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a b s t r a c t

Stationary spatially localized patterns in parametrically driven systems are studied, focusing on the 2:1
and 1:1 resonance tongues as described by the forced complex Ginzburg–Landau equation. Homoclinic
snaking is identified in both cases and the nature of the growth of the localized structures along the
snaking branches is described. The structures grow from a central defect that inserts new rolls on either
side, while pushing existing rolls outwards. This growth mechanism differs fundamentally from that
found in other systems exhibiting homoclinic snaking in which new rolls are added at the fronts that
connect the structure to the background homogeneous state.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Spatially localized structures in one spatial dimension corre-
spond to homoclinic orbits of the governing equations written as a
dynamical system in space. When this system is reversible in space
these structures may be reflection-symmetric and hence station-
ary. Equilibrium structures of this type have been extensively stud-
ied in recent years both theoretically [1,2] and numerically [3,4],
and are found in bistable regimes, i.e., in parameter regimes with
two coexisting equilibria, A and B, say. Two cases are of particu-
lar interest: (i) A and B are both spatially homogeneous, (ii) A is
spatially homogeneouswhile B is spatially periodic. The associated
localized structures are organized by heteroclinic cycles, i.e., con-
nections of the form A → B → A or vice versa. Since the return
connection is guaranteed by the reversibility of the vector field a
heteroclinic cycle between two homogeneous equilibria in four di-
mensions is of codimension onewhile a heteroclinic cycle between
a homogeneous and a periodic equilibrium is of codimension zero.
In the former case the cycle exists at a particular parameter value;
in the latter there is an interval in parameter space filled with such
cycles.

The detailed behavior near such cycles depends on the spa-
tial eigenvalues of the homogeneous states and the spatial Floquet
multipliers of the periodic states. If the eigenvalues of both ho-
mogeneous states are real the fronts connecting state A to state
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B and back again will be monotonic and a single localized state
is present whose length diverges as the heteroclinic cycle is ap-
proached. If the eigenvalues of one of the states involved are com-
plex, the fronts will no longer be monotonic, and there will be a
finite multiplicity of localized states on either side of the param-
eter value corresponding to the formation of the heteroclinic cy-
cle. We refer to this behavior as collapsed snaking to distinguish it
from homoclinic snaking that accompanies heteroclinic cycles be-
tween homogeneous and periodic equilibria. In this case, localized
structures are found in an interval of parameter values that de-
fine the so-called snaking [2] or pinning [5] region. This type of
behavior is well understood in the context of variational systems
such as the Swift–Hohenberg equation [6,7,1]. This equation pos-
sesses a trivial homogeneous state and the localized structures bi-
furcate from this state simultaneously with the branch of spatially
periodic states, provided these bifurcate subcritically. At small
amplitude the localized structures are broad but as the branch
enters the pinning region their width and amplitude become
comparable to the wavelength and amplitude of the competing
periodic pattern. As one continues to follow localized states to-
wards larger amplitude one finds that the structure broadens by
nucleating additional rolls symmetrically on either side. Struc-
tures of this type therefore grow from the outside. Associated with
this growth are back-and-forth oscillations of the solution branch
across the pinning region [7,8]. Generically there are two types
of reflection-symmetric localized states, distinguished by having
maxima or minima at the point of symmetry. In addition, asym-
metric localized states are also present, and in variational sys-
tems these also correspond to steady solutions. Such states connect
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the two branches of symmetric localized states in a characteristic
snakes-and-ladders structure [1]. In addition, the snaking or pin-
ning region contains a multitude of multipulse states, i.e., bound
states of localized structures. These may fall on additional snaking
branches or be organized in stacks of isolas [9].

In variational systems such as the Swift–Hohenberg equation
the origin of this remarkably complex structure can be related to
the presence of a Maxwell point at which the homogeneous and
periodic equilibria have the same energy. In this case the periodic
pattern within the localized structure pins the fronts at either end
that connect it to the homogeneous state preventing their motion
evenwhen the energies differ [5]. The rich structure of the resulting
pinning region is a direct consequence of this effect and may be
thought of as the result of a broadening of theMaxwell point owing
to the heterogeneity of one of the competing equilibria.

In the systems studied thus far the wavelength of the periodic
state within the localized structure appears to be well-defined and
is found to be a monotonic function of the bifurcation parameter.
In variational systems this behavior is easy to understand using en-
ergy considerations [1]. However, a quantitative understanding of
the wavelength selection mechanism is only possible in the pres-
ence of a Hamiltonian that is conserved by the time-independent
system written as a dynamical system in space [6].

Recent work by Beck et al. [10] shows that the snakes-
and-ladders structure of the pinning region persists when
nonvariational terms are added, although the asymmetric ladder
states now correspond to drifting localized structures [11]. Studies
of natural doubly-diffusive convection [12,4] and of binary fluid
convection [3] confirm this expectation. These results, taken
together, give the impression that all localized structures in a
snaking or pinning region grow qualitatively as described by the
Swift–Hohenberg equation. We show in this paper that this is not
the case. Specifically, we exhibit two examples where the localized
structures grow by roll insertion in the center of the structure,
accompanied by outward displacement of the existing rolls. The
center corresponds to a defect that is responsible for the ‘‘cell
division’’ required to grow the structure. The central defect thus
plays the role of a steady state ‘‘pacemaker’’.

This new growth mechanism has been discovered in the forced
complex Ginzburg–Landau equation describing parametrically
driven dissipative media in an appropriate parameter regime [13,
14]. Recent experimental studies of systems driven by spatially ho-
mogeneous periodic forcing with frequency near twice the natural
oscillation frequency of the system have revealed the presence
of different types of localized states, including oscillons [15–18]
and reciprocal oscillons [19–21]. The former are localized time-
dependent oscillations that are embedded in a stationary back-
ground and oscillate with half the forcing frequency [16,18]. The
latter are localized oscillations embedded in an oscillating back-
ground, both of which oscillate at half the forcing frequency and
out of phase. Bound states of oscillons have also been observed.
Spatially localized oscillations are also found in systems driven ad-
ditively near their natural oscillation frequency [22–24]. In the fol-
lowing we refer to these two cases as 2:1 and 1:1 resonances, re-
spectively.

This paper is organized as follows. In Section 2 we introduce
the forced complex Ginzburg–Landau equation used to describe
near-resonant forcing of oscillatory systems and summarize the
key properties of this equation. In Section 3 we analyze in detail
the new types of behavior present in the 2:1 resonance, and
in Section 4 we extend our approach to the more difficult 1:1
resonance. These sections rely heavily on numerical continuation
using the software AUTO [25]. In Section 5 we describe the results
of time integration to examine both the stability of the localized
structures we identify and their evolution when they prove to be
unstable. The paper concludes with brief remarks in Section 6.

2. The forced complex Ginzburg–Landau equation

We consider a continuous system in one spatial dimension near
a bifurcation to spatially homogeneous oscillations with natural
frequencyω in the presence of spatially homogeneous forcingwith
frequency Ω . We focus on the behavior near strong resonances of
the form Ω:ω = n:1, where n = 1, 2. In both cases the forcing
leads to an Arnol’d tongue containing spatially homogeneous
states that are phase-locked to the forcing frequencyΩ . When n =
1 the amplitude of the phase-locked states may take the form of an
S-shaped curve as the forcing increases, leading to a region with
multiple coexisting phase-locked states. Likewise, when n = 2 the
phase-locked states may bifurcate subcritically on one side of the
Arnol’d tongue, again leading to bistability, this time between the
trivial background state and a pair of finite amplitude phase-locked
states that are 180° out of phase.

In the present paper we suppose that a dynamical observable
w(x, t) takes the form

w = w0 + AeiΩt/n + c.c. + · · · , (1)

wherew0 represents the homogeneous equilibrium state, A(x, t) is
a complex amplitude, and the ellipses denote higher order terms.
Under appropriate conditions [13,14] the oscillation amplitude
A(x, t) obeys the forced complex Ginzburg–Landau equation
(FCGLE)

At = (µ + iν)A − (1 + iβ)|A|2A + (1 + iα)Axx + γ Ān−1, (2)

whereµ represents the distance fromonset of the oscillatory insta-
bility, ν is the detuning from the unforced frequency, and α, β and
γ > 0 represent dispersion, nonlinear frequency correction and
the forcing amplitude, respectively. We distinguish two regimes,
the regime µ < 0 in which spatially homogeneous oscillations
decay in the absence of forcing and µ > 0 in which they grow.
We refer to the former as the damped regime and the latter as the
self-exciting regime. For numerical exploration it will be useful to
write Eq. (2) in terms of real amplitudes U(x, t), V (x, t) such that
A ≡ U + iV , Ā ≡ U − iV .

Eq. (2) is the basic equation studied in this paper. This equation
has a large variety of nontrivial solutions, both homogeneous in
space and spatially inhomogeneous, for all values of n ≥ 1; when
n > 1 it also possesses the trivial solution A = 0. These solu-
tions either respect or break the two symmetries of Eq. (2), equiv-
ariance under (x, A) → (x, Ae2π i/n), and reversibility in space:
(x, A) → (−x, A). Of interest in the following are localized struc-
tures corresponding to solutions that are homoclinic to the same
homogeneous state as |x| → ∞ and fronts corresponding to het-
eroclinic solutions connecting two distinct spatially homogeneous
states. In addition, there are connections between homogeneous
states and spatially periodic states created in Turing bifurcations.
Finally,we are also interested in homoclinic orbits connecting a pe-
riodic orbit to itself. The presence of reversibility renders certain of
these connections structurally stable, as discussed further below.

Eq. (2) possesses nontrivial stationary spatially homogeneous
solutions of the form A = R exp iφ, where

(1 + β2)R4 − 2R2(µ + νβ) + µ2 + ν2 = γ 2R2n−4 (3)

and φ solves

sin nφ =
ν − βR2

γ Rn−2
, cos nφ =

R2 − µ

γ Rn−2
. (4)

For each positive solution of Eq. (3) these equations have n

solutions φ in [0, 2π). This is a consequence of the equivariance of
Eq. (2) under (x, A) → (x, Ae2π i/n). The temporal stability of these
solutions with respect to spatially homogeneous perturbations is
determined by writing A = R exp(iφ)(1+a(t)), linearizing in a(t),
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and looking for solutions of the form a(t) = a+ exp st + ā− exp s̄t .
The (complex) growth rate s obeys the quadratic equation

s2 + 2[R2 + γ Rn−2 cos nφ]s + 2nγ Rn(cos nφ − β sin nφ)

− n(n − 2)γ 2R2n−4 = 0. (5)

This growth rate vanishes at

cos nφ − β sin nφ −
1

2
(n − 2)γ Rn−4 = 0, (6)

i.e., at saddle–nodes. This equation is equivalent to

(1 + β2)R2 = µ + βν +
1

2
(n − 2)γ 2R2n−6. (7)

These results hold for all integers n ≥ 1. A similar calculation
shows that the growth rate of perturbations with wavenumber k
satisfies the equation

s2 + 2[R2 + γ Rn−2 cos nφ + k2]s + 2nγ Rn(cos nφ − β sin nφ)

− n(n − 2)γ 2R2n−4 + 2[(1 + αβ)R2 + γ Rn−2

× (cos nφ − α sin nφ)]k2 + (1 + α2)k4 = 0, (8)

or equivalently

s2 − 2[µ − k2 − 2R2]s + (1 + α2)k4

+ 2[2(1 + αβ)R2 − µ − αν]k2 − 2nR2[µ + βν

− (1 + β2)R2] − n(n − 2)γ 2R2n−4 = 0. (9)

A Turing bifurcation occurs at the extremumof the neutral stability
curve s = 0 in the (k, γ ) plane. At this point γ = γ T , R = RT and
the solution k = kT has multiplicity two. Thus

[2(1 + αβ)R2
T − µ − αν]2 = −n(1 + α2)R2

T [2(µ + βν)

− 2(1 + β2)R2
T + (n − 2)(γ T )2R2n−6

T ]. (10)

The corresponding Turing wavenumber is given by

k2T =
µ + αν − 2(1 + αβ)R2

T

1 + α2
. (11)

Eq. (10) is to be solved simultaneously with Eq. (3) for the
strength γ T of the forcing at which this bifurcation sets in. The
corresponding amplitude RT then determines the wavelength
2π/kT of the resulting structure via Eq. (11). In both cases Hopf
bifurcations may arise but these lead to temporally periodic states
not considered here.

In the following we study steady spatially localized structures
that approach a homogeneous state as x → −∞ or x →
+∞ or both. Necessary conditions for exponential approach to or
departure from such a state are provided by the spatial eigenvalues
of these states. These are obtained by writing A = R exp(iφ)(1 +
a(x)), linearizing in a(x), and looking for solutions of the form
a(x) = a+ exp λx + ā− exp λ̄x. The spatial eigenvalues λ obey the
quadratic equation

(1 + α2)λ4 − 2[(1 + αβ)R2 + γ Rn−2(cos nφ − α sin nφ)]λ2

+ 2nγ Rn(cos nφ − β sin nφ) − n(n − 2)γ 2R2n−4 = 0, (12)

or equivalently

(1 + α2)λ4 + 2[µ + αν − 2(1 + αβ)R2]λ2 − 2nR2[µ + βν

− (1 + β2)R2] − n(n − 2)[(µ − R2)2 + (ν − βR2)2] = 0. (13)

The structure of this equation is a consequence of the fact that the
time-independent version of Eq. (2), written as a four-dimensional
dynamical system in x, is equivariantwith respect to the reversibil-
ity symmetry mentioned above, (x, A) → (−x, A). This condition
translates into the requirement that if λ is a spatial eigenvalue so
are λ̄ and−λ. As a result the spatial eigenvalues fall into one of the

following four generic configurations [2]

configuration (1): a quartet of complex eigenvalues
configuration (2): the eigenvalues are all real
configuration (3): two eigenvalues are real and two

are imaginary
configuration (4): the eigenvalues are all

imaginary.

The transition from configuration (1) to configuration (2) corre-
sponds to a Belyakov–Devaney point [26,27], with real eigenvalues
±λ, each of double multiplicity. The Turing bifurcation, obtained
above using standard stability analysis, corresponds to the transi-
tion between configuration (1) and configuration (4), and hence
to purely imaginary eigenvalues ±ikT , each of double multiplic-
ity. In the temporal context this bifurcation is called the reversible
double-Hopf bifurcation with 1:1 resonance [28]. In contrast, at a
saddle–nodeλ = 0, also twice, and this is so also at pitchfork bifur-
cations (see below). These situations correspond to the transition
between configuration (3) and configuration (2) or (4).

The reversibility symmetry also constrains the spatial Floquet
multipliers. If a symmetric spatially periodic orbit has a Floquet
multiplier Λ then Λ−1 must also be a multiplier of the orbit. It
follows that in a four-dimensional system there is always a pair
of Floquet multipliers Λ = +1, and the remaining two must lie in
one of three configurations

configuration (I): both lie on the real
axis, Λ > 0

configuration (II): both lie on the unit
circle

configuration (III): both lie on the real
axis, Λ < 0.

Formulating the problem as a steady state bifurcation problem
in space has several advantages. In particular, the spatial eigenval-
ues provide necessary conditions for the presence of homoclinic
and heteroclinic orbits between homogeneous equilibria. Since
such orbits can only connect hyperbolic equilibria,with at least one
unstable spatial eigenvalue and at least one stable spatial eigen-
value, homoclinics are only expected in cases (1) and (2); in case (3)
homoclinics may be present at isolated parameter values. More-
over, it is now possible to establish the bifurcation of such states
from the homogeneous state. Thus a pitchfork bifurcation of homo-
geneous states is associated with the simultaneous bifurcation of a
homoclinic orbit (subcritical pitchfork) or a simultaneous bifurca-
tion of a heteroclinic orbit (supercritical pitchfork). Likewise a sad-
dle–node bifurcation of a homogeneous state is associatedwith the
bifurcation of a homoclinic orbit. A subcritical Turing bifurcation
producing periodic states is associated with a pair of subcritical
branches of homoclinic orbits resembling wavepackets with char-
acteristic wavenumber kT . These differ in their spatial phase, with
one branch containing solutions with local maxima in the sym-
metry plane and the other containing local minima. In contrast, a
supercritical Turing bifurcation produces periodic states together
with homoclinics to such states (see Appendix). Eckhaus bifurca-
tions of periodic states also lead to (a pair of) homoclinics to the
periodic state; these typically resemble holes in the periodic state
and once again differ in their spatial phase [29]. The existence of
these states can be established either using multiple scale meth-
ods near the corresponding bifurcations [30], or using normal form
theory for reversible systems [28]. In the following we explore the
behavior of these states as a function of the parameters focusing on
situations where new types of behavior arise. We mention that all
of the above solutions are invariant under reflection with respect
to a suitable origin x0 (i.e., A(2x0 − x) = A(x), localized states) or
under the combined action of reflection followed by the operation
(x, A) → (x, Ae2π i/n) (fronts). Solutions that break reflection sym-
metry (A(2x0 − x) 6= A(x), all x0) generally drift and will not be
considered.
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a b

c

Fig. 1. (a) The (ν, γ ) plane for Eq. (2) when α = −2, β = 2, and µ = 1. The curve γ0 is plotted as a solid line in ν < νβ where the bifurcation to the uniform phase-locked

states is supercritical, and dashed in ν > νβ where it is subcritical. The (solid) line γ T
0 in ν < να represents a Turing bifurcation on A = 0; the (dotted) line γ BD

0 in ν > να

is the line of Belyakov–Devaney points on A = 0. The Turing bifurcation of A+ at γ T is supercritical between the locations indicated by ⋄, and subcritical elsewhere. The

shaded region contains the stable spatially homogeneous state A+ . The heteroclinic cycle forms along the dot–dashed line γ CS . (b) Detail near the codimension-two point

(ν∗, γ ∗) ≃ (1.3077, 0.4573), marked with an open circle, where collapsed snaking turns into defect-mediated snaking within γ DMS
1 < γ < γ DMS

2 . The dotted line shows the

pinning region γ HS
1 < γ < γ HS

2 containing regular homoclinic snaking. (c) The solid line shows the wavenumber range included in defect-mediated snaking as a function of

ν. The dashed line shows kT (ν). The wavenumber range shrinks to kT (ν
∗) as ν increases towards ν∗ .

3. The 2:1 resonance

In this sectionweexamine solutions to Eq. (2) for the casen = 2,
the 2:1 resonance. In this case, the equation always has the trivial
solution A = 0 in addition to the nontrivial homogeneous states
discussed above. When two nonzero homogeneous solutions
are present, we use the notation A+/A− to refer to solutions
with larger/smaller R. The phase symmetry guarantees that all
nontrivial (homogeneous or inhomogeneous) solutions come in
pairs: if A(x) is a solution so is −A(x). To deal with the resulting
ambiguity we choose whenever possible solutions with V (0) ≤ 0,
where V (x) ≡ Im A(x). Throughout this section we adopt the
parameter values α = −2, β = 2 and µ = 1, corresponding to
Region V+ in the classification scheme of [30].

Since µ > 0 the A = 0 state is unstable, although it undergoes
a steady state pitchfork bifurcation to homogeneous states at

γ = γ0 ≡
√

µ2 + ν2; (14)

when ν < να ≡ −µ/α this bifurcation is preceded by a steady
state Turing bifurcation at

γ = γ T
0 ≡

|ν − µα|
√
1 + α2

(15)

to a spatially periodic state with wavenumber

k = k0T ≡
√

α(ν − να)

1 + α2
(16)

as obtained from the equation for spatial eigenvalues of A = 0,

(1 + α2)λ4 + 2α(ν − να)λ2 + µ2 + ν2 − γ 2 = 0, (17)

on demanding that λ = 0 and λ = ±ik0T , respectively.
In Fig. 1(a) we show the (ν, γ ) parameter plane for these

parameter values. The figure shows the curves γ = γ0, γ
T
0 of

bifurcations on the trivial A = 0 state. These two lines are tangent
at ν = να = 0.5. Beyond ν = να the line γ T

0 represents

Belyakov–Devaney points and is labeled γ BD
0 . In addition, γ = γ0

is tangent to the line of saddle–nodes computed from Eq. (7) and

given by γ = γ SN ≡ |ν−βµ|√
1+β2

; this tangency occurs at ν =

νβ ≡ −µ/β = −0.5. When ν > νβ the homogeneous states A−

states appear via a subcritical bifurcation from A = 0 at γ = γ0

and are unstable. These states annihilate with the large amplitude
homogeneous states A+ at γ = γ SN thereby defining the region of
bistability between the two homogeneous states A = 0 and A =
A+. In contrast, when ν < νβ the A− states and the saddle–node
bifurcation are absent, and the A+ states bifurcate directly from
A = 0 at γ0 and do so supercritically. Finally, the figure also shows
the line γ = γ T corresponding to the Turing bifurcation on A = A+

as determined from Eq. (10). Details may be found in [30].

3.1. Homoclinic snaking

In this section we describe the behavior of the branches identi-
fied above when these are followed in parameter space. In general
we use γ as the bifurcation parameter and show the resulting so-
lution branches for several fixed values of ν. Fig. 2 shows the bifur-
cation diagram of stationary solutions at ν = 1.2 < ν∗, plotted in
terms of the L2 norm N defined as

N =

√

1

ℓ

∫ ℓ/2

−ℓ/2

{|A(x)|2 + |Ax(x)|2}dx, (18)

where ℓ is the large but finite domain used in the computation.
The branches of spatially homogeneous solutions in this figure are
characteristic of the entire range of ν considered in this section.
In particular, since ν > να , the four spatial eigenvalues of the
A = 0 state are real in γ BD

0 < γ < γ0 (configuration (2)) while

for γ < γ BD
0 they are complex (configuration (1)). Moreover, since

ν > νβ the nontrivial homogeneous state A− emerges from the
A = 0 state in a subcritical bifurcation atγ = γ0 and coalesceswith
the A+ state in a saddle–node bifurcation at γ = γ SN. In addition,
the value of ν used in Fig. 2 lies in the range where the bifurcation
at γ = γ T is supercritical, i.e., periodic states with wavenumber
kT bifurcate into γ < γ T , with the A+ branch in γ > γ T (γ < γ T )
temporally stable (unstable). Accompanying this bifurcation is a
continuum of supercritical spatially periodic branches (not shown
in the figure) with wavenumbers in a neighborhood of kT that also
bifurcate from A+ into γ < γ T . Each fixed-k branch undergoes one
or more saddle–node bifurcations, and may pass through γ = γ T

several times. When both γ and k are viewed as bifurcation pa-
rameters, the continuum of branches forms a surface of spatially
periodic states with several folds (i.e., lines of saddle–nodes) and
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a

b

Fig. 2. (a) Bifurcation diagram corresponding to the ν = 1.2 < ν∗ slice of

Fig. 1, where the branch of localized states undergoes homoclinic snaking. Solid

(dotted) lines correspond to stable (unstable) homogeneous solutions, with the

labels indicating the corresponding spatial eigenvalue configuration. The branches

L0 and L1 of localized states are everywhere unstable but are plotted as solid lines for

clarity. The inset shows the detailed behavior of L0 and L1 . The limiting values for the

saddle–node bifurcations far up the homoclinic snaking branches are γ HS
1 ≃ 0.3662

and γ HS
2 ≃ 0.4689. The L1 branch exits this snaking region at small amplitude and

enters a second homoclinic snaking region (not shown) in 0.3289 ≤ γ ≤ 0.3659.

(b) A sample solution high up the L0 branch.

possible cusps.We use the notation AP(x; γ , k) to refer to solutions
on this surface.

The behavior of the branches of spatially localized solutions
depends crucially on the value of ν. Fig. 2 includes two distinct
branches of localized solutions, labeled L0 and L1. The profiles
along each of these branches are invariant under the reversibility
symmetry of the system and resemble a slug of a uniform
amplitude spatially periodic pattern AP(x; γ , k) connected by a
pair of fronts to the trivial background state A = 0 as |x| → ∞. The
L0 (L1) branch includes all solutionswith localminima (maxima) in
V (x) at x = 0, subject to the convention mentioned above that we
choose the overall sign of A(x) such that V (0) ≤ 0.

Each of the branches L0 and L1 exhibits homoclinic snaking,
a reference to the back-and-forth motion of the branch as it un-
dergoes an infinite sequence of saddle–node bifurcations. The left

saddle–nodes approach a limiting value γ HS
1 and the right sad-

dle–nodes approach a different limiting value γ HS
2 , resulting in an

infinite multiplicity of distinct localized states within the snaking
(or pinning) region γ HS

1 ≤ γ ≤ γ HS
2 . Fig. 3 shows in more detail

the variation of the profiles along the two branches. In each case,
one full back-and-forth cycle up the snaking branch pushes each
of the fronts symmetrically one wavelength farther from the mid-
point, thereby increasing the overall width of the state by twice
this wavelength.

The patternwithin the localized state alwaysmatches one of the
solutions AP(x; γ , k) on the surface of spatially periodic states. In
regular homoclinic snaking the pattern is always associated with a
segment of the appropriate fixed-k branch that is separated from
onset (near A+) by at least one saddle–node (Fig. 4(a)), and always
has Floquetmultipliers in configuration (I). Thewavenumber of the
selected patternwithin the localized state varies across the pinning
interval, as shown in Fig. 5. The wavenumber variation along all
branch segments extending from γ HS

1 to γ HS
2 is the same (curve C ′)

and likewise for all segments extending from γ HS
2 to γ HS

1 (curve C).
Thus thewavenumber selection along these two types of segments
differs, although the wavenumbers at the end points γ HS

1 and γ HS
2

must, of course, match, i.e., the selected wavenumber k(γ ) must
form a closed curve (Fig. 5).

Homoclinic snaking can be understood from the perspective
of spatial dynamics as follows. The localized states that make
up the snaking branches correspond to reversible homoclinic
orbits which resemble heteroclinic cycles to the A = 0 state.
Each cycle can be decomposed into two pieces: a heteroclinic
connection from A = 0 to a reversible orbit AP(x; γ , k), and the
symmetric heteroclinic orbit from AP(x; γ , k) back to A = 0. In
the parameter regime of interest the spatial eigenvalues of A = 0
are in configuration (1), implying that the unstable manifold of
this fixed point is two-dimensional, while the Floquet multipliers
of the relevant periodic orbit AP(x; γ , k) are in configuration (I),
implying that the center-stable manifold of this state is three-
dimensional. In the four-dimensional phase space of the spatial
dynamical system the intersection of these two manifolds is
of codimension zero (i.e., structurally stable) and determines
the selected wavenumber k(γ ). The first and last tangencies
between these two manifolds occur at γ HS

1 and γ HS
2 , where pairs

of heteroclinic orbits are created or destroyed in saddle–node
bifurcations, as suggested by Fig. 5. A detailed explanation of

a b

Fig. 3. (a) Detail of the snaking branches in Fig. 2. The L0 (L1) branch is plotted as a solid (dashed) line. (b) Frames (i)–(iii) show profiles on L0 (minima of V (x) at x = 0)

while (iv) shows a profile on L1 (maximum of V (x) at x = 0).
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a

b

Fig. 4. (a) Bifurcation diagram showing the k = 0.8708 branch of spatially periodic

states for the parameter values at which Fig. 2 reveals homoclinic snaking. This

wavenumber matches the pattern within localized states when γ = 0.38. The

open dot indicates that the included pattern occurs on the segment of the branch

separated from the Turing bifurcation by a saddle–node. (b) Bifurcation diagram

showing the k = 0.7937 branch of spatially periodic states for the parameter values

at which Fig. 7 reveals defect-mediated snaking. This wavenumber matches the

pattern within localized states when γ = 0.405. The open dot indicates that the

pattern incorporated into the localized state is selected from the segment of the

branch closest to the Turing bifurcation.

Fig. 5. The wavenumber k of the spatially periodic pattern within the localized

states at ν = 1.2 in the interval γ HS
1 < γ < γ HS

2 . As one traces ‘up’ a snaking

branch, the smaller wavenumber (curve C ′) is measured along the segments which

extend from γ HS
1 to γ HS

2 , as in profile (i) in Fig. 3; the larger wavenumber (curve C)

is measured along the segments which extend from γ HS
2 to γ HS

1 , as in profiles (ii),

(iii) and (iv) in Fig. 3. For reference the dashed line indicates the wavenumber kT of

the initial instability at γ T . The Floquet multipliers in this region of the surface of

spatially periodic states are always in configuration (I).

how the bifurcation structure of heteroclinic orbits generates
homoclinic snaking is provided in Ref. [10]. However, the precise
mechanism determining k(γ ) is only understood in systems with
a conserved spatial Hamiltonian [31] and, in the present system,
remains unclear.

Each of the snaking branches in Fig. 2 exits the bottom of the
pinning region when the width of the localized state becomes
sufficiently small, containing just two to three wavelengths of the
selected pattern. The L0 branch extends to larger values of γ as
the amplitude of the solution decreases, and eventually terminates
in a pitchfork bifurcation of the A = 0 state at γ = γ0. This
bifurcation was studied in Ref. [30]. In contrast, the L1 branch exits
the pinning interval in the direction of decreasing γ and enters
a second pinning region where it again undergoes homoclinic
snaking (not shown). The wavenumbers selected in this region by

a

b

Fig. 6. (a) Bifurcation diagram corresponding to the ν = 1.35 > ν∗ slice of

Fig. 1, where the branch of localized states undergoes collapsed snaking towards

γ = γ CS ≃ 0.4962 > γ T . The localized states are everywhere unstable but

are shown as a solid line. The remaining solid (dotted) lines correspond to stable

(unstable) homogeneous states. (b) A sample solution far up the collapsed snaking

branch, at γ ≈ γ CS .

the fronts at either end differ from the wavenumbers shown in
Fig. 5. Additional snaking regions may also be present.

3.2. Collapsed snaking

Consider next the behavior of solutions at ν = 1.35 >
ν∗, shown in Fig. 6. The behavior of the spatially homogeneous
branches is qualitatively similar to the previous case including
the relative position of the bifurcations, the temporal stability,
and the spatial eigenvalue structure. In this case there is only a
single branch of localized solutions homoclinic to the A = 0
state (modulo the symmetry (x, A) → (x, −A)). Since the branch
originates at γ0 we again label it L0. As in the previous case the
L0 branch is associated with a subcritical pitchfork bifurcation of
the A = 0 state at γ = γ0 and undergoes an infinite sequence of
saddle–node bifurcations far from onset. However, in this case the
branch exhibits collapsed snaking as the separation in γ between
consecutive saddle–nodes decreases exponentially, and both the
left and right saddle–nodes asymptote to the same limiting value
of γ = γ CS > γ T [30,32]. The profiles high up the collapsed
snaking branch spend considerable ‘time’ in a neighborhood of
the homogeneous state A+, and resemble a heteroclinic cycle from
A = 0 to A+ and back again. The limit γ = γ CS corresponds to the
(codimension-one) point at which a heteroclinic orbit connecting
the fixed points A = 0, A+ is present. The back-and-forth approach
of the collapsed snaking branch to this limiting value is a direct
consequence of the fact that the spatial eigenvalues of A+ at
γ CS are complex (configuration (1)), as discussed in [32]. These
eigenvalues are visible in the form of decaying oscillations in U(x)
and V (x) as x → 0− (and the growing oscillations for x > 0).
Elsewhere in the parameter space of Eq. (2) there are regionswhere
the spatial eigenvalues of the A+ state at the limit point γ CS are
real (configuration (2)); in this case the profiles U(x) and V (x) lack
spatially oscillating tails and the branch L0 collapsesmonotonically
in γ without any (asymptotic) saddle–node bifurcations [30].

3.3. Defect-mediated snaking

The bifurcation diagram for steady solutions of Eq. (2) at an
intermediate value of ν, ν = 1.26 < ν∗, is shown in Fig. 7. Herewe
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a

b

Fig. 7. (a) Bifurcation diagram corresponding to the ν = 1.26 slice of Fig. 1, where

the branch of localized states undergoes defect-mediated snaking. The localized

states within the pinning interval γ DMS
1 ≤ γ ≤ γ DMS

2 , where γ DMS
1 ≃ 0.3966

and γ DMS
2 ≃ 0.4167, are all unstable. The remaining solid (dotted) lines represent

stable (unstable) homogeneous solutions. (b) A sample solution high up the snaking

branch.

find that while the behavior of the spatially homogeneous states
A = 0 and A± remains qualitatively similar to the previous two
cases, the behavior of the localized states differs dramatically: a
snaking branch L0 of spatially localized states emerges from A = 0
at γ = γ0 much as in regular homoclinic snaking but this time
the partner branch L1 is absent. Instead the L0 branch combines
elements from both the L0 and L1 branches in Fig. 2 and it does
so via a distinct growth mechanism which we call defect-mediated
snaking (DMS). When describing this mechanism we label the left
and right limit values of the saddle–node bifurcations on either
side of L0 by γ DMS

1 and γ DMS
2 , respectively, and continue to refer

to γ DMS
1 ≤ γ ≤ γ DMS

2 as a pinning or snaking interval.

The growth of the localized states along the DMS branch is illus-
trated in Fig. 8. This branch contains two distinct families of states.
The first of these are the uniform amplitude segments, where the
profiles consist of slugs of a uniform amplitude spatially periodic
pattern connected to theA = 0 background state by a pair of fronts,
and therefore resemble the localized states found in regular homo-
clinic snaking. These segments extend from γ DMS

2 to γ DMS
1 as one

moves up the DMS branch, and are shown in Fig. 8 using solid lines.
The patternwithin these localized states alwaysmatches one of the
solutions AP(x; γ , k) from the surface of spatially periodic states.
Unlike the case of regular homoclinic snaking, in defect-mediated
snaking the patterns are always associated with a segment of the
appropriate fixed-k branch which connects monotonically to A+

(Fig. 4(b)). This section of the surface of periodic states is shown
in Fig. 9. The boundary of the surface is formed by the neutral sta-
bility curve of the A+ state. Shading is used to indicate the configu-
ration of Floquetmultipliers at each (γ , k). The patternswithin the
localized states always come from the Eckhaus-stable band, where
the Floquet multipliers have configuration (I). In defect-mediated
snaking, the curve of selected wavenumbers k(γ ) is ‘S’-shaped and
spans the entire width of the Eckhaus band, terminating at the
boundaries where the Floquet multipliers transition to configura-
tion (II).

Fig. 8 also shows that the DMS branch alternates between two
types of uniform amplitude segments: those where V (x) has a
minimum at x = 0 and those where V (x) has amaximum at x = 0.
The corresponding profiles are labeled by their spatial phaseΦ (see
below), Φ = 0 for the former and Φ = π for the latter. The single
DMS branch in Fig. 8 therefore combines elements of both the L0
and L1 branches in Fig. 2.

The spatial dynamics explanation of the uniform amplitude
segments of the DMS branch is similar to the previous explanation
of regular homoclinic snaking. The localized states correspond to
reversible homoclinic orbits which resemble heteroclinic cycles
from A = 0 to AP(x; γ , k) and back again. These are ultimately
a consequence of the structurally stable intersection of the two-
dimensional unstable manifold of the A = 0 fixed point and
the three-dimensional center-stable manifold of the periodic orbit

a b

Fig. 8. (a) Detail of the L0 snaking branch in Fig. 7. The uniform amplitude segments of the branch are shown as solid lines, while the defect segments are shown as dashed

lines. (b) Five sample solutions, all at γ = 0.41. The spatial phase Φ is indicated for each profile on a uniform amplitude segment.
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Fig. 9. Section of the surface of spatially periodic states for the parameters used in

Fig. 7. The surface is bounded by the neutral stability curve of the A+ state. The

configuration of the Floquet multipliers in each shaded region is indicated. The

curve C shows the wavenumber k(γ ) of the patterns included in defect-mediated

snaking; this wavenumber spans the width of the Eckhaus band.

(two center directions plus one strong stable direction), combined
with the reversibility symmetry of the system. In the case of
defect-mediated snaking, the extent in γ of the heteroclinic
connection is not determined by the first and last tangencies of
these manifolds, but instead by a change in the dimensionality
of one of the manifolds. In particular, the limits γ DMS

1,2 lie on the
Eckhaus boundary where the periodic orbit loses its one strong
stable direction so the heteroclinic orbit from A = 0 to AP(x; γ , k)
must terminate.

The remaining segments in Fig. 8, plotted using dashed lines,
are the defect segments. The profiles along these segments
again correspond to reversible homoclinic orbits which resemble
heteroclinic cycles to the A = 0 state. But here each cycle can
be decomposed into three pieces: a heteroclinic connection from
A = 0 to a reversible orbit AP(x; γ , k), a homoclinic connection
from this orbit back to itself, and a heteroclinic connection from
AP(x; γ , k) back to A = 0, cf. [33]. The spatially periodic states
AP(x; γ , k(γ )) associated with the defect segments are identical

to those associated with the uniform amplitude segments at the
same γ . Thus the plot of k(γ ) in Fig. 9 also applies along the defect
segments. Likewise, the heteroclinic connections between A = 0
and AP(x; γ , k(γ )) are the same along both the uniform amplitude
and the defect segments (see Fig. 8). The only new feature along
the defect segments is therefore the defect itself. The influence of
this defect can be quantified by its spatial phase shift Φ . To define
Φ(γ ) we fix the spatial phase of the periodic orbits AP(x; γ , k) so
that VP(x; γ , k) = Im AP(x; γ , k) has a local minimum at x = 0
and define AD(x; γ ) to be the orbit with a defect centered at x = 0
which is homoclinic to AP(·; γ , k(γ )). Then Φ(γ ) satisfies

lim
x→∞

AD(x; γ ) = AP

(

x −
Φ(γ )

k(γ )
; γ , k(γ )

)

. (19)

With this definition, a uniform profile with local minimum
(maximum) in VP(x; γ , k) at x = 0 has phase Φ = 0 (Φ = π),
and the total phase shift from x → −∞ to x → +∞ of a
pattern with a defect relative to one without a defect is 2Φ . The
phase Φ(γ ) of the solution along two complete turns of the DMS
branch is plotted in Fig. 10. The phase is constant along the uniform
amplitude segments (either Φ = 0 or Φ = π ) and increases
by π across each defect segment, indicating the insertion of one
extra wavelength into the pattern. The variation in phase across
the pinning region is slightly different for defect segments which
increase Φ from 0 to π and for those which increase Φ from π to
2π . We mention that the phase shown in the figure is determined
empirically by examining the broad localized states found far up
the defect-mediated snaking branch, rather than by computing the

Fig. 10. The phase Φ(γ ) of the solution across two complete turns of the snaking

branch in Fig. 8(a). The phase varies monotonically across defect segments but

remains constant on uniform amplitude segments. The labels mark the phases of

the profiles shown in Fig. 8(b).

Fig. 11. Profiles from the defect segments across the snaking region of Fig. 8. The

plot range is truncated to focus on the changes in V (x) near the center of the domain

at x = 0. The direction of increasing γ is indicated by an arrow, with the upper

(lower) frames taken at the left (right) boundary of the snaking region.

actual homoclinic orbit AD(·; γ ). The defect is typically only a few
wavelengths wide so the limit in Eq. (19) converges rapidly and
Φ(γ ) is well approximated by our method.

Fig. 11 shows in detail the variations of the profile along each
type of defect segment. In each case, as γ increases across the
pinning region the defect forces the central extremum to undergo
‘‘tip-splitting’’, thereby squeezing in an extra half wavelength on
either side of x = 0 (i.e., one wavelength overall). As a result the
localized state grows from the center rather than from the outside
as occurs in regular homoclinic snaking, andwith eachwavelength
insertion the existing ‘‘rolls’’ are pushed aside.

The behavior along the defect segments can be understood
from the perspective of spatial dynamics as follows. Each defect
corresponds to a reversible homoclinic orbit to a periodic orbit.
Within the Eckhaus band the center-stable manifold of a periodic
orbit is three-dimensional. The symmetric section of the four-
dimensional phase space is two-dimensional. Hence, there is a
continuous family of defects at each γ parameterized by the
wavenumber k of the background periodic orbit. However, the
wavenumber k(γ ) of the periodic orbits relevant in DMS is already
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a b

Fig. 12. (a) The critical curves and limits of snaking regions in the (ν, γ ) plane. The lines γ SN
± delimit the region with three homogeneous equilibria while the line γ T

corresponds to Turing bifurcations on A+ . Belyakov–Devaney points on A− occur along the line γ BD . The transition from collapsed snaking at γ CS to defect-mediated snaking

between γ DMS
1 and γ DMS

2 occurs at the codimension-two point (ν∗, γ ∗) ≈ (5.983, 2.339), marked with an open circle. (b) At larger ν, defect-mediated snaking has an

additional limit γ DMS
3 .

selected by the front that connects it to A = 0 as |x| → ∞.
Thus the defect structure varies continuously as γ varies across the
snaking region. In the Appendix we study the normal form for the
supercritical Turing bifurcation at γ = γ T in order to understand
the homoclinic-to-periodic solutions born there in greater detail.
We conjecture that these homoclinics become involved in the
defect-mediated snakingweobserve farther fromγ = γ T but have
not studied this process in detail.

3.4. Persistence as ν varies

In this section we describe the variation of the snaking be-
havior due to changes in ν, with a particular focus on γ CS in the
case of collapsed snaking and γ DMS

1,2 in the case of defect-mediated

snaking. As originally shown in Ref. [30], the location of γ CS always
remains above γ T but approaches this value as ν decreases. The
codimension-two bifurcation where γ CS = γ T occurs at (ν∗, γ ∗)
indicated in Fig. 1(a) and (b) by an open circle. As ν increases
towards ν∗ the width of the pinning region containing defect-
mediated snaking decreases, simultaneously with the wavenum-
ber range of the periodic patterns within the localized states
(Fig. 1(c)). At ν∗ the system undergoes a smooth transition to col-
lapsed snaking. Viewed from the other direction the heteroclinic
connection between A = 0 and A+ changes smoothly to a hetero-
clinic connection between A = 0 and a solution AP(x; γ , k) from
the surface of spatially periodic states that emerges from A+ near
γ T . A related transition occurs in the reversible Shil’nikov–Hopf
bifurcation. In the present case this transition is nonhysteretic be-
cause the Turing bifurcation at γ T remains supercritical as ν de-
creases through ν∗, and because the periodic orbits involved in
defect-mediated snaking correspond to periodic states near the
Turing bifurcation at γ = γ T rather than those separated from
it by a saddle–node (Fig. 4).

The dotted line in Fig. 1(b) shows the width γ HS
1 < γ < γ HS

2

of the pinning region associated with the regular homoclinic
snaking shown in Fig. 2. We see that this region comes into
being at a fold, i.e., this region does not originate in a 1:1
reversible Hopf bifurcation in space as in other systems known
to the authors but resembles instead the behavior identified in
the generalized Swift–Hohenberg equation far from the 1:1 spatial
resonance [6]. The relation, if any, between regular homoclinic
snaking in Eq. (2) and defect-mediated snaking in this equation
remains unknown.

a

b

Fig. 13. (a) Bifurcation diagram corresponding to the ν = 5 slice of Fig. 12,

where the branch of localized states undergoes collapsed snaking towards γ =
γ CS ≈ 1.842. The branch of localized states is computed on a domain of half-length

ℓ/2 = 50. Stable (unstable) segments are shown in solid (dashed) lines. For clarity,

only the first three unstable segments are shown. On the homogeneous branches,

solid (dotted) lines correspond to stable (unstable) solutions, and the labels indicate

the spatial eigenvalue configurations. (b) A sample solution high up the L0 branch.

4. The 1:1 resonance

In this section we focus on defect-mediated snaking in the case
n = 1, i.e., in the 1:1 resonance. Unlike the case n = 2 studied in
Section 3, A = 0 is no longer a solution and the phase symmetry
(x, A) → (x, Ae2π i/n) is trivial. We adopt the parameter values
α = −1.5, β = 6 and µ = −1 corresponding to Region V−

in the classification scheme of [34], and explore several values of
the detuning ν. In addition to exhibiting bifurcation diagrams for
stationary states we also examine their temporal stability.

As in the 2:1 resonance, localized states exist in the region of
bistability, in this case between two distinct phase-locked states.
Thus we focus on the parameter regime corresponding to the
presence of three homogeneous equilibria (Fig. 12, region between
lines γ SN

± ). The equilibrium with the smallest/middle/greatest L2

norm will be denoted by A−/A0/A+. In Region V− the equilibrium
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a

b

Fig. 14. (a) Bifurcation diagram corresponding to the ν = 7 slice of Fig. 12,

where the branch of localized states undergoes defect-mediated snaking between

γ DMS
1 ≈ 2.8949 and γ DMS

2 ≈ 2.8970. Stability on the homogeneous branches is as

in Fig. 13, but stability on L0 is not indicated. (b) A sample solution high up the L0
branch.

A− is temporally stable [34] implying that all localized states
considered here are embedded in a stable background. This is an
important difference between the situation considered here and
that considered in Section 3, and is a consequence of the fact that
here µ = −1 whereas in Section 3 µ = 1.

The loci of bifurcation points of the equilibria in the (ν, γ )
plane are shown in Fig. 12, together with the limits of the snaking
region. These include the lines γ SN

± delimiting the regionwith three

homogeneous equilibria and the lines γ T and γ BD corresponding
respectively to Turing bifurcations on A+ and Belyakov–Devaney
points on A−. In what follows, we study the branch of localized

states embedded in an A− background, hereafter L0. As explained
in Section 2 these bifurcate from the lower saddle–node at γ SN

− .
For the chosen values of ν, there is always a supercritical Turing
bifurcation on A+ at γ T .

4.1. Collapsed snaking

Fig. 13 shows the L0 branch when ν = 5. The branch undergoes
collapsed snaking towards γ = γ CS, where the solution profile
approaches a heteroclinic cycle between A− and A+. The oscillatory
approach to the codimension-one point γ CS is a consequence of
complex spatial eigenvalues of A+ [32].

The localized states near γ SN
− are temporally unstable. However,

temporal stability changes at every saddle–node along the
collapsed snaking branch. As a result, there is an infinite number of
branch segments with stable localized states, located between the
(2i − 1)-th and 2i-th saddle–nodes, i ∈ N. In contrast, in the 2:1
case the corresponding collapsed snaking does not produce stable
localized states.

4.2. Two-limit defect-mediated snaking

The transition from collapsed snaking to defect-mediated
snaking occurs as ν increases above ν∗ (open circle in Fig. 12) and
is similar to the corresponding transition in the 2:1 resonance.

Fig. 14 shows the bifurcation diagram at ν = 7 > ν∗. As a result
the collapsed snaking in Fig. 13 is replaced by defect-mediated
snaking within the interval γ DMS

1 < γ < γ DMS
2 . The detailed

growth mechanism of the localized states in this region is shown
in Fig. 15, and is essentially the same as in the DMS described
in Section 3 for the 2:1 resonance. The DMS branch once again
consists of uniform amplitude segments and defect segments,
although this time the uniform amplitude segments extend from
γ DMS
1 to γ DMS

2 as one follows the branch upwards, while the
opposite occurs in Fig. 8. Despite this difference a localized state

a b

Fig. 15. (a) Detail of the L0 snaking branch in Fig. 14. Temporally stable (unstable) segments are shown as solid (dashed) lines and coincide with uniform (defect) segments.

(b) Five sample profiles at γ = 2.896. The spatial phase Φ is indicated for each profile on a uniform amplitude segment.
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Fig. 16. Section of the surface of spatially periodic states for the parameters used in

Fig. 14. The surface is bounded by the neutral stability curve ofA+ . The configuration

of the Floquet multipliers in each shaded region is indicated. The curve C shows the

wavenumber k(γ ) of the patterns included in defect-mediated snaking at this value

of the parameters and again spans the width of the Eckhaus band (inset).

on a uniform amplitude segment continues to resemble a periodic
wave train connected to A− by a pair of fronts, and a localized
state on a defect segment resembles one on the uniform amplitude
segment at the same γ , except for the presence of a defect in the
middle of the wave train. Each time the branch passes through
a defect segment, the defect inserts an extra wavelength at the
center of the localized state exactly as in Fig. 11.Within the snaking
region, the uniform amplitude segments are temporally stable,
while all the defect segments are temporally unstable. This is as
expected since the uniform amplitude segments lie between the
(2i − 1)-th and 2i-th saddle–nodes, i ∈ N, and these are precisely
the segments that are stable in the collapsed snaking shown in
Fig. 13.

The wavenumber selection process across the snaking region,
valid for both the uniform amplitude and defect segments, is
illustrated in Fig. 16. The figure shows the wavenumber selected
on the uniform segments high up the L0 branch. As in the standard
snaking scenario the wavenumber is constant across the localized
structure at each γ and only depends on γ . However, in contrast
to the regular case the selected wavenumber does not include the
wavenumber kT selected at γ T because the DMS region is too far
from γ T at this value of ν.

As discussed already in Section 3.3 and illustrated further in
Fig. 15, panels (ii) & (iv), the defects on successive defect seg-
ments differ. The defect at (ii)/(iv) is responsible for converting
a local maximum/minimum of V (x) at x = 0 into a local mini-
mum/maximum at x = 0, by inserting in each case an extra wave-
length at x = 0, exactly as in the 2:1 resonance (Fig. 8). Moreover,
the phase Φ(γ ) changes monotonically along the defect segments
while remaining constant on the uniform amplitude segments ex-
actly as in Fig. 10.

4.3. Three-limit defect-mediated snaking

Fig. 17 shows the solution behavior when ν = 36. As in Fig. 14
the branch undergoes defect-mediated snaking, but this time the
snaking region has three asymptotic limits, γ DMS

1,2,3. The detailed
growthmechanism of the localized states in this region is shown in
Fig. 18 which shows one complete turn of the solution branch. As
one follows the branch upwards, the uniform amplitude segments
extend from γ DMS

1 through γ DMS
3 to γ DMS

2 (profiles (i) and (ii)),

and the defect segments extend from γ DMS
2 through γ DMS

3 to γ DMS
1

(profiles (iii) and (iv)). As before, the defect segment is responsible
for inserting an extra wavelength at the center of the localized
state (compare (i) with (v)). Moreover, as in two-limit defect-
mediated snaking, the limit points γ DMS

1 and γ DMS
2 define transition

a

b

Fig. 17. (a) Bifurcation diagram corresponding to the ν = 36 slice of Fig. 12, where

the branch of localized states undergoes three-limit defect-mediated snaking.

Stability on the homogeneous branches is as in Fig. 13, but stability on L0 is not

indicated. (b) A sample solution high up the L0 branch.

points between the uniform amplitude and defect segments. The
additional snaking limit γ DMS

3 is also associated with a qualitative
change in the periodic state (compare the U(x) profiles in (i) with
(ii)). The details of this transition are shown in Fig. 19. The figure
shows that this transition also occurs via ‘‘tip-splitting’’ but this
time the tip-splitting occurs at x = 0 inU(x)whereas the transition
from profile (ii) to profile (v) takes place at x = 0 in V (x) (Fig. 18).
Neither transition is evident in the conjugate variable. Similar
transitions take place on the next complete turn of the snaking
curve, this time starting with state (v) and changing the minimum
at x = 0 in U(x) to a maximum when γ ≈ γ DMS

3 , followed by a
change of themaximum at x = 0 in V (x) into aminimum along the
corresponding defect segment. Despite the additional fold γ DMS

3 ,
the phase Φ(γ ) again changes monotonically along the defect
segments while remaining constant on the uniform amplitude
segments.

The reason for the presence of the third limit point γ DMS
3 can

be explained with the assistance of Fig. 20. This figure shows a
section of the surface of spatially periodic states. Near (γ T , kT )
the surface is smooth and single-valued as in Fig. 16. The limit
points γ DMS

1,2 lie on the boundaries of the Eckhaus-stable band,
where the Floquet multipliers transition from configuration (I) to
(II). As ν increases far above ν∗ the curve of selected wavenumbers
slides farther from the tip of the Eckhaus region at (γ T , kT ) and
eventually encounters a section of the surface of spatially periodic
states where this surface is folded. Fig. 20 shows a section of
this surface with two folds, one plotted as a solid line and the
other as a dotted line. These folds meet in a cusp, marked by an
open circle. The Floquet multipliers within each shaded region are
indicated, although between the folds the Floquet multipliers are
only indicated for the section of the surface with the largest L2

norm, thus showing what one would see looking ‘‘down’’ on the
surface from above. As for smaller values of ν, the curve k(γ ) of
wavenumbers included in DMS extends between the boundaries of
the Eckhaus band, but in this case the curvemust trace around both
folds andhence include patterns from the upper,middle, and lower
sections of the folded surface; the presence of the third limit point
γ DMS
3 in three-limit DMS is therefore a consequence of a global

feature of the surface of spatially periodic states that is absent in
the two-limit case. It follows that the spatial dynamics explanation
of three-limit DMS is identical to the two-limit case. However, the
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a b

Fig. 18. (a) One complete turn of the snaking branch L0 in Fig. 17. Solid (dashed) lines show uniform (defect) segments of the branch. Temporal stability is not indicated.

The limiting values for the saddle–node bifurcations are γ DMS
1 ≈ 30.872, γ DMS

2 ≈ 30.695 and γ DMS
3 ≈ 30.285. (b) Five sample solutions at γ = 30.5. The spatial phase Φ is

indicated for profiles on the uniform amplitude segments. As Φ is defined in terms of V (x), the change in the shape of U(x) between (i) and (ii) does not change Φ .

a b

c d

e f

Fig. 19. Profiles U(x) at six locations straddling a fold at γ DMS
3 on a uniform segment (solid line in Fig. 18) showing the transition from a state with a maximum at x = 0

(panel (a)) to one with a minimum at x = 0 (panels (d)–(f)) in the vicinity of the fold. During this transition V (x) remains qualitatively unchanged. The locations (a)–(f) are

indicated in Fig. 23.

Fig. 20. A section of the surface of spatially periodic states for the parameters used

in Fig. 17. Refer to the text for notation.

temporal stability properties of the uniform amplitude segments
are, inevitably, more complicated in the three-limit case than in
the two-limit casewhere these states are stable, as discussed next.

5. Time evolution

In this section, we describe the temporal evolution of the
different unstable states associatedwith both two-limit and three-
limit snaking.

5.1. The two-limit case: depinning

As discussed above, at ν = 7 the localized states on the uniform
amplitude segments in Fig. 15 are temporally stable for γ DMS

1 <

γ < γ DMS
2 . The pair of fronts between the uniform and periodic

states remains stationary in time, a phenomenon commonly
referred to as pinning. However, outside the pinning region the
fronts depin and begin to move. For γ < γ DMS

1 Fig. 21(a) shows
that the width of the localized state gradually decreases as the two
fronts drift symmetrically inwards, ultimately leading to a final
state consisting of a stable two-peak single-pulse state. In contrast,
when γ > γ DMS

2 the fronts drift apart allowing the structured state
to invade thedomain (Fig. 21(b)). This behavior iswell-known from
both variational systems such as the Swift–Hohenberg equation [6]
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Fig. 21. Space–time plot of V (x, t) for ν = 7 showing the depinning of the fronts bounding a localized state at (a) 10−3 to the left of γ DMS
1 and (b) 10−4 to the right of γ DMS

2 .

The final state in (a) is a steady localized state consisting of two wavelengths; in (b) the expanding state eventually fills the whole domain.

where it admits a natural explanation based on the free energies
of the uniform and periodic states, and a variety of nonvariational
systems such as binary mixture convection [3,4]. However, the
evolution shown in Fig. 21(a) and (b) differs profoundly from that
familiar from the Swift–Hohenberg equation and the convection
systems cited above. In the latter the front represents a nucleation
front, i.e., the front advances by nucleating new structures at a
steady rate or retreats by annihilating structures also at a steady
rate. Throughout the evolution the cells away from the front
remain stationary and are altered (switched on or off) only by the
passage of the front. This is because the eigenfunction responsible
for the depinning of the front is strongly localized at the front or
just outside it. In contrast, Fig. 21 reveals that in the present case
the motion of the front is associated with a continuous drift of
several cells near the location of the frontwithout either nucleation
of new cells in the front region or their destruction. Instead one
finds that cells are progressively destroyed in an intermediate
region between the front and the center of the structure, with the
destruction zone graduallymoving to the center once the structure
becomes sufficiently narrow (Fig. 21(a)). Thus the behavior of the
system takes the form of repeated phase slips generated by the
Eckhaus instability [35], with the region where the phase slips
take place drifting inward with approximately the speed of the
front. This behavior is reversed in Fig. 21(b) where the fronts drift
outward instead of inward. In this figure the phase slips occur
initially in the center of the structure, at x = 0, but once the
structure becomes broad enough the location of the phase slips
splits into two locations which drift outwards more-or-less with
the speed v of the outer fronts.

Fig. 21(a) shows that as the fronts move inward the pattern
is more-or-less uniformly compressed resulting in an average
wavenumber k that increaseswith time. This progressive change in
wavenumber triggers Eckhaus instability that is responsible for the
elimination of a pair of rolls (onewavelength). After each phase slip
the pattern relaxes again into amore-or-less uniformwavenumber
state, but the continued motion of the fronts compresses the rolls
again and triggers another phase slip. Evidently the speed of the
fronts, v, is related to the interval T between successive phase
slips by the relation vT ≈ 2π/k, where k ≈ k(γ DMS

1 ). Since

v varies as |γ − γ DMS
1 |1/2 the phase slips occur with frequency

T−1 ∼ |γ −γ DMS
1 |1/2. This relation is verified in Fig. 22(a). A similar

relation, with γ1 replaced by γ2, holds for fronts that are moving
apart (Fig. 22(b)). The nonzero intercepts on the horizontal axis are
most likely due to the finite spatial extent of the wave train.

We have also examined the time evolution starting from the
unstable defect branches. Here we find that the defect heals and
the solution either grows into a statewith an extra half wavelength

a

b

Fig. 22. Plots of 1/T 2 , where T is the time between the first two phase slips, as

a function of the distance |dγ | from the saddle–node for (a) γ < γ DMS
1 and (b)

γ > γ DMS
2 . The initial conditions are taken at the 71-st and 72-nd saddle–nodes,

respectively, and the |dγ |’s are measured relative to the location of the 69-th and

74-th saddle–nodes. The solid lines show the best fit lines (a) T−2 = 4.533 ×
10−4|dγ | − 5.612 × 10−10 , and (b) T−2 = 6.766 × 10−4|dγ | − 3.606 × 10−10 .

Parameters: α = −1.5, β = 6, µ = −1, ν = 7.

or it contracts into a state that is shorter by half a wavelength (on
either side). The outcome appears to depend onwhether the defect
state is ‘‘closer’’ to the longer or the shorter uniform amplitude
state, or equivalently whether γ lies in the right half of the pinning
region or the left half, although it depends sensitively on the
amplitude of the initial perturbation as well.

5.2. The three-limit case

When ν = 36 there are three additional critical values of
γ denoted by γA,B,C separating the behaviors triggered by small
amplitude perturbations of the localized states on a uniform
amplitude segment. Fig. 23(a) indicates that for γ DMS

2 < γ < γ DMS
1

(downward-pointing triangles), the fronts drift outwardmuch like
Fig. 21(b) and the domain is ultimately filled with a periodic state.
This spatially periodic end state is time-independent and stable
for γ DMS

2 < γ < γA (filled triangles) but oscillates in time for

γA < γ < γ DMS
1 (unfilled triangles). In the interval γ DMS

3 < γ <

γ DMS
2 the branch of localized states has two parts, an upper part
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a b

Fig. 23. (a) A branch of uniform amplitude localized states when ν = 36with different symbols indicating different final states reached from small amplitude perturbations

(see text). The solution profiles at locations (a)–(f) straddling the fold at γ DMS
3 are shown in Fig. 19. (b) Space–time plot of V (x, t) showing the fast transition from the localized

state (i) on the upper branch to the corresponding state on the lower branch.

a

b

Fig. 24. (a) Snapshots of the solution profile at two instants half an oscillation

period apart (t1 − t0 ≈ 0.3), corresponding to maxima of the oscillation amplitude.

(b) The time series V (x0, t) at fixed x0 ≈ 6.05.

above the saddle–node at γ DMS
3 and a lower part below it. In this

interval the localized states on the upper branch evolve rapidly
into those on the lower branch (e.g., Fig. 23(b)). Consequently, in
the following we focus only on the time evolution of localized
states on the lower branch. For these states we find that the fronts
remain pinned when γC < γ < γ DMS

2 (circles) but depin and

move inward when γ DMS
3 < γ < γC (upward-pointing triangles).

Simulations show that in the former case the localized state is
either time-independent and stable (γB < γ < γ DMS

2 , filled circles)
or that it oscillates in time (γC < γ < γB, unfilled circles).
An example of such an oscillatory localized structure is shown
in Fig. 24. This oscillatory state, which may have arbitrarily large
spatial extent, will be called an extended breather and resembles
breathers identified in other forced dissipative systems [36]. In the
case γ DMS

3 < γ < γC both the inner wave train and the fronts are
unstable to oscillations and these oscillations lead to depinning and
ultimate collapse of the structure (unfilled triangles, e.g., Fig. 25).
This collapsing state, with occasional interludes of meta-stability,
will be called a Hanoi tower.

We note that the pinning region, γC < γ < γ DMS
2 , is narrower

than the snaking region containing the localized states. A similar
reduction in the interval of stable localized states is observed in the
Swift–Hohenberg equation when two-dimensional perturbations
of localized stripes are admitted [1]. The reason is simple:

x

t

–15 0 15

0

40

Fig. 25. Space–time plot showing the evolution of V (x, t) corresponding to the

localized state (iii) in Fig. 23(a) into a Hanoi tower. The final state is a stable spot.

depending on parameters the two-dimensional perturbationsmay
lead to the depinning of the fronts that would otherwise remain
pinned, just as here the temporal oscillation of the fronts also
leads to depinning. In both cases the result is a reduced interval
of parameter values in which the fronts remain pinned, and hence
a reduced parameter interval containing stable spatially localized
states.

5.2.1. Extended breather

As already mentioned, localized states like (ii) in Fig. 23(a)
are subject to an oscillatory instability, which is absent from
variational systems. In this case, the only linearly unstable modes
are a pair of odd parity Hopf modes AH(x) and ĀH(x) with growth
rates σ ± iω (σ > 0, ω > 0). The amplitude of these modes
peaks in the center of the localized state and decreases towards the
fronts on either side indicating that the oscillatory mode is a body
mode. Decaying oscillations of this type are also visible in Fig. 23(b),
between t ≈ 2 and t ≈ 5. Fig. 24(a) shows the solution profiles
at maximum amplitude, half an oscillation period apart, once the
oscillation is fully developed. As expected, the profiles are related
to one other by the spatial reflection x → −x.

5.2.2. Hanoi tower

As shown in Fig. 25, localized states like (iii) in Fig. 23(a) are
subject to both oscillatory and depinning instabilities. The linearly
unstable modes with the largest growth rates come in several
complex conjugate pairs. Themost unstablemode is the odd parity
Hopf mode already encountered in the extended breather. The
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second and third most unstable modes are also body modes, this
time an even parityHopfmode and a second odd parity Hopfmode.
The fourth most unstable mode is an oscillatory wall mode with
support around the fronts. This pair may be either even or odd,
and is directly responsible for the collapse of the structure shown
in Fig. 25, i.e., this is the mode that is responsible for the depinning
of the fronts.

The presence ofmultiple instabilities often leads to complicated
temporal dynamics. Indeed, we find that the shape of the Hanoi
tower depends sensitively on γ as well as on the initial condition.
An example can be seen in Fig. 25, where small amplitude but
asymmetric noise in the initial condition is amplified by the
growing instability leading to a considerable displacement of the
final stable pulse from the center at x = 0.

6. Conclusion

In this paper we have identified a new mechanism for the
growth of spatially localized structures as these structures are
followed in parameter space. In contrast to the behavior familiar
from existing studies of the Swift–Hohenberg equation and of
localized states in different types of convection in which the
structures grow by nucleating new cells at the location of the
bounding fronts, the states we have found in the forced complex
Ginzburg–Landau equation grow by the fission of the cell in the
center of the structure, followed by outward displacement of all
existing cells. We have called this mechanism defect-mediated
snaking to contrast it with regular homoclinic snaking mentioned
above, and think of the mechanism as a steady-state analog of
the familiar target in which a wave is emitted from a central
pacemaker symmetrically in both directions.

We have found DMS in the FCGLE with both 2:1 and 1:1 reso-
nance. In the 2:1 case thismechanism appears to be present only in
the self-exciting case and hence the localized states created by this
mechanism are unstable. However, owing to the ‘‘reciprocity’’ be-
tween localized states asymptotic to a homogeneous background
state and holes in a periodic state [37,31] we conjecture that stable
reciprocal versions of these states may also be present in the DMS
region. In an attempt to find stable localized states with defects
in the center we turned to the 1:1 resonance. We have identified
a DMS region in this equation also, but the requisite defect states
were found to remain unstable although they now connect stable,
defect-free portions of the branch (Fig. 15).

We have observed differences in the motion of the bounding
fronts outside the pinning region as well. In the regular scenario
the fronts depin above the pinning region and propagate outwards
as a result of sequential nucleation of cells at the location of the
fronts. Thus the passage of the front replaces the homogeneous
state by a cellular state, but no motion of existing cells takes
place. In contrast, in the 1:1 resonance case we have seen a
different mechanism. The fronts still drift outwards with a speed
proportional to the square root of the distance from the upper
boundary of the DMS region, as in the regular case, but this time
no nucleation of new cells at the location of the fronts takes place.
Instead, the bounding cells are continually pushed outwards as
phase slips repeatedly insert new roll pairs either symmetrically
between the outer front and the center of the localized structure,
or in the center. We have conjectured that these phase slips
are triggered by the Eckhaus instability as the dilating structure
is stretched by the moving fronts and its wavenumber pushed
outside the Eckhaus-stable band. The reverse process occurs below
the DMS region.

We leave a number of questions to future work. Among these
we list the determination of the Eckhaus stability boundary for
localized structures, the prediction of the speed of the fronts and
the confirmation of its conjectured relation to the frequency of

the observed phase slips. The transition from collapsed snaking
to defect-mediated snaking remains incompletely understood. In
addition, since the FCGLE reduces to the real Swift–Hohenberg
equation in appropriate regimes [19] DMS may turn into regular
homoclinic snaking as parameters are varied. How this might
happen is also unclear.
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Appendix. The supercritical Turing bifurcation

The Turing bifurcation at γ = γ T produces spatially periodic
states with wavenumber kT . Near this point we can write γ =
γ T − ǫ2µ2, where ǫ ≪ 1 and µ2 ∼ O(1). With A ≡ U + iV , a
multiscale expansion involving both the short spatial scale x and
the long spatial scale X = ǫx leads to
[

U

V

]

=
[

U0

V0

]

+ ǫ

[

ξ
1

]

{AeikT x +
−
A e−ikT x} + O(ǫ2).

Here the first term represents the equilibrium A+. In the sec-
ond term A is a complex function of X that satisfies the
Ginzburg–Landau equation with real coefficients

AXX = −q1µ2A + q2|A|2A + O(ǫ). (20)

The coefficients in this equation are computed in Ref. [30] for the
2:1 resonance, and in Ref. [34] for the 1:1 resonance. These calcu-
lations show that q1 > 0, q2 > 0. Consequently the periodic states
bifurcate supercritically, i.e., towards smaller γ (µ2 > 0).

The Turing bifurcation at γ = γ T corresponds to a reversible
Hopf bifurcation with 1:1 resonance in space. Existing analysis
of the corresponding normal form sheds light on the origin of
homoclinic orbits to periodicwavetrains that are of interest here in
connection with the defect states that play such a prominent role
in defect-mediated snaking. The normal form for this bifurcation
is [28]

A′ = ikTA + B + iAP (µ; y, w) ,

B′ = ikTB + iBP (µ; y, w) + AQ (µ; y, w),
(21)

where y ≡ |A|2, w ≡ i
2
(AB̄ − ĀB), the overbar refers to

complex conjugation, and in the context of spatial dynamics the
prime denotes differentiation with respect to x; µ is an unfolding
parameter analogous to γ T − γ . The functions A and B transform
under spatial reflection as (A, B) → (Ā, −B̄), and P and Q are
polynomials with real coefficients:

P(µ; y, w) = p1µ + p2y + p3w + · · · ,
Q (µ; y, w) = −q1µ + q2y + q3w + · · · . (22)

The 1:1 Hopf bifurcation from the trivial state A = B = 0
occurs at µ = 0; by convention q1 > 0 so that this state is
hyperbolic in the region µ < 0 and elliptic in µ > 0. As shown
in [28] the normal form (21) is an integrable two degree of freedom
Hamiltonian system. This is true regardless of the system from
which it is derived, and in particular it applies to systems that are
not variational in timeorHamiltonian in space. Analysis shows that
small amplitude orbits homoclinic to the trivial state are present
for µ < 0, |µ| ≪ 1, provided q2 < 0 (the subcritical case). Here
we consider the case q2 > 0 (the supercritical case).

We write (A, B) = (ǫA(X), ǫ2
B(X))eikT x, where X ≡ ǫx, and

write µ = ǫ2µ2. Thus P and Q in Eq. (22) become

P = ǫ2(p1µ2 + p2|A|2) + O(ǫ3),

Q = ǫ2(−q1µ2 + q2|A|2) + O(ǫ3).
(23)
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Fig. 26. Condition (36) in the (E/Ec , L/Lc) plane. The red dots indicate the Eckhaus

points. Quasiperiodic solutions exist in the shaded region, consistent with [28].

It follows from Eq. (21)(a) that B = A
′ + O(ǫ) and hence that Eq.

(21)(b) reduces to Eq. (20).

Eq. (20) has the constant solution |A|2 = q1µ2/q2 > 0

corresponding to a Turing statewithwavenumber kT . The equation

also possesses a front solution connecting two out-of-phase states

with wavenumber kT . To find this solution we write A(X) =
R(X) exp iφ, where φ is a constant, and integrate Eq. (20) once,

obtaining

1

2
R′2 + V0(R) = E. (24)

Here V0 = 1
2
q1µ2R

2 − 1
4
q2R

4 and E is a constant of integration. The

front corresponds to a heteroclinic orbit betweenA = ±R0 exp iφ,

where R2
0 ≡ q1µ2/q2 > 0 and is present when E = 1

4

q2
1
µ2
2

q2
. Thus

R(X) satisfies

1

2
R′2 =

1

4
q2(R

2
0 − R2)2 (25)

and hence

R(X) = R0 tanh

(

√

q1µ2

2
X

)

. (26)

This solution asymptotes to the uniform wavetrains ±R0 as |X | →
∞, i.e., it describes aπ change in the spatial phase of thewavetrain

between X = −∞ and X = ∞.

We now suppose that the spatial phase φ is not constant. In this

case Eq. (24) becomes

1

2
R′2 + VL(R) = E, (27)

where

VL ≡
1

2
q1µ2R

2 −
1

4
q2R

4 +
L2

2R2
(28)

and R2φ′ = L. The solutions are thus specified by the two constants

E and L, hereafter the energy and angularmomentum, respectively.

In this case we define R+ as the (larger) solution of q2R
6 −

q1µ2R
4 + L2 = 0 and choose E = q1µ2R

2
+ − 3

4
q2R

4
+. In this case

R(X) satisfies the equation

1

2
R′2 =

q2

4R2
(R2

+ − R2)2[R2 − 2(R2
0 − R2

+)], (29)

where R2
0 − R2

+ > 0. This equation can also be solved in closed
form:

R2 = 2(R2
0 − R2

+) + (3R2
+ − 2R2

0) tanh
2

√

q2

2
(3R2

+ − 2R2
0)X . (30)

As |X | → ∞ this solution approaches R2
+. We think of φX ≡ k(X)

as the (local) wavenumber of the solution. Thus k(X) → L/R2
+ as

|X | → ∞.
In addition to the homoclinic connection to periodic states with

the wavenumber L/R2
+, there are also solutions in the form of

constant amplitude wavetrains. For these solutions k is a constant,
k = k±, and the amplitude satisfies

R2 = R2
0 −

k2±
q2

≡ R2
±. (31)

Since for these solutions k± = L/R2
± it follows that L2 = q2R

4
±(R2

0−
R2

±). Thus R2
0 > R2

± andmoreover R2
0(R

2
+ +R2

−) = R4
+ +R2

+R
2
− +R4

−.

It follows that the two roots degenerate into the same root R2
+ =

R2
− ≡ R2

c , where

R2
c =

2

3
R2
0. (32)

This occurs at a critical value of the constants E and L given by

Ec =
1

3
q2R

4
0, L2c =

4

27
q2R

6
0 (33)

and corresponds to a critical wavenumber kc given by

k2c =
1

3
q2R

2
0. (34)

The value L = Lc represents the maximum permitted value of L. At
this value the potential VL(R) has an inflection point; for L > Lc the
potential is a monotonic function of R and there are no equilibria
or bound orbits.

We now examine the connection between the above analysis
which follows closely Ref. [28] and the standard discussion of the
Eckhaus or modulational instability. In the classical picture of this
instability [35] we look for solutions of

At = q1µ2A − q2|A|2A + AXX (35)

of the form A = R exp ikX . Steady solutions of this form satisfy

R2 = R2
0 − k2

q2
. These states are marginally unstable with respect

to long wavelength perturbations along the line R2
0 = 3k2

q2
within

the existence region k2 ≤ q2R
2
0. This line is the threshold for the

Eckhaus instability which occurs in the region 1
3
q2R

2
0 ≤ k2 ≤

q2R
2
0. Thus the amplitude of the wavetrain that becomes Eckhaus

unstable is given by R2 = 2
3
R2
0 and its wavenumber is given by

k2 = 1
3
q2R

2
0, i.e., the classical Eckhaus instability corresponds

precisely to the point (E, L) = (Ec, Lc), as noted already by
Iooss and Pérouème [28]. In other words, the classical Eckhaus
instability corresponds to the formation of a degenerate homoclinic

orbit within the spatial dynamics approach. However, the spatial
dynamics approach predicts a variety of additional quasiperiodic
states corresponding to nonlinear oscillations about R = R−. These
can be written down explicitly in terms of elliptic functions and
exist for E−(L) < E ≤ E+(L), where E±(L) are the two roots of the
equation

x(4x2 − 3x − 6y) + y(y + 4) = 0 (36)

and x ≡ E/Ec < 1, y ≡ L2/L2c < 1. Thus

y = 3x − 2 ± 2(1 − x)3/2. (37)
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These conditions define the region computed in Ref. [28] (Fig. 26).
We do not compute these states explicitly except to note that
both the amplitude and wavenumber of these states oscillate
periodically in space.

Some of the solutions discussed in this Appendix are also
encountered in Section 7 of [38].
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