
The following sections summarize traditional defect detec-
tion techniques and surface defect detection methods based
on deep learning in recent years, and further subdivides and
classifies various typical methods and compares them.

3. Traditional non-destructive defect detection
technology

Traditional non-destructive defect detection methods include
infrared imaging defect detection, penetration defect detec-
tion, eddy current defect detection, and ultrasonic defect
detection.

3.1. Infrared imaging defect detection

The principle of infrared thermal imaging technology dis-
plays the shape and contour of defects through the thermal
radiation intensity of the additively manufactured workpiece.
The thermal radiation difference between the defects and
the surrounding materials makes the defects stand out in
infrared images. According to the theoretical results of the
thermoelastic effect in the isotropic homogeneous body, metal
samples with different defects have different material prop-
erties. Defects will affect the heat conduction in the metal
samples, and then affect the temperature field in the samples.
Using a certain method to input heat into the samples can
detect the temperature field of the samples through various
infrared sensors to obtain defect information. Using this con-
clusion, it is possible to use infrared thermal imaging cam-
eras to detect the surface temperature field of additively man-
ufactured objects, find areas with abnormal temperatures, and
determine the location of defects. Schwerdtfeger et al [75]
performed infrared photography on each layer in the electron

6



Int. J. Extrem. Manuf. 3 (2021) 022002 Topical Review

(a) (b)

3 mm 3 mm 3 mm

(c)

(d) (e)

3 mm

200 J/cm2

6.43 μm

3.86 μm

300 J/cm2 600 J/cm2

3 mm 3 mm

(f)

Figure 6. The balling phenomenon under different hatch spaces and different particle sizes: (a) 0.15 mm, (b) 0.10 mm, (c) 0.05 mm,
(d) 0.15 mm, (d) 0.10 mm, and (e) 0.05 mm [70].

beam selective melting process. They identified the position
of the defect based its the radiation intensity, and obtained
cross-section verification test results through grinding. The
test proves that the infrared image corresponds with the actual
defects in the part, and the radiation intensity at the defect is
higher. Bartlett et al [76] used a long-wave infrared camera
to photograph each layer during the manufacturing process.
They regarded areas where the average temperature between
the layers differed by more than 1% as defect areas. The
defects were detected in real time during the manufacturing
process. The test showed that this method detects 82% of
unfused defects and all unfused defects larger than 500 µm.
However, this method can only detect 33% of of micro-hole
defects.

3.2. Penetration defect detection

Penetration defect detection is a non-destructive testing
method that uses capillary phenomena to inspect the sur-
face defects of materials. Its working principle is simple:
A penetrant containing fluorescent or colored dyes is applied
to the surface of the workpiece. Under capillary action,
the penetrant infiltrates and settles into surface defects.
Any excess penetrant on the surface of the workpiece is

removed after drying. A developer is then applied on the
surface of the workpiece and reacts with the penetrant
under the effect of a light source, which displays the
trace of the penetrant and the defects. Penetrants contain-
ing fluorescent agents are significantly more sensitive for
defect detection than ordinary penetrants. The factors that
affect the sensitivity of penetrant detection include imaging
reagents, penetrant performance, and the effects of defects
themselves [77].

Fluorescent penetrant detection technology is easily
affected by the structure of additively manufactured
workpieces, and it is highly sensitive to surface-opening
defects and intuitive results. Penetration testing methods are
not suitable for testing porous or rough additively manu-
factured parts that have not undergone post-processing or
polishing. The Glenn Research Center of NASA uses the pen-
etration method to inspect the surface of key components of
liquid propellant rocket engines manufactured by SLM and
EBM processes. The Marshall Space Flight Center uses the
penetration method to inspect the POGO-Z baffle. As shown
in figure 7, the highlighted parts are defects caused by the
rough surface of the additively manufactured parts [78].

The fluorescent penetrant detection method can detect
tiny cracks in surface openings. Therefore, a fluorescent
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(a) (b)

Figure 7. Results of PT of AM structures for aerospace: (a) sample of rocket gas injector and (b) POGO–Z bezel [78].

penetrant is a suitable non-destructive method for inspect-
ing the surface defects of non-porous additively manufactured
structures.

3.3. Eddy current defect detection

Eddy current testing is a non-destructive testing method that
uses the principle of electromagnetic induction to identify
defects in conductive materials by measuring the changes in
induced eddy currents. Exciting a coil applies an alternating
magnetic field to the test piece and generates an eddy cur-
rent under the action of the alternating magnetic field. The
current in the coil changes due to the eddy current reaction.
The eddy current change can be measured, thereby obtain-
ing the status information of the test piece defect. The eddy
current distribution and size are determined by factors such
as the shape and size of the coil, the AC frequency, conduct-
ivity, permeability; the shape and size of the test piece, the
distance between the test piece and the probe, and the sur-
face defects of the test piece [79]. Therefore, the detected
eddy current conveys information about the material, defect,
shape, and size of the test piece. The main factors that affect
the accuracy of eddy current detection include the type and
parameters of the coil and the material and contour of the
detection part.

Eddy current testing technology can be used in harsh envir-
onments. It meets some of the requirements of AM for non-
destructive testing and is suitable for detecting defects such as
cracks and non-fusion pores. Du et al [80] studied eddy cur-
rent detection technology on defects of composite machining
parts. They milled the plane after the each layer was depos-
ited and used the eddy current method after removing the
interference of surface roughness. In order to verify this prin-
ciple, they established a corresponding finite element model
based on ANSYS and studied the influence of factors such
as excitation frequency, temperature, and lift-off height on
the inspection results. They used x-ray inspection technology
to verify the measurement results. The inspection results of
Ti-6Al-4V strips with unfused defects obtained by the direct
laser deposition process are shown in figure 8. It can be seen
from figure 8 that this method can effectively detect defects in
parts.

1

1 mm

1 mm 1 mm

1 mm

5 mm

2 3 4

Figure 8. Eddy current detection results [80].

Although eddy current detection technology can be used
in harsh environments, such as high temperatures, temperat-
ure has a greater impact on the electromagnetic properties of
materials. Additively manufactured parts often have complex
temperature fields, so it is still difficult to accurately detect part
defects through eddy current. In the future, we can develop
corresponding signal processing methods by designing a reas-
onable probe form to overcome the interference of temperature
and surface roughness on the detection results.

3.4. Ultrasonic defect detection

Ultrasonic testing refers to a non-destructive testing method
that uses ultrasonic waves to inspect the internal defects of
metal components. It uses a transmitting probe that emits ultra-
sonic waves to the surface of a component through a couplant.
When the ultrasonic waves propagate inside the component,
they emit different reflected signals as they encounter differ-
ent interfaces. The defects inside the component can be iden-
tified based on the time difference between the transmission
of different reflected signals to the probe. The height and pos-
ition of the echo signal displayed on the phosphor screen reveal
the size, position, and general nature of the defect. Ultrasonic
testing is more sensitive to cracks, incomplete penetration, and
infusion defects and less sensitive to pores and slag inclusions.
It is also less intuitive, easy to miss, and insensitive to near-
surface defects. The factors that affect ultrasonic testing are
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Figure 9. B-scans of defects with different depths: (a) defect depth 0.5 mm and (b) defect depth 0.1 mm [83].

projection direction, probe efficiency, coupling between the
probe and the test piece, and the excitation frequency of the
instrument [81, 82].

In addition to traditional ultrasonic inspection methods,
laser ultrasonic inspectionmethods have better performance in
defect detection. Millon et al [83] studied the laser ultrasonic
detection method of crack defects. First, they used a pulsed
laser (pulse time 7 ns) to generate ultrasonic waves in the part.
Then they used a laser interferometer to detect the surface
wave of the additively manufactured workpiece. Finally they
used B-Scans to detect surface defects on the part, as shown in
figure 9.

The propagation of ultrasonic waves in additively manufac-
tured parts will be affected by defects, so it can reflect defect
information in parts. This method is mainly used to detect
defects such as pores and cracks. Traditional ultrasonic test-
ing inputs energy into the workpiece through a couplant. The
application of this technology in AM defect detection is lim-
ited due to factors such as the temperature of the part. At the
same time, the laser ultrasonic method has great potential in
real-time defect detection. However, the aforementioned stud-
ies are still in the principle verification stage, and most of the
workpiece surface needs to be processed to eliminate the influ-
ence of surface roughness.

4. Defect detection technology based on machine
learning

Machine learning has developed rapidly in recent years. Sig-
nificant progress has been made in object detection [84], intel-
ligent robots [85], industrial quality inspection [86] and other
fields. Deep learning uses multiple convolutional layers struc-
tured inside a neural network where input data characteristics
are learned to process lower-level features into more abstract
high-level features. These features are then used to classify
data into categories learned from the training process. The res-
ults are expressed in the form of vectors, feature maps, etc.
Based on the powerful learning ability and feature extraction
of deep learning, many researchers have used this technology

to detect defects and improve overall detection efficiency and
quality [87–89].

Machine learning inspection is composed of two main pro-
cesses: image acquisition and defect detection. Factors such
as different image acquisition equipment, shooting angles,
lighting conditions, and environmental changes give the
acquired images different qualities, which determine the dif-
ficulty of the image processing degree. The feature extrac-
tion capabilities of different image processing algorithms
and the pros and cons of image preprocessing methods
directly affect the accuracy and false detection rate of defect
detection.

4.1. Convolutional neural network (CNN) method

The use of convolutional neural networks (CNNs) [90] for
defect detection can be summarized in two major scenarios.
The first one consists of designing a complex, multi-layer
CNN structure, then obtaining image features from a differ-
ent network to finally perform image defect detection based
on end-to-end training [91, 92]. In contrast, the second one
combines the CNN with a Conditional Random Field (CRF)
model, and either uses CRF energy functions as a constraint
to train the CNN or optimizes network prediction results to
conduct defect detection. In general, the advantages of CNNs
include the network’s strong ability to learn high-dimensional
data in addition to abstract, essential, and high-level features
from the input data. Some disadvantages are that the express-
ive power of the network increases as the depth increases. The
deeper the network structure, the greater the computational
complexity.

Xie et al attempted to detect surface defects in sheet metal
parts by proposing a surface defect recognition and classific-
ation method for sheet metal parts based on CNNs [93], as
shown in figure 10. The input image size was 256 × 256 × 3.
As presented in figure 11(a), the defect samples were obtained
through defect segmentation and extraction method, and the
window sliding detection method was used. The entire image
to be inspected was traversed through window sliding, and the
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Figure 10. Convolution neural network structure [93].

region block of the window size was intercepted and com-
pared to the model. The experiment was trained under a learn-
ing rate of 0.001, 0.001, and 0.001. The data in figure 11(b)
shows that when the learning rate is 0.0001, the accuracy rate
can reach 97.02%, and the average inspection time per piece
was 0.85 s.

4.2. Auto-encode network method

The Auto-encoder Network includes two stages: encoding and
decoding. In the encoding stage, the input signal is converted
into an encoded signal for feature extraction. In the decoding
stage, the feature information is converted into a reconstructed
signal, adjusted by weight, and offset. The reconstruction
error is generally small, and defect detection is realized [94].
The biggest difference between the Auto-encoder Network
and other machine learning algorithms is that the learning
goal of the Auto-encoder Network is feature learning rather
than classification. It has a strong independent learning capa-
city, high nonlinear mapping competence, and the ability to
learn nonlinear metric functions to address the segmenta-
tion of complex background and foreground regions. It can
effectively express target information, better extract the fore-
ground area in a complex background, and has high robustness
to environmental noise. A disadvantage of the Auto-encoder
Network is that it requires consistent input and output data
dimensions [95].

The Auto-encoder Network is an unsupervised learning
network that consists of into two parts: an encoder and a
decoder, which are composed of fully connected neurons, as
shown in figure 12. Given the input space X ∈ λ and the fea-
ture space h ∈ F, the auto-encoder solves the mapping f, g
between the two to minimize the reconstruction error of the
input features [96]:

f : λ→ F (1)

g : F→ λ (2)

f,g = argmin
f,g

X − g[ f(X)]2. (3)

According to equation (3), after the solution is completed,
the hidden layer feature h output by the encoder (encoded fea-
ture) represents the input data X.

4.3. Deep residual neural network method

Feature information in the CNN generative confrontation
network increases as the depth of the network increases.
However, it is easy to prevent the activation function from
converging. The deep residual network uses residual optim-
ization to continuously increase the number of network lay-
ers as the network structure increases, so the output of the
convolutional layer in the residual unit has the same dimen-
sions as the input elements. The activation function reduces
loss [97]. An advantage of this operation is that the resid-
ual network has lower convergence, which improves classi-
fication performance while preventing excessive overfitting.
A disadvantage is that the residual network must cooper-
ate on a deeper level to give fully realize its structural
advantages.

Che et al proposed an improved deep Residual Shrinkage
Network model [98]. Assuming that the mapping required to
be solved is H(a ′), this problem can be converted to solve
the residual mapping function F(a ′) of the network, where
F(a ′) = H(a ′)− a ′. Compared with the Rectified Linear Unit
(ReLU) function, soft thresholding provides a more flex-
ible feature value interval. In the residual shrinkage network,
the sample’s situation can automatically adjust the threshold
through the attention mechanism. A part of the deep residual
shrinkage network model is shown in figure 13, where the size
of the input a ′ is C×W, and al+1 is obtained as the input of
the second layer through the ReLU function. By constructing a
small sub-network in the second layer of the network, contain-
ing a set of threshold values α, between 0 and 1, and then soft
thresholding the features and adding the residual term F(a ′),
the output al+2 can be expressed as:

al + 1 = ReLU
(

Wl+1al + bl+1
)

(4)

a ′ = W1 + 2ReLU(W1 + 1a1 + b1 + 1)b1 + 2 (5)
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as =







a ′ −λa ′ > λ

0−λ≤ a ′ ≤ λ

a ′ +λa ′ <−λ

(6)

al + 2 = as + F
(

al
)

. (7)

Equation (7) is the soft threshold result obtained by compar-
ing a ′in each dimension with the corresponding threshold λ.

4.4. Recurrent neural network method

A classic CNN model extracts the input layer test sample fea-
ture information through convolution and pooling operations.
In contrast, a cyclic convolution neural network replaces the
convolution operation in the CNN with a cyclic convolution
operation. The difference is that after the recurrent neural net-
work (RNN) performs a recurrent operation to extract input
layer features, it does not perform a pooling layer operation to
extract the features but uses a recurrent convolution operation
to perform feature processing on the sample. On this basis, an
advantage of the cyclic CNN is that it can learn the essential
characteristics of data when the sample data is small, which
reduces the loss of data information in the pooling process. A

al

al+1

al+2

F(al)

a′

λ

GAP

11
Sigmoid

wl+2, bl+1

wl+2, bl+2

ReLU

ReLU

C × W

C × W C

Figure 13. Model diagram of residual shrinkage network [98].

disadvantage is that as the number of iterations in the network
training process increase RNN, the RNN model may appear
over-fitted [99].

Zhang et al proposed an improved RNN model [100]. Due
to the structural nature of ordinary RNNs, gradient disappear-
ance and gradient explosion occurs when obtaining the deriv-
ative through the chain rule. In order to avoid such problems,
a long short-term memory (LSTM) unit was added to improve
the RNN. As shown in figure 16, the unit on the left of the
figure 14 represents the calculation of this unit at the previous
time, the unit in the middle represents the calculation at the
current time, and the unit on the right represents the calcula-
tion at the following time. X represents the input of the unit
and h represents the state of the current unit. The input and
output of the ordinary RNN unit can be modified to get the
LSTM RNN.
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In figure 14, σ represents the sigmoid activation function,
ht represents the current hidden layer state, and Xt represents
the input of the current unit.

Due to the layer-by-layer manufacturing feature of AM,
machine vision technology can be used to collect and ana-
lyze images layer by layer in the manufacturing process. For
example, Sun et al of Zhejiang University proposed a multi-
angle visual inspection technology for surface defects based
on self-feature extraction in response to defects generated in
the fused deposition modeling (FDM) process [102]. Zhang
[103] appliedmachine vision technology to the online powder-
deposition quality monitoring system of flexible laser melt-
ing molding. This system first captures the surface image of
powder layer by an industrial camera, and then extracts and
recognizes defects in the image by image processing and pat-
tern recognition methods. There are other studies that combine
machine vision technology and machine learning for defect
detection [104, 105]. However, machine learning requires a
large number of training samples, and reasonable training
is needed to improve accuracy. In a specific AM process,

the landing and adaptability of the application needs to be
improved.

5. Latest research of defect detection technology

5.1. Advances in traditional defect detection technology

Scholars around the world have used various defect detec-
tion technologies, such as machine learning and laser detec-
tion methods, ultrasonic, pulse magnetoresistance, pulse eddy
current, and far-field eddy current technologies. These techno-
logies have mainly been used to identify defects in pipelines,
aluminum materials, stainless steel, metal materials, welds,
etc. Products in manufacturing-related fields, such as batteries,
are tested for defects to improve the detection and classific-
ation capabilities of surface, subsurface, and internal defects
of manufactured products. Machine learning is a widely used
detection technology because it has the least impact on part
contour, increased detection efficiency and is also highly auto-
mated compared to traditional inspection technologies.
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Figure 16. Comparison of wire laying effects: (a) without
closed-loop control system and (b) with closed-loop control system
[101].
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[106].

Wen et al proposed the inclusion of a closed-loop adaptive
fuzzy control system in a machine vision framework, to detect
the effects of automatic wire laying (width of 6.35mm and gap
threshold of 0.1 mm) [101]. The frame diagram of the control
system is shown in figure 15 and the results of the test compar-
ison are shown in figure 16. Shi et al used the machine learning
method to evaluate the efficiency of laser cleaning oxide films
from an aluminum surface [106]. An algorithm called Retinex
was used and reached a recognition efficiency of 86.70% and
a detection accuracy of the surface oxide up to 0.03 mm. The
total recorded processing time of a single sheet was 400 ms. A
schematic diagram of the online detection system is shown in
figure 17.

Zhou et al used a combination of pulse and eddy cur-
rents to detect surface and sub-surface defects on ferromag-
netic products [107]. Extracting the spectral amplitude char-
acteristics of aluminum and ferromagnetic products for neural
network learning can detect subsurface crack defects. The
influence of the composite signal of magnetic flux leakage and
disturbances on the eddy current signal become smaller as the
depth of the defect increases. The effect of using eddy cur-
rent testing technology needs to be further improved for deeper
defects. The pulsed eddy current three-dimensional detection
model and experimental device are shown in figure 18.

The ultrasonic defect detection method is an inspection
method of the test sample based on signal processing. Experi-
mental results are mainly reflected in the performance of ultra-
sonic signals to determine defects in the product. Therefore,
these summarized results do not provide specific indicators
such as accuracy rate, recognition rate, or recall rate. It was
found that the air-coupled ultrasonic Lamb wave detection
method can effectively detect internal defects of metal plate
structures. Meng et al used the imaging effect of the received
signal to determine the actual defect location [108]. As shown
in figure 19, the detection accuracy rate was 90.00%, the defect
measurement error was ±0.01 mm, the axial resolution was
0.007b and the maximum measurement diameter was 30 mm.

The improved Gabor filter technology of Qu et al achieved
an average detection speed of 91.80 ms/frame for defects such
as scratches, holes, oxide skin, pitting, abrasions, edge cracks,
and scars in steel materials [109]. The average detection accur-
acy was 95.80%. This method has a high recognition accuracy
for defect detection but can only detect defects on the surface
of the product. The detection and recognition results of this
algorithm are shown in figure 20.

The x-ray inspection technology has a better recognition
effect on defect edge detection. The technology of Tian et al
effectively detected the edges of pipeline surface defects and
dynamically extracted weld features [110]. The test results are
shown in figure 21.

Liu et al used x-ray images and CNNs to detect and identify
surface and internal defects of petroleum steel pipe welds
[111]. X-ray images of petroleum steel pipes were used as
inputs to detect and recognize weld defects. The OPTICS
algorithm based on density clustering was used to obtain
clusters of arbitrary density to separate defects and noises of
various shapes and sizes. The use of the CNN method broke
through the manual feature extraction bottleneck, improved
the degree of automated classification, and achieved a high
recognition accuracy rate. The detection image and network
structure diagram are shown in figure 22.

In addition to the above-mentioned defect detection
methods in manufactured products, additional technologies,
namely clutter suppression and the least squares method [112],
have been developed by researchers for the same purpose.
Results of a combined algorithm of these two methods, for
the detection of surface defects in scanned images, indic-
ate that the least squares method was capable of elimin-
ating the through wave and ground reflection wave from
processed images, which is convenient for extracting defect
characteristics.

Chi et al proposed an improved ultrasonic diffraction time
difference technique for detecting surface defects on alu-
minum alloy plates [113]. Their results show that defects with
a depth of 1.9 sm and 6.2 sm were more clearly detected. In
[114], ultrasonic waves using the Hilbert transformation were
used to detect the surface and internal defects of metal materi-
als. Their results suggest that this method has a can detect the
shape, size, and distribution of defects. The Hilbert method of
transforming the ultrasonic signal not only effectively extracts
the information of the ultrasonic signal propagating on the
defect, but also intuitively and efficiently detects the shape,
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size, and distribution of surface defects from the image of
the ultrasonic propagation. The inspection system is shown in
figure 23.

Although these methods are theoretical, they have obtained
promising detection results. Therefore, these studies can
provide both theoretical and practical guidance for future
defect detection attempts of manufactured products.

5.2. Advances in deep learning defect detection

With the development of artificial intelligence, deep learning
methods have been widely used in product defect detection
due to their ability to fit arbitrary complex functions and per-
form proficient feature extraction. In recent years, the techno-
logy innovation of deep learning has mainly focused on high
precision, high positioning, rapid detection, small targets, and
complex background detection.

Chen et al attempted high-precision target detection [115].
A convolutional layer from an ordinary classification network
was used to obtain a feature map of the sample. Then a region
of interest algorithmwas used to identify the target object to be

tested in this feature map to improvement the target detection
accuracy.

Redmon et al proposed candidate boxes proposed [116] for
the feature selection of objects to test the performance of a bin-
ary classification function for fast target detection. Multi-scale
prediction was used to accurately determine the predicted pos-
ition. Fu et al developed end-to-end small target detection
and end-to-end thinking [117] combined with position regres-
sion and semantic information. These were merged and set as
underlying network features to improve the ability to identify
small targets.

Ma et al proposed the LCD surface defect detection model
based on small sample learning was proposed to develop a
training network strategy based on small samples [118]. The
model was characterized by automatic segmentation and pos-
itioning preprocessing software that divides high-resolution
images into image sub-blocks suitable for CNN learning.
Image sub-blocks were obtained according to the model’s
judgment category and positioning coordinates, and multiple
types of defects were detected. The feature map generated in
this experiment is shown in figure 24.
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Figure 20. Gabor wavelet defect detection images [109].
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Figure 21. Defect detection results for three images, using the x-ray method [110].

Dai et al presented t deformable CNNs and regions of
interest to improve the ability to detect irregularly shaped
objects against complex backgrounds, improving target detec-
tion with unbalanced data samples and diverse detection tar-
gets [119]. Bodla et al proposed a measurement method that
detects targets by making associative relationships between
objects [120]. The association information is integrated

into the extracted features and feature dimensions are kept
unchanged, which improves the similarity of the objects. The
feature recognition ability varies with time.

Liu et al proposed a method [121] detects end face
defects in tiny cylinder core blocks with complex back-
grounds. In general, the usage of traditional segmentation,
where thresholding,morphology andCanny edge detection are
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Figure 22. (a) Diagrams of x-ray weld defects (various welding
defects). (b) Structure diagrams of the CNN [111].

used to treat grayscale information representative of uneven
surface features, is imprecise. Therefore, the authors proposed
defect detection using structured light triangulation and pro-
cessing based on machine learning algorithms. This method
has a high recognition rate for defects hidden in cluttered back-
grounds, and the repeatability can reach sub-pixel levels with
good anti-interference and practicality. The acquisition device
and detection structure are shown in figures 25 and 26.

6. Future prospects for defect detection technology

Research in quality-related fault prediction and diagnosis tech-
nology remains at a preliminary stage of exploration. If we
want to apply the detection technology to the AM field, these
technologies should be based on the industrial characteristics
of AM from the analysis and improvement of data sets, image
acquisition methods, and detection scheme design. Therefore,
it is necessary to conduct an in-depth analysis on the feedback
related to AM defect detection and fault prediction and dia-
gnosis technology.
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Figure 23. Laser ultrasonic inspection system [114].

Deep learning is essentially data-driven. If we want to
establish a deep learning model applicable to AM, we need a
large number of different AM product angles, positions, sizes,
shapes, and other information with a relatively small amount
of data. While CNNs, auto-encode networks, deep residual
networks, and RNNs have their own advantages and disad-
vantages, obtaining a universal deep learning model for AM
product defect detection is a difficult task that must be further
studied.

There is a large amount of concentrated energy input in
the AM process. The material reaction process and the mol-
ten pool environment are complicated, and the products’ tem-
perature fields are difficult to control. Many factors work
together to make the detection environment more complicated.
In the image acquisition process, the apparent characteristics
of the target object change significantly with different light-
ing conditions, imaging angles of view and shooting dis-
tances. Noise interference and partial occlusion of the detec-
ted sample can occur due to variations in the detection target’s
background. Therefore, methods to improve the accuracy
of AM defect detection in samples based on the efficient
feature extraction capabilities of deep learning need more
consideration.

Current traditional defect detection methods are mainly
aimed at the detection of object surface defects in two-
dimensional images, which are usually surface scratches and
abrasions. However, the viewing angle information obtained
by the two-dimensional image sequence only supplies inform-
ation in a single direction, limiting the available data and
preventing the collection of information from other view-
ing angles. However, the shape of processing defects in AM
is more complex. Therefore, the usage of multi-cameras to
model products in three dimensions must be investigated in
order to express information more clearly and from vari-
ous perspectives for the improvement of defect detection
accuracy.

As manufacturing companies regard defect detection as a
task of primary importance, we also hope to realize online,
real-time monitoring of production defects in AM through
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Figure 26. (a) Approximate area of defects. (b) Intersection scatter plot. (c) Delaunay triangulation. (d) Exact area of defects [121].

embedded sensing equipment. Combining smart sensors
and mechanical devices to achieve multi-modal, real-time
defect detection of manufactured products will benefit factory
applications.

At the same time, most of the existing defect detec-
tion methods only use traditional industrial processing
and manufacturing fields. The detection data and detec-
tion methods collected in the AM processing field can be
replaced. Therefore, more traditional detection technologies
should be explored. Machine learning detection is based on
characteristics of the AM field and rely on the methodology
and experience of traditional machining defect detection. As

a result, machine learning represents the most suitable AM
defect detection program.

7. Conclusions

AM technology is considered one of the most promising
manufacturing technologies due to its unique advantages over
conventional subtractive manufacturing processes in terms of
customization, complex geometry, and near-net-shape fabric-
ation in the aerospace and defense industries. Although the
development of AM technology has been relatively successful
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at attaining sufficient mechanical properties, defects and poor
geometric accuracy limit actual component adoption in the
industry. Some defects that appear in general AM processes
include cracking, residual stresses, porosity, and balling. Fur-
thermore, as defects often occur in the build component due to
discontinuities that originate during the printing process as a
result of numerous factors, the development of novel defect
detection technologies has recently surged in the AM field.
Based on detection and classification performance, different
traditional and machine learning detection technology are
summarized. This paper also discusses the latest research and
the future prospects of defect inspection technology.
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