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I.  INTRODUCTION

In the analysis of,experiments in which lattice defects diffuse through
.----5--r--%- -

a crystal enroute to a reaction site, it is generally assumed that the de-
-.-.«».„.

fects are randomly distributed initially and, therefore, that a formulation

based on chemical kinetics will adequately describe the situation.  In this

context, chemical kinetics is taken to designate reaction processes in which

bulk concentration, time, etc., are variable but in which spatial positions

are not considered explicitly.  Even in the case of defect distributions

which are completely random initially, the use of chemical kinetics is not

fully justified, but, following some initial time transient, may provide a

(1)
suitable model.

In.the case of radiation damage in metals and'semiconductors, the.in-
W-

----""=„.--«-,=»,==."*...,»=,..=.-"-.: '....  :  ....   ... s.--«............»,-'.'..t....... '....,....,.

homogeneity in defect·distributions is a salient feature.of the damage state.

Following neutron or positive ion bombardment, it is recognized that.some

regions of the material possess high defect (interstitial and vacancy) con-

centrations whereas others are sparsely populated by defects. In electron
,.

irradiation, the diitribution of interstitial-vacancy pairs approaches com-

plete randomness; however, a variation in the separation between the two

members of a single pair introduces a non-randomness into the,damaged state.

Clearly the neglect of spatial considerations in such·problems may give rise

to apparent discrepancies or, more significantly, exclude an opportunity to

extract information from available data.

The concern of this paper centers on problems in which spatial con-

siderations  are ·of major importance. Accordingly, we shall discuss ·defect.
4.*.-V.-G» A 9 "'-'....
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migration and interactions based on a diffusional analysis. We shall con-

.#.-././-/.' i --:·':-».. .-- -'· 3-:.».·- -»-O....=«9----- -
r-  -  .   ....·_ -'.

centrate on the situation which is produced generally by electron irradia-

tion. With this specific orientation, it is our intention to treat a num-

ber of relevant features of the problem. These are best presented in the

context of an analysis·of.I.-I  recovery--a topic central to the theory of
 »1,-3.--.„.-==sb---- '

post-irradiation recovery in metals. As presented by Corbett, Smith, and
»----.--,----......,          ---Al.-ly. -*=„„-.„.=„- -

(2)

Walker  who first designated the nomenclature, substage Id is produced by

the recombination of interstitials with their original vacancies. This

recombination is presumed to display the effects of close spatial correla-

tion without energy correlation; that is, atomic jumps are postulated to

occur with equal probability in any allowed direction but pair recombina-

tion is favored by proximity. For those interstitials which effectively

escape the environs of their vacancies despite this spatial correlation,

recombination (and other processes) may occur in a more random manner fol-

lowing (on the average) considerably more diffusion by interstitials,

giving rise to substage Ie'

1.  The analysis presented by Corbett et al. was based on the analy-

(D
tical development of Waite. In order to effect a comparison with experi-

ment, Waite introduced a particular distribution function which described

the spatial separations between vacancies and interstitials within pairs.

This   function was taken over intact by Corbett   et ·al. in their analysis.

Subsequently, other forms  .0 f this distribution function   have been intro-

duced. We here discuss the analytic significance of these.distribution
0,4)

functions in the analysis of substage Id and introduce a generalization.

2.  The data of Corbett et al., for recovery of irradiated copper,

appeared to show a smooth progression in each of the substages, Id and I .e

6-13)
Subsequently, it has been reported that a closer examination of this
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recovery revealed   " fine structure, " which might' invalidate the model  pro-

posed by Corbett  et  al: In particular,   such fine structure might .indicate

the. presence of a conglomerate of processes, each characterized by a parti-

cular activation energy.  The most obvious underlying physical basis for

such substructure. would  lie in "bound close pair" configurations, described

in the next section. The analysis of Corbett et al. invokes only one value

(2,14)
of migration energy. We shall discuss this question of fine struc-

ture and attempt to delineate the extent to which fine structure may be

observed under reasonable experimental conditions.

3.  From the above discussions, concerned mainly with Id, we will con-

tinue. into I  and attempt to establish how the connection between the twoe

substages occurs;   that · is, we shall be concerned with  the  ease with which

a single.diffusional model can account for the entire Id-Ie recovery region,

taking into account the nature of the assumptions made concerning distribu-

tion functiors and processes which compete with interstitial-vacancy recom-

bination.

4.  All of the above.discussion, particularly that of 3, is based on

three-dimensional analyses.  We shall also include considerations of one-

dimensional analysis since one of the prevailing models of recovery in

metals is based on the motion of crowdions in Stage I (which includes

(15)
Id-I  and preceding substages). A crowdion is an interstitial con-

e

fined to migrate along a ·straight line--i. e.,   in one dimension.
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II. STATEMENT OF THE ·PROBLEM

The situation we shall examine is the general state arrived at fol-

lowing an irradiation with energetic electrons at sufficiently low tempera-
 *>4#Z'-1 -

tures:  interstitial atoms are deposited at various distances from their

original vacancies.  Due to the discrete nature of the crystal lattice,

interstitial-vacancy (i-v) separation  distances are also discrete, but

( 16,17)this discreteness is generally ignored (see, however, Corbett       ),

leading to.the concept of a continuous distribution of i-v separation dis-

tances. The form of this distribution remains an open question. Clearly

it may depend on the bombarding particle (electrons, here), the energy of

the particle, the direction of incidence of the particle beam with respect

to a frame of reference in the crystal structure, the nature of the inter-

atomid interaction potential, etc.  Under controlled experimental conditions,

it is apparent that a knowledge of the distribution function would provide

important information concerning the interaction potential or vice versa.

In the case of electron irradiation, there are some basic elements of

radiation damage theory which indicate some of the general features of the

distribution function.  As a particularly important point, we note that the

distribution of recoil energies, for atoms recoiling from electron-atom

-2
collisions, is proportional to T  , where T is the energy transfer in such

collisions. Thus, low energy recoil events are favored, leading to a pre-

dominance of small i-v separations. To continue·further requires a full·

appreciation of the displacement kinematics in a crystalline medium.

Kinematic considerations determine the distribution of initial i-v

sites, which may be categorized by dividing the lattice into three regions

around any vacancy. If the interstitial is deposited too close, the i-v
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configuration is completely unstable and recombination occurs; in monatomic

lattices, such displacement and recombination events are undetectable. If

the interstitial ·is deposited somewhat further--in the intermediate region--

the   i-v  pair is stable; however,   with some thermal activation, interstitial  ·

migration occurs, but only in the manner to provide simple i-v pair recom-

bination. This gives rise to "close pair recombination" of "bound close

pairs. Insofar as each such i-v configuration is identified with a dif-.

ferent value of activation energy, each configuration would be expected to

lead to a characteristic recovery "peak" which would have the characteris-

tics of a simple first-order process.  Substages Ia' Ib' and Ic in copper

apparently conform to this pattern.

The most distant region is one in which migration of interstitials is

unaffected by the proximity of vacancies. Where the separation between

the intermediate and distant regions occurs, or even if such a separation

can actually be made, remains obscured somewhat in prevailing controversy.

The entire situation is described in the schematic potential energy pro-

file of Figure ila).
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III. CORRELATED RECOVERY

A.  Formulation

In this section we. shall assume that the separation between interme-

diate and distant'i-v regions may be made in a meaningful manner and con-

centrate   only  on the distant region.      In   this region, there,is   no   correla-

tien based on energy considerations; but, as discussed above, a consider-·

able correlation between i-v separations occurs because of displacement

dynamics. If the "free" interstitial performs a relatively small number

of jumps in the general direction of its original vacancy, it will pene-

trate into the intermediate region and subsequently·be annihilated readily

and almost inevitably.  The problem we pose for study is:  what is the

probability  that · an ·interstitial which· begins a random  walk  at a distance

ri from its vacancy will return to that vacancy in time t?  Random walk

(18) (19)
calculations.have been performed by Fletcher and Brown, by Streetman,

(16,17)
and more recently, by.Corbett. Although the random walk solutions

are exact, Flynn has shown that it is quite reasonable to approximate ran-

(20,21)
-

dom walk by free diffusion. By passing to a diffusion problem,

analytic forms can usually be obtained to help illuminate the basic phy-

sical processes involved in correlated recovery.  In the spirit of a dif-

fusional analysis our problem* has the following characteristics:

1. There exists around each vacancy a sphere of radius
·ro containing

"unstable sites"--sites ·in which an interstitial, following arrival,  will

*As stated in the Introduction, we shall be concerned with analyses in
one and three dimensions.  The explicit presence of the distance.variables

x and r will indicate the dimensicn of the space under consideration:  x
for one dimension, r, for three.

\-r
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move, in an essentially instantaneous time ,interval   into the vacancy;   we

restrict our attention here to the three-dimensional case.      '

2.  All i-v pairs are isolated; effectively an i-v pair. is contained

in an infinite volume devoid of other interstitials or vacancies. This

restriction is lifted in a subsequent section.

3.  All i-v separation distances can be described·by·an initial dis-

tribution function. A number of continuous functions have been suggested

and we shall examine them shortly. Obviously, such functions must approxi-

mate to discrete ones.

To incorporate the above concepts into a mathematical framework, we

1.

proceed as follows.. Let P(r,t)dV be the probability that an interstitial

+
is in the volume element dV at r at time t. The origin is placed at the

position of the vacancy.  This probability obeys the microscopic.diffusion

equation

ap(r,t) 2    += DV P(r,t)3 t                                          (3.1)

where

D = Do exp (-Em/kT) (3.2)

Here D is the diffusion coefficient for defect (interstitial) migration,

composed of a pre-exponential constant, D , and the standard Arrhenius

factor displaying the energy of migration, Em' the temperature, T, and

Boltzmann' s constant,   k.     Note that Equation (3.]) describes the explicit

+
time-dependence of P(r,t). The boundary conditions placed on Equation(3.1)

are
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P(rcrort) =
O

(3.3)

and

P(r>rovt=0) = g(r)
, (3.4)

the initial distribution.

We shall make the simplifying assumption of spherical symmetry.  Then

the probability that the interstitial is ·in the rahge dr about r, is given by

2
p (r) dr  =  4Ag (r) r dr (3.5)

with the normalization condition that

CO                    2             '
4A f g(r)     r      dr      =.     1

r (3.6)
0

In addition, we have.that

+

n (t) /no   =   f  P (r,t)   dv
=                                              (3.7)

where n(t) is the defect concentration present at time t; n  is the initial

concentration and the integral is taken over all space.

To obtain the time-rate.of decay of interstitial concentration, we

evaluate the flux of interstitials through the capture sphere of radius r
0

around the vacanciese givdn by

 1             -   4ir ' no   r02   D.  P(r, t)   dt
r = r

0                       (3.8)

(1)
Following customary notation, we define the fractional recovery as

n  - n(t)

0 (t) =
0

(3.9)n
0
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so that

0 (t) 4, '.92 D 6t 'P(r,t.) 1
dt' (3.10)

r=r
0

Equivalently,

-+

0 (t) 1 -  f  P(r,t) dV (3.11)
CO

In three dimensions: there is a finite chance for an interstitial to

escape its vacancy entirely.  Thuse we calculate the asymptotic value of

recovery as

0 (00)
41T ro2     D        6-         B P  (r,t' )            

d.t, (3.12)
Br

r=r
0

(22)
The general solution to the diffusion problem posed above is

2
(r-r -E)

P(r,t)  =  (41 Dt)-1/2 6-   (6+ro) 9(6+r0)  r-1 {eip C 0 ]
2          

  4Dt

(r-r  +E)
-exp E   '   3 } dE ( 3. 13)

4Dt

This gives the fractional recovery as

r-r
00

0(t) 47T r f      r   g(r)    erfc   (         0) dr
( 3. 14 0

ro 44Dt

From   Equation   ( 3.14),    letting   t·+90,   we may obtain an alternative   form

to Equation (3.12)

- ro 2
9 (00) 4·T     f      (-)    r     g(r) dr (3.15)

ro r
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demonstrating a, well-known result : the probability of capture  of an inter-

stitial  by a vacancy   at an initial distance r , given a capture radius,   ro,
/: 1

is liJ.
Clearly to proceed further it is necessary to specify the form of g(r).

The   forms  of  g(r)   that we ·shall' consider  here  are:

91(r) N 6(r - r.) (3.16 a)
1 1

92(r) E  (N ) 6(r - r,)        '                  (3.16 b)2 i   1
1

93(r) N 3   exp    (-r/* 3 ro) ( 3.16   c)

-1

94(r) N 4    r          exp     ( - r/X 4 ro) (3.16 d)

95(r) NS exp E- (r/As ro) 2] (3.16 e)

Obviously, the above functions are defined for rkr .  For r<r , the

functions are zero.

It is noted that .0 depends on time and temperature only through the

product of the diffusion coefficient and. the time, so that it is convenient

to define a characteristic length:

z    =    t/5Bt- (3.17)

The explicit probability distribution function is obtained for the

modified exponential (94(r)) as
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4  C r- z)  =  [2 A4(1 + X4)]-1 exp (2X zr ) 2 { (. ) exp [ ·Al (1 - rr ) ]4
ro' 40 0     0

r

erfc E
Z o r

2 X r - r  C r - 1) J - uxp E-  4(1 - ·r·-) 3 erfc4 0 0                         0

r

E2 x4ro  I     .z'     C  t  -   1)   3
}

(3.18)

Values of this function are plotted in Figure (2) for different values of

z.  For quite small z, the distribution collapses at r=r  and gradually

approaches a uniform value as z increases. After the existing interstitials

have made a·considerable number of jumps, the distribution loses much of

its rapid variation and is mainly characterized by the area under the curve,

i.e., by the fraction of defects which have escaped correlated recovery.

Equation  (314) was evaluated  for the boundary condition represented  by

Equation  ( 3.16)  and the results  are:

r         r. - r
1 0

$   ( z) -2       e r f c    C                              )                                                                                                              (3.19    a)

1         ri             z

n. r r, - r
1 0 1 0

02(z)
E - - erfc·(      )                     (3.19 b)
i 01

n          r.                                    z

n,

where --1  is the fraction of interstitials initially at the distance ri.
n

0
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0 (Z) Ex3-1 +2X3 + 2]-1 {(1 + X3-1) [1 - exp (2Azr )2 erfc (2Azr )]
3 3 0 3 0

- T- - [Tr-1/2 - 2Azr   exp (2Xzr )2 erfc (2Azr ) 1  
3 0 3 0 3 0 3 0

(3.19 c)

04 C
z) (1+14)-1 [1 - exp (2 Xzr )2 erfc (2Xzr ) 3 (3.19 d)

4 0 4 0

1/2 -1) ]-10 (Z) [1 +   Asw    exp (As-2) erfc (As
5

2
2    4

{ 1 - [1 +   2 z  2 3-1  exp [32/ro  As  (1 + z2/r02 152) 3
r   X
O 5

erfc [z/r X
2   (1  +  z2/Xs2  r 2) 1/2   

 (3.19 e)
O 5
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For crowdion-vacancy annihilation (i.e., one dimensional diffusion),

the recovery is

X-X
00

4 (t)    = f {g(x)}  erfc ( 0 ) dx (3.20)

x0                             440€

where  g (x ·     is
the initial distribution of crowdions about their vacancies.

- *

Equation (3.20) will be similar to Equation (3.14) provided

g(r) + x g(x) = {g(x)} (3.21)

The evaluation of Equation (3.20) for infinite time gives the result

4(=)                1                                                                                  (3.22)

i,e., we have the well-known result that all interstitials eventually

return to their· own vacancies. This proves to be the most significant dif-

ference between the one and three dimensional formulations of correlated

recovery. Examples resulting   from the evaluation of Equations  ( 320)   and

(3.21) are

X. - X

0 (Z) erfc ( 1. z 0) (3.23 a)
1

04(z)    -  [1 - exp (2Azr )2 erfc (2 Azr )3 (3.23 b)
4 0 4 0

with expressions similar tc Equations (3.19c) and (3.19e) for the exponential

and Gaussian distributions.
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B.  Discussion

Again note that the fraction of defects.which escape correlated recovery
n,  r
1 0

is determined only by the value E- - or by Xi.  The result of usingi n   r,
0 1

expressions 03'   4'  and 45 are given in Figure (3)0 The value of Xi was

selected   so   that   0. (°°) would  be   the   same   for each function. The solid
1

(3)
dots on this figure represent experimental data for isochronal recovery

of aluminum irradiated by 0.40 Mev electrons. In each case, the value of
D

-2         and  E    were  the  same.     Note  that all three functions give closely  the

r02        m

same curve. This is perhaps fortuitous for aluminum, since the Gaussian

(i.e., gs(r)) is different from the other function in that the peak of this
D

distribution occurs at X = E A slight adjustment of -2.2 for each of the5 r '
o r0

functions 03' 04, and 05 would give almost perfect coincidence between the

experimental data and the theoretical curves.

It should be noted that, insofar as these formulations which take

account only of i-v annihilation in Id are correct, it seems reasonable to

compare concentrations, calculated analytical, with electrical resistivity

data. In the comparison, it is implicitly assumed that there is a simple

constant which connects these concentrations with resistivity--the.specific

resistivity of a Frenkel (i-v) defect.  The success of the fit between

analysis and experiment is evidence that the Frenkel resistivity depends

weakly, if at all, on the separation distance between an interstitial and

a vacancy.

Plots of the normalized initial distribution functions assumed for

Figure (3), are given in Figure (4).  As expected, these curves lie very

close together. This indicates that, at least for low energy electron

irradiated aluminum, all three distributions are adequate.  However, this
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may not be the case for other metalsi especially for higher energy irra-

diations. Although the exact shape of the initial distribution function

has  only  limited physidal significance  at  this  time, the gross features of

the distribution do appear to be.important. For example, the modified

r
exponential distribution has a maximum at - =1 whereas the Gaussian hasr0

r

a maximum at 2- = A.s and
the straight exponential at F  = 2X 3. In addition,

0

the width of the distributions determine the gross features of the recovery

behavior. These features must be determined by the energy of irradiation

and by the crystal properties of the material.

The gross features of the initial distribution function should be in-

fluenced by the focusson efficiency of a particular material. For example,

in   aluminum all three functions are maximum   at  -E *3 1, whereas for electron
r0

r
irradiated copper, the Gaussian maximizes at·- = 1.25. Since the focusson

r0
(23)efficiency is low for aluminume one would expect the distribution to

r
fall off gradually, beginning at - = 1. However, for copper, which has ar

0
(24)

high focusson efficiency, the distribution could be shifted away from

the r  due to long range displacements, Clearly this result needs to be
0

investigated ·for copper in terms   of a complete energy dependent study.

Figures (3) and (4) have been concerned either directly with the con-

tinuous distribution functions of Equations ( 3.16ce) or calculations based

on these functions. Yet it is clear that continuous functions are approxi-

mations to the real situation which should be described instead by the

function  of  Equation  (3.16b),     When the problem is framed in terms   of  this

distribution function, the need for the ad hoc adoption of a particular

functional form vanishes: the function of Equation (3.]Eb) is entirely

arbitrary: The price of relinquishing continuous functions in favot of a
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sum of delta functions lies in the need to select actual values of r..
1

This poses mathematical difficulty since the number of values of r,, let
1

alone the actual values, is largely unknown.  It remains to be seen whether

this approach, a delta function approach, will allow a unique deduction of

the distribution function.  Experiments directed toward this end are·pre-

sently in progress in our.laboratory.
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IV. FINE STRUCTURE

A.  Formulation

The introduction of a delta function distribution of close pair separa-

tions raises the possibility that the isochronal rate of recombination of

i-v pairs (or the rate of isothermal recovery when plotted against the

logarithm of time) may show an uneven progress, with several maxima and

minima. Indeed, some recent experimental observations for the low tempera-

ture recovery of radiation-induced damage in Al and Cu have indicated such

(5-13)
"structure" within the Id recovery region.

There are two distinct manners in which this structure might arise.

The first arises from the considerations of distinct lattice positions,

with only a single governing migration energy, as noted above. The alter-

native to this is to speculate that a spectrum of activation energies should

be considered, a different energy for each type of i-v separation.  Clearly

these alternatives are extreme cases and blending is likely.

The significance of the energy spectrum lies in a well-established

observation concerning the nature of activated processes.  Consider Figure

(1) again, As stated previously in Figure (la), we have presented the sche-

matic potential energy versus distance diagram which formed the basis for

discussion in Section III. Figure (lb) differs in that the transition from

bound, close pairs,   A,   B,   and  C in Figure    ( la) , occurs more slowly   over   a

wide range of lattice distances. Now, if the potential barrier structure

surrounding a lattice position is significantly asymetric, it is almost as

though the defect were constrained to jumps only in the direction leading

to recombination and, equally important, that the time of stay in sites

(25)
lying between the initial   site   and the vacancy. is negligible. Under
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these conditions, the diffusional aspects of the problem vanish and we

revert to a consideration of the first order processes:

dn,

-Iitl = -Ajn  exp (-E /kT)
(4.1)

The observations in which fine structure has been reported have gene-

rally originated in isochronal annealing experiments, although the recent

(26)
work of Bauer --which failed to reveal such fine structure in copper--

consisted of a linear-heating method.  For analytic simplicity, we treat

the latter with no loss of generalization. If the heating rate, assumed

constant,   is     B E dT/dt,

dn.

3  = -   nj exp
(-E /kT)

(4.2)

The "peak" temperature of such a process is defined by the condition

that

2
d n.

J
=0 (4.3)

2
dT

T=T
C

and the relationship between activation energy and peak temperature, Tc'

is

 ·      exp     (-E./kT c)     =       E/kT c2 (4.4)

Thus, the separation in temperature of two neighboring peaks, each identi-

fied by its own activation energy, is

AT g AE
-=-

Tc    E                                   (4.5)

where Tc and E are the average peak temperatures and energies, respectively.
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An alternative derivation may be carried through for the case of cor-

related process in which the activation energies are the same, but the i-v

separation distances are rl and r2; the derivation is given in Appendix 1.

Here the separation is given by

2kT r  -r

F 1 -rs  'n [2   0]
c      m         rl- ro (4.6)

The question we seek to answer is the following: under which condi-

tions can two peaks be resolved, separated as given by either conditions

of Equations (4.5) or (4.6). As a condition of res61ution, we impose the

condition that the peak half widths of the two processes, treated as first

order processes, is of the order of the peak separation. The peak width

(5)of such processes is (Granato and Nilan   ),

AT
(4.7)1/2 'u kT

=  2.4   c
T
c E

This condition clearly applies to the energy spectrum case; it is a minimal

condition in the correlated processes case in that each process is actually

wider than given by this criterion.

Consider first the correlated processes case, using this criterion.

From Equations (4.6) and (4.7), we require approximately that

r2 - ro >.3 (rl - ro)
(4.8)

or

1/2 (r2 - rl) >r
-r (4.9)

1     0

Now it is reasonable to assume that r -r should be of the order of one
1 0

lattice constant (lb) even for the very closest separations.  Therefore,
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at·the best, we require that

Ar E  r -r >2 b
(4.10)21

Our conclusion is, then, that resolution of peaks in the correlated case

can only be expected for the most close pairs and indeed for few of these.

This is equivalent to the conclusion that fine structure may only be

observed in the early portion of Id recovery.

Consider the energy spectrum case. In order to relate the condition

of Equations (4.5) and (4.7) to i-v separations, we make the ad hoc. assump-

tion that the activation energy-distance relation may be expressed as

E=E -a
(4.11)m r

where the constant a is determined from the condition that the migration

energy at the capture radius, rc' is equal to the observed value of the

Ic substage, E(=O.09 eV (See Figure lb).  Then

r

E=E- (E-E) -9 (4.12)m m c r

and taking differentials, with E =0.12 eV,
m

AT_ -AE -2 (  Ar ) (4.13)

r

T      E     r   4r - r
C

Also, as a very general rule,

2.4 kT -2
4    5    x10

E                                                     (4.14)

Combining, we require that

-2   r
A r 2 5 x 1 0 (-)    (4 r  -   r ) (4.15)r c

C
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The conditign of Equation (4.15) is somewhat less restrictive than that of

Equation (4.10) but.the main conclusion made after Equation (4.10) remains

essentially intact; see the following discussion.

B.  Discussion

The main conclusion to be made from the preceding analysis is the

following:  within the framework of correlated diffusion (no variation in

migration energy), it is possible to observe fine structure in substage

Id.  This structure, however, should be most. highly resolved in the lower

temperature portion of Id' corresponding to recombination of,the closer

i-v pairs. These conclusions are supported by direct applications of.

Equation    (4.2) with judicious   choices   of  parameters   r,    and  n,. In Figure
J          J

(5) we display an example of, structure predicted by this procedure, but

this   structure was introduced  only  by  our   choi ce of parameters. A more

arbitrary   choi ce of parameters fails to introduce any significant structure

into Id ande even in the most artificial cases, no resolvable structure

can be resolved in the latter portion of Id or at higher temperature

(i.e. in Ie)"

The · next conclusion  that we  draw  from the analysis is: little addi-

tional structure is allowed in the formulation based on an energy spectrume

assuming an energy versus distance relationship of the form of Equation

(4.11).  A "typical" recovery curve for this case (i.e., based on an energy

spe ctrum) is presented .in Figure 6. Although   such an expression is entirely

ad hoc, the dependence on distance is characteristic of defect field

dependence, generally predicted in defect calculations. A stronger de-

-2
pendence on r (e.go, r ) would lead to predictions of even.less structure.

Fram these conclusions we derive our final conclusion:  if any signi-

ficant amount of structure is indeed present in the higher temperature
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portions of Id or in Ie' the origin of this structure lies in one or more

of three sources: (a) competing processes (e.g., trapping of interstitials

by impurity atoms).  This seems unlikely based on considerations of rela-

tive distances between an interstitial and its vacancy, on the one,hand,

and between an interstitial and an impurity atom, on the other hand.  How-

ever, if displacements  are significantly easier .near an 'impurity  atom,   some

interaction might be expected.  Nevertheless, experiment speaks against·

this'possibility since·it has been observed that substage Id is almost com-

pletely identical Con a normalized basis provided by Equation (3.9) , for

example) in, samples in which the radiation ,doseF have differed  by a factor

of 20. (b) anomolous separations.  In examining the two formulations
(2)

above, it was implicitly assumed that stable interstitial sites occur in

an essentially consecutive manner, proceeding outward from the vacancy.

Abrupt discontinuities in this progression might introduce additional struc-

ture. There is no reason to anticipate such discontinuities. (c) peculiar

energy-distance spectrum. Despite our arguments concerning the reasonable-

ness of a relationship similar to Equation (4.11), it remains possible that

(27)the energy profile is considerably more complex than suggested. In

this case, further structure can be induced by additional judicious choices

of parameter.  Obviously, we are disposed to doubt the significance of

explanation (c) by virtue of its lack of intuitive appeal and, more con-

cretely, on the following consideration.  Even in models based on an energy-

distance spectrum, · it .is ·reasonable · to  cut  off the interaction  at · some ' i-v

separation distance.  For example, we might cut off the.distribution when,

-1
the r term in Equation (4,11) becomes of the order of kT. Then r#12 r .

C

Whereas the implied capture volume is rather large, the distance to an

impurity atom, on the.average, in pure'materials is still considerably
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larger so that spatial correlation effects must still remain.  Thus cor-

related recovery, as discussed in the correlated diffusion framework, must

still be an important factor.

Finally, there is the possibility that an unusually high potential

energy barrier exists at some appropriate i-v separation, giving rise to

an effective repulsion.  This, too, strikes us as an.unlikely factor of

importance.  If this barrier occurs at small i-v separations, little

structure could be observed; if it occurs at larger i-v separations, the

barrier should be reasonably small and unimportant.

Turning again to experiment, it appears to be well established that

(2,28)I  is concentration-dependent, as expected from diffusional models,e

so that the presence of structure in this substage is questionable. In

facts as the experimental techniques have improved, the amount of struc-

ture   seems to decrease.      This is ·particularly evident   in the constant   rate

(26)
of heating experiments performed by Bauer and in the high resolution

(29) (30)isothronal experiments of Simpson et al. Indeed, Schilling et al.

have gone so far as to completely dismiss the significance of structure.

We concur with the observation thit a small amount of structure is not

incompatible with models based on correlated recovery.

(



V.  FULL·DIFFUSIONAL TREATMENTS

A.  Formulation

Dt
We consider.the case of three-dimensional diffusion first.  When -

r 2
0

becomes much greater  than  1, the probability  for  an . interstitial :to escape

the environs of·its vacancy becomes significant and the,chance·encounter of

an interstitial with another interstitial, an impurity atom or a.vacancy

other than its original one becomes appreciable.  Thus, the supposition of

isolated defects becomes invalid and one must resort to a full diffusional

treatment.  Such diffusidn-limited reactions have been treated by Waite, (1)

(31) (32)
Monchick· et al., and recently by.K. Schroder. The following develop-

ment parallels the work of these authors in many respects, with particular

emphasis on Waite's work.  Waite investigated the case of interstitial-

vacancy annihilation without specifically a116wing the reactants to proceed

further; i.e., no interstitial clustering or impurity trapping.  Schroder.

treats all cases, but he separates the case of correlated recovery from the

other reaction processes.  Clearly, a need exists for a unified treatment

of diffusion-.limited. reactions, since experimental  data  show that numerous

processes occur within the Id and Ie recovery regions.  We outline such a

treatment here.

We note again that in moderate energy electron irradiation experiments,

it is generally agreed that Frenkel defects.are distributed homogene6usly

throughout the sample volume V and that interstitials and vacancies belong-

ing to the same pair are spatially correlated.  Moreover, for low tempera-

ture studies, only the interstitial is thought'to be able to migrate.  This

assumption  will  be made throughout' the following ·discussion.     Due   to   the.

initial correlation of interstitials and vacancies, it is necessary to
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introduce pairwise probability distributions for these defects such that

d V. d V.

{P   (r   r,; t)} 1     J
10 ' i'  J     ij     V2                               (5.1)

is the probability that 1 interstitial is in dV, at 2, at time t, and the
,th

11

.th
J   vacancy is in dV. at *, at time t.  Less detailed distribution functions

J         J

are required for the other defect densities since these defects (dimers=

diinterstitials, trimers, etc.) are always uniformly distributed throughout

the volume and are· formed as composites of defects which are uniformly dis-

tributed with respect to each other (interstitials). For this case, we

define the density

+ +
p           (r, ,    r, ;    t)     d v, d v. (5.2)in   i J 1    J

th
to be the density of interstitials in dV, at r, and of n type defects in

1'   1

dV. ,    at   r,    at t. We restrict the index n as follows:
J        J

n=0 vacancy

n=1 interstitial

n=2 dimer

'

(5.3)

n=I interstitials trapped
at impurities

n=T impurity trap

Probability densities given by Equation (5.1) are related to Equation (5.2)

by, for example,

N I N  
1 0

p (t)  E E {p (r., r.; t)},, (5.4)10' 10   1   J     l]
i=1  j=1
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where.Nl' and N ' are.the initial number.of interstitials and vacancies,
th

respectively.. We also let Pn be the macroscopic.density for the n   type,

0

defect ' and take. Pn' to be the initial concentration .  For n=T, PTEP  , i.e.,

unsaturable traps. In ·particular,   note   that for interstitials and vacancies

po(t)/po'   {p (r., t)}.
(5.5)

0           1                  1

and

P l«)/P1 (p l      (r i  '     t)    i
(5.6)

dV, . th
with (p ) 1 = the probability that the,1 interstitial is in dv. at
l i- 1

V

ri, t:and similarly .for   (p   ) . .
01

.th
The above probability densities can change directly due to the 1

interstitial  diffusing throughout'V and reacting with any of thetn(n=0,1,---)

type defects.  Following Waite, we obtain a set of generalized diffusion

equations.for the pairwise densities.

3(P  )..
10 11         2D V (P ) + (f ) (P   )3t                 10 ij 10 ij 10 ij

(5.7)

i 1, . . . ,N j=1, . . .N
0 0

1                          0

With
d( P ) d(P ).

1
(f ) -         E       {F          1   il    }.        + -1         E,    { [      '  0   J]    }10 ij Pl   kp'j    -    dt      o

k
p o

mti- dt 1 m

dp                                 (5.8)

+ _1 E[-11
p    n    dt.n
1                       n .4 0

The first term on .the right side of Equation (5.8) reflects the depletion

of the interstitial concentration at random vacancies;.the second.term arises

from the depletion of vacancies by random ibterstitials; and the third term

arises from the loss of free interstitials due. to all·other reactions:
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interstitial-interstitial, interstitial-dislocation, etc.  Then (f  )..(p  )10 13 10 ij

gives the rate at which (p ) changes due to the interstitial interacting
10 11

with all the other n-type defects.  For the other macroscopic densities, we

likewise obtain

3p                                        dp        dp
1.n                                           2(1 · +6    )  D V  p    + p    EL -1 + 1     n ]    (5.9)

3t 1,n         ln    ln p dt   pn  dt1
n#0

The (1+6 ) term takes account of the case of two interstitials diffusing
1,n

each with a diffusion constant D, to react; then 6   =1.  Otherwise, 61,n=0.1,n

This assumes that only interstitial diffusion is significant.

Equations    (5.7)  ,(5.8),&(56) are coupled through   the    (f ) terms and
10 ij

r   1   dP 1            1      dpo
P      --.+ - -  1; however, closed- form expressions  can ·be obtained
1,2 Lpl dt    po   dt

for the pairwise probabilities. We assume that vacancies, impurities,

interstitials, etc. behave as capture volumes describable by a capture

dp        dp

radius  r  .    For  i j Equation (5.8) essentially reduces  to  1        1 +.1       0
n                                               p   dt p dt '

1 0
By making the substitution

(P   ) . .
10 1]

no
-

Pl Po
(5.10)

with

1

no (t= o) 0 0 (5.11)
Pl Po

Equation (5.7) reduces  to

3n
0        2                                         (5.12)- D V  n
3t           o

which is immediately integrable to give

Pl%      r     r-r
(P ) El  +  --0  erfc  (          0) 3      i  4  j

10 ij 0 0
,/3Bt (5.13)Pi Po
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Note that for large r
/

Pl Po
fp    (r + oo) } , . i t j10         ij       0 0 (5.14)

Pl Po

i.e., the pair distribution becomes independent of r for large r.  For the

case i=j and the initial correlation conditions

{P (t=0)}. g(r) (5.15)
10       li

Equations(5.7) & (5.8) can be solved by the method of Waite.  Let

t                                ·
F    f  (f ) dt (5.16)

0    10 ii

F  is associated withthe probability that an interstitial is captured by  a

distant defect other than its own vacancy and is obviously not identically

(33)
unity  as  has been suggested by Yurkov. Further, let

W,.
11     F

Pii - -r (5.17)
e

define w... Then Equation (5.7) reduces to
11

3w,
1. i        2- =  D V w,, (5.18)

3 t            11

The above solution for the (p ) are formally complete, but they still
10 ij

contain the (P )'s and their time derivatives.  Thus, it is also necessary

to solve the set of equations represented by Equation (5.9).

To solve Equation   (5.9) we follow Schroder   and   let

pin (5.19)
n         nio

n          P 1Pn
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and require

n  (t = O)  = 1 n/0 (5.20)
n

Equations similar to Equation (513) are obtained for the macroscopic pair

densities,.

r            r-r
n0    =  p  p  [l f. _.nerfc

C )] ndO
1n 1  n       r                                           (5.21)4(1+6 ) 4Dt

1,n

The rate equations for the densities Pn are obtained by considering

2
the flux of interstitials into the capture surfaces 47Tr Restrictingn

cluster formation to dimers and trimers only, we obtain the following set

of general rate equations for the

dp          f       dt
o                         r o r- (5.22 a)

dt -  e       P l       dt     -   ao  P o  P l

dP

1           . t    -  2  p l 2  al  -  p l  F2  a2  -  P l  PTO  aT- (5.22 b)
dt

dp 2                         2
= +P

dt 1    al  - 1   2 '2 (5.22 c)

dP3

--;it        =             P  i    F 2 0 2
(5.22 d)

dpI 0
dt Pl PT aT

(5.22 e)

es
r o

-dE - (Pl + Po)ao - 2Pl al - P2 a2 - PT aT
(5.22 f)
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with

a,  E  4  r. D {1 + r. [(1 + 6  .)·ADt]-1/2}
1         1         1        1,1

(5.23)

(34,35,36)       0If the impurities behave as nucleation traps, then
PT

becomes

YCP  - Pl- 2p  - 3p )23
PTI +  PTI El +    9                    1                 (5.24)0

D
T

0
with Y the fractional

increase  in  P      when
each impurity has trapped,   on

the average, one interstitial.

The extension of the above equations to include higher clusters, etc.,

is obvious.

The treatment for diffusion in one dimension proceeds similarly, of

course«  To conform to current thought, we refer to an interstital restrained

to migrated along a line as a crowdion.  Then the processes which we include

in our consideration are (1) crowdion-vacancy annihilation, with the pair

either spatially correlated or uncorrelated, (2) crowdion-crowdion encounter,

leading to "double conversion, " the formation of immobile ("Stage  III")

interstitials, and (3) crowdion-impurity encounters, leading also to con-

version of crowdions to immobile interstitials. We do not include thermal
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conversion here--the possibility that the crowdion is sufficiently meta-

stable to convert with thermal activation in addition to migrating dif-

fusively. Thermal conversion is considered in Section VI.

under these assumptions, a corresponding set of rate equations.is

derived which bears a formal resemblance to the set of equations for three-

dimensional diffusion. These equations are listed below. In the discus-

sion of this section, we shall emphasize the important differences between

one and three dimensional formulations.

dp                                 F              -      d+x                         2                   -1    -1/20                                             (5.25 a)
- - e x Plv -- 2 xo' (ADt  )    Po Pldt dt

dpl      do 2      -1 1/2   2       2     -1 1/2   0
0   -   4  x    '    (2'8"Dt      )            P l_   2   Tr      (71Dt

)
PT  Pl  (5.25 b)dt dt      1

dP
2          2      -1 1/2   2

-dt 2 xl  (2ADt  ) Pl
( 5.25  · c)

dF
x                                                                 2                -1   1/2                      2                      -1    1/2

- '1+Po)2x (IT Dt ) -4 x (2 HDt )   p
dt                                              0                                         1                                    1

2              - 1   1/2         0
- 2 xT  (ADt  ) PT

(5.25 d)
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B.  Discussion

The solution of the above.set of coupled differential equations appears

to be formidable since eight parameters must be specified directly (in.the

three-dimensional case). In addition, if results are compared with resis-

tivity data, the specific resistivities of the five types of defects must

also be treated as parameters. At present, data are simply not available

which are sufficiently accurate and extensive enough to obtain all of these

parameters. Fortunately, few experiments require so detailed a treatment

as presented in Equation (5.22).  For example, substage Id usually accounts

for about 50-70% of the I -I recovery. This case has been adequately
d  e

accounted for in the treatments of Section III.  Moreover, for high purity

materials and moderate defect densities, impurity trapping should not be

of great importance. Also', trimer formation should be small when compared

to direct interstitial-vacancy annihilation and dimer formation (or double

conversion).  Thus, with a choice of experiments providing varying concen-

trations of reactants,·an unraveling of parameters becomes meaningful.

An example of the use of the rate equations in three dimensions.is

given in Figure (7). The Runge-Kutta technique was used in the computer-

assisted evaluation of these equations.  The correlated term was taken

from   d$ 4/dt in Equation   (3.19 d) . Furthermore, trimer formation and nucle-

ation traps were neglected. The parameters used in the fit to experimental

data--the recovery of aluminum irradiated  with  0.40 MeV electrons--:are   #iven

in the figure caption.

The quantity which has been plotted in Figure (7) is

0

po - Po
(5.26)Io

90
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It is apparent that a most.satisfactory fit to experiment is. effected in

this   way. It should be noted   that 'the analysis is framed to include dimer

formation  in the encounter  of two interstitials;. however, the mathematics

is identical if,we consider such encounters to lead to.formation of any

type-of immobile species.  In particular, the possibilitf that conversion

of one type of mobile interstitial to another effectively immobile one

(at least at the temperature.under discussion), both three dimensional

in diffusion character, remains.

Figure (7) also contains calculated results in which a.varying amount

of impurity concentrations were adsumed.  The effective capture (or con-

version) radius of the impurity·atom is·arbitrarily taken .as rT=r .  These

calculations clearly show that an effective traps concentration of 10 ppm

is sufficient to suppress the Ie recovery when the defect density is only

a  few ppm. Thishas been observed experimentally. Interestingly,
(2)  ,

trap concehtrations as high as 100 and 1000 ppm still do not suppress sub-

stage   Id. However,.it should be appreciated that these calculations   are

largely representative and depend   on the product  P
TrT' Clearly,    the   cap-

ture radius of an impurity atom will depend on impurity type, suggesting

that controlled experiments with a variety of .impurity atoms in Stage I

should give valuable information concerning such radii.

We conclude that full diffusional fits, based on three-dimensional

migration aided by computer techniques, can be most valuable and provide a

basis  ·for full comparison with experiment;   the corresponding situation

with regard to one-dimensional diffusion will be discussed shortly.  How-

ever, before turning to this, we would like to consider a procedure which

has been adopted by some investigators to avoid the need for involvement

with a full treatment.  In these.cases, there has been an attempt to



- 34 -

analyze separately the I (correlated) and I (uncorrelated) recovery pro-
d                    e

cesses.

We have attempted to determine to what extent such a separation pro-

cedure is valid.  To test the validity of this method,.we .have·cempared

the quantity

O'
P  -P

0      *a + [i _.ed(-)] {  0   Q, 0  }I                                                          (5.27)P 0

with the quantity, in Equation (5.26), calculated in.full detail.  The term

in.the curly.brackets is the solution to Equation (5.22) without the cor-

related term.  Figure (8) gives the results of this comparison with curve

(a)    referring to QI and curve (b) referring   to   ;:.,      As   expectad,   the   cor-

related portion of the recovery is quite identical in both cases; differences

are manifested in the uncorrelated region, Ie.  For·the defect range pre-

sented here, several ppm, the separation of Ie appears to be large19 justi-

fied for qudlitative purposes  in  that the shapes  of.the two curves.,are

quite  similar. With adjustment  in the normalization procedure, even ·better

agreement should be possible.

Still another procedure was-used by Corbett et al. in comparing
(2)

diffusion theory with their post-irradiation recovery data.  Their analysis

was less than rigorous in that it included dimer formation in a rather ad

hoc manner,  Figure.(9) presents the analysis of these data based on the

full diffusional treatment.  The agreement is good, confirming the positi6n

of Corbett et al. that their procedure was generally valid„

With the apparent success of diffusion theory, in three dimensions,

we.turnlto one-dimensional analyses.  Several general observations can be

made, based on the rate equations of Equation (5.25).
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1.  Even'if.all random terms ,are suppressed, leaving merely the cor-

related term, complete recovery  is e ffected at. infinite  tide.     This   is  an

inevitable feature of one-dimensional motion which could, have bien noted

in Section III and will be referred to again in Section VI. This feature

is in essential distinction t6 the case of three-dimensional. migration

(37)
where ultimate escape is possible. As a reszilt, the influence of com-

peting processes is substantially less feasible in the«one-dimensional

case unless the interaction radii are adjusted appropriately.  The adjust-

ment is a large one.

this inability of a crowdion to escape its own.vacancy is a feature

Qf one-dimensional diffusion' which is related to the fact that the crowdion

must sample every site along the ·line until- reaching its final destination.

As a result, most sites are revisited many times. One-dimensional diffu-

sion is, therefore, intrinsically slower than three-dimensional diffusion.

2.  Whereas the above features of one-dimensional diffusion relate

most directly to correlated recovery, there is also a significant difference

between one- and three-dimensional diffusion in the non-correlated processes.

-4
In both cases, there exists a t term. This term dies out at long times

in its significance in the three-dimenhional case on comparisdn with the

unity term, but persists in one dimension.  Thus, the one-dimensional

uncorrelated diffusion proceeds slowly while the correlated recavery is

proceedind toward full  complution. In .addition, the one-dimensional  case

implies a sensitive dependence . on all parameters affecting uncorrelated

recovery, in particular, on the dose.  This sharp dose-dependence.is not

observed experimentally.

Note,also that the objections stated by Granato and Nilan are borne05)

out by thi rate equations.  Granato and Nilan pointed out that random one-

1 :
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dimensional diffusion leads to the prediction of third order kinetics at

long times. This is demonstrated again in Section VII, but may be noted

here on considering only the random phase of recovery, in one dimension:

dE  =   -2 x 2  (#Dt-1) 1/2  2 (5..28)
dt          o

This equation can be integrated for the specific time dependence and, for

-4
long tirhes, substituted back in for the t term to give

dE  4 3
- 8p x D P (5.29)dt           o

a third order reaction. Since high orders imply slow recovery, this is

consistent with the slow random one-dimensional recovery cited just above.

3. - The difficulties with a one-dimensional model in fitting post-

irradiation recovery data is best demonstrated upon transforming the iso-

thermal rate equations, Equation (5, 25), to equations in which temperature

is the independent variable, simulating experiments in.which the tempera-

ture.is increased cohtinually (usually at a constant rate) or, effectively, in

isochronal experiments. Using the variable  z  =[4tDo  exp  (-Em/kT)  1/2,  the

"diffusion length," we have

dp

(-01 ( -   p l o  eFx   (-dit)      -   27r 1/2   x   2   p      P    }   a (5.30)
dT

x
dz x ooldT

dp                 F                       2 r

(0.)  - p]·o e r (.d   - 2·trroz,51:+  17 z) po pl } , T  (5.31)dl r
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The first term in·both cases are essentially the same; but the presence of

the diffusion length in the second tetm in the three-dimensional case--

and its absence in the one-dimensional case--is of key importance. In one

dimension, the rate of correlated recovery decreases continually; in.the

three-dimensional case, the exponential dependence of z on temperature,

allows for an increase in rate even though both P  and Pl are decreasing.

As a result, the I peak can appear in three dimensions; there appears to
e

be no way to produce I  in one dimension.  As an example, see Figure (10)e

and the absence of a I peak. In fact, we have been unable to fabricate
e

any I  peak in one dimensional recovery.

These remarks, and ones to follow, are in disagreement with the work

of Frank, Seeger, and Schottky and the more recent work of Frank and
(38)

Seeger. The discrepancy is, we.submit, due.to errors in these formulations.

For example, Frank  et al. state   that "each crowdion moves  with the proba-

bility & to 'its' vacancy, or in the opposite direction away from it," which

(37)
is certainly not the case. In this way, a division between Id and Ie

made its entrance into their work.

We conclude that models based on one-dimensional diffusion ib Stage I

cannot account for observation, implying that crowdion models are inappro-

priate to the analysis of Stage I recovery in metals.  However, models

which speak of two types of interstitials, one which migrates in Stage I

but may be converted to another variety which migrates in.Stage IIL are

not ruled out by these considerations. The, requirement is simply that

the interstitial which migrates in Stage I migrates in three dimensions.
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VI. SPECIAL CASE OF DIFFUSION PROCESSES

A.  Formulation

In Section V we have developed in detail the formalism for a full-

diffusional treatment.  The use of this formalism must almost inevitably

rely on computer techniques.  Here we would like to.develop certain aspects

of such treatments which admit to closed form solutions.and which bear sig-

nificantly and currently on the analysis of defect diffusion in metals.

1,  Diffusion in the Presence of Generalized Traps or Sinks.  The

problems we wish to consider here concern the interaction of interstitials

with traps or sinks which compete with vacancies.  The problem is restricted

further to the case in which the number of vacancies is appreciably less

than the number of traps or sinks so the competition for interstitials .takes

place between such traps or sinks (we shall, henceforth, refer to both as

traps) and the vacancy which is·spatially correlated initially with the

interstitial, the partner in· a Frenkel defect.   As a, further limitation,

we impose the less important assumption that the traps are unsaturable

(may capture any number of interstitals without change in efficiency) or;

nearly equivalently, that the number of traps is appreciably greater than

the number of interstitials--essentially the same assumption made with

regard to vacancies. In our consideration, we will·assume complete random-

ness between interstitials and traps, thereby ignoring any correlation which

might result   from a preference of interstitial :creation · (i.e. , atomic · dis-

placement) near interstitials.

under these assumptions, the problem in three dimensions is formulated

2

by considering 4Ar. P(r,t) dr, the probability that an interstitial is in
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a shell of width dr at r from the position from its correlated vacancy at

a time t. Then

3P(r,t)       2
Bt    =  D V  P(r,t) -B s P(r,t)

(6.1)

where

B  = 47Tr DI (6.2a)
s                 T        o

or

B  = DN (6.2b)
S 0

Bs is a generalize sink "efficiency."  The first.of the expressions for

B  in Equation (6.2) holds for the case of impurities of capture radius
S

r  and fractional concentration I ; the second, for dislocations Cline
-2

traps). of concentration N (in units of cm   , for ·example) . B  could also
0 S

consist of a sum of terms represented by Equation (6.2).

our diffusion expression, Equation (6.1), is put into standard form

with the substitution

U E P exp
(-Bst)

(6.3)

so that

3U        2
- =D V U
3t (6.4)

The solution to Equation (6.4) can be written, with reference to Equa-

tion (3.13), for a delta function distribution.with the initial i-v separa-

tion equal to ri.  Solutions for more arbitrary distributions can be syn-

thesized from this solution subsequently, if desired, by averaging over the

continuous initial distribution.
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For the delta function distribution, the number of interstitials

n (r,t) = n P(r,t) (6.5)r       o

is given by

2
n                           (r. - r)

n (r,t) =
( 471 Dt) exp (-Bst) {exp [-           ]

0         -1/2                       1
r         4Ar. r 4Dt

1

Cri+r -2 r
)2 (6.6)

- exp [- 0 ]}4Dt

where n is the initial concentration of interstitials.
0

The rate at which interstitials combine with their correlated vacan-

cies is

2   3n |
q      - 4'tr r  D-1
r            o    jr 1 r==r

0                            (6.7)

or, evaluated,

3    -1/2                                                                         62
r

q      - n  (4ADt ) 0  br exp [-B t- - ] (6.8)

r        o             ri            s    4Dt

where Ar E r,-r .
1 0

The rate of decay of interstitials, in all madners, is given by the

Langevin's equation:

dn (6.9)r

dt                qr (t) -B n
sr

with solution

nr(t) exp (-Bst) {no +  ft exp (BsE) q (6) dE } (6.10)
0
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so that, finally,

r
Ar

nr(t) no   exp    (-Bst)    {1   - · ·r'     erfc                       }

1 ,/5Et- (6.11)

We now find the number of interstitials which are lost (or trapped)

at generalized
sinks, T r.    This is clearly given  by

dT
r                                                                                           (6.12)- B n (t)

dt sr

with nr(t) from Equation (6.11).  The integration of Equation (6.12) is

tedious, yielding

r

Tr/no  =   [1 - exp  (-Bst) 1  + -2  {exp  (-Bst)  erfc  [            1
Ar

ri                      (4Dt) 1/2

1/2 Ar 1/2- 1/2 exp
[Ar(Bs/D) ] erfc [ + (B t)    ]

(4Dt)1/2      S.

- 1/2 exp [-Ar
(Bs/D)

1 erfc [ - (Bst)  1 k
1/2 Ar 1/2

1/2
(4Dt)

(6. 13)

Finally, the fractional recovery, 0 r' (interstitials which return to

their vacancies) at time t may be found from Equations (6.11) and (6.13):

n+T      r        B 1/2
r r Ar 1/20  (t)       1 -                    ·r' {exp  [Ar(-D)     1 erfc [, + (B t)    ]

r                             n                                                                                        1/2           s
0            1                          (4Dt)

B  1/2

+    exp     [-Ar     (-D)             ]     erfc
[ -  (Bst)     ] }

Ar 1/2

1/2
(4Dt)

(6.14)
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The expressions ·developed above  give the proper expressions or values   in

the various limits: t=0, t=-, B =0, etc. Of particular interest for later
S

discussion is the limiting case

r            B.. 1/2
T                   no{l   -   -2      exp    [ -A r    (f)           ]}       att   = 00

(6.15)
r             ri

which becomes, for the cases of impurity traps and dislocations, respectively,

r
1/2

T      no {1 - ·r,' exp [-Ar(41[ rTI;)) ]}
(6.16a)r

1

and

r
1/2 (6.16b)r      no {1 - ·r' exp [-Ar No   ]}r

i

Both of these expressions, for infinite  time; are independent of tempera-

ture, since only the geometry of the situation plays a role in this limit.

The analysis of the one-dimensional problem, with diffusion restricted

to a line, proceeds in a parallel fashion, with the following significant

results:

8x (6.17)n                n      exp    ( -B   t)    er f
x      o        s               1/2

(4Dt)



.

..

- 43 -

1/2 AX
T           no  {1  -  exp (-Bst) erf [         ]
x                                        1/2

(4Dt)

BS 1/2 Ax 1/2-    1/2   exp    [Ax
(-D) ] erfc [

+ (Bst)   ]1/2
(4Dt)

BS 1/2 Ax 1/2-   1/2   exp    [-Ax
(-D) ] erfc [

- (Bst)
] (6.18)1/2

(4Dt)

BS 1/2 Ax 1/2
tx

(t) 1/2 {exp [Ax (ir)  ] erfc [ + (B t)    ]
1/2 S

(4Dt)

BS 1/2 8X 1/2 .+   exp    [-Ax
(-D) ] erfc [ -  (B t)     ] j

1/2     S
(4Dt)

(6.19)

B  1/2

z               no  {1  -  exp   [-8x   (-- )
] } a t t· = 00

X

(6.20)
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In one dimension,

BS = 87TrT4 DI02 (6.21)

2.  Diffusion with Concurrent Thermal Conversion. The mathematics Of

this problem is identical with that of Subsection 1. Here, however,

Bs = v exp [-Ec/kT] , (6.22)

still merely a constant (we are assuming isothermal processes).

In   Equation   (6.22),   v   is the atomic attempt frequency   and   E      is   the  ,
C

activation energy for thermal conversion.  Since the diffusion coefficient,

in three-dimensional diffusion, is given by

D = 6 vao2 exp
[-Em/kT]

(6.23)

the number of interstitials which are converted is given, with reference

to Equation (6.15 ), as

r                       E  - 9
1/68 r

Cr        no {l - ·r'   exp  [-      a     exp  (  CkT „m)]} (6.24)
1 0

where a  is the simple atomic jump distance, Em is the defect migration

energy, and we have assumed the same jump frequency, v, as in Equation

(6.22).

Note that the number of converted interstitials does depend on tem-

perature even at infinite time, contrary to the cases involving impurity

or dislocation trapping.

1 The remarks made just above,carry over in an obvious manner to the

case of diffusion restricted to one dimension, so that the number of con-

verted interstitials here is
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1/58 x
E  -E

C                no  {l   -   exp    [ -  -a           exp    (    Ck'r     m) ] }X,
0                                  (6.25)

3.  Di-ffusion.in the Presence of Generalized Traps.or Sinks with

Simultaneous Defect Creation.  The problem treated here is the same as

that of Subsection 1, except that we assume here that interstitials are

created  at a constant  rate  per   unit  time,   0'  , in Subsection   1,   we  had

assumed an initial concentration, n , of interstitials, with no further

creation.·  To take creation into account, Equation (6.6) is modified to

become

-1/2
exp [-(ri-r)2]

n (r,t)
0 '  (.471 D)

ft. C
40(t-T)

r          471 r r, 0 1/2
1                (t -.T)

2
(r. +r-2 r)

- exp [- .1         0  1
40(t -T)

1/2 (6.26)} exp (-Bst).dT
(t - T)

Whdre  T is the time measured from the creation of a particular set of inter-

stitials and t is the total time since the initiation of the creation and

other processeso

Proceeding as in Subsection 1, the rate at which interstitials recom-

bine with their correlated vacancies (we are again assuming a delta func-·

tion distribution with characteristic separation, r,) is·
1
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r             B  1/2

q  =  -. 1/2 0' ·r' {exp [Ar (-- )    ] erfc [ + (B t)    ]
Ar 1/2

r                                                 1/2     s
i                                                                ( 4Dt)

B  1/2

+ exp [-Ar (-D)   1 erfc [ -  (B t)    1  2
8r 1/2
. 1/2        S

(4Dt)

(6.27)

After an initial transient period, ti' a steady state is reached; i.e.,

the number of free interstitials in the lattice remains constant. Then the

i-v recombination rate is

r               B  1/2

qr(t > ti) -    0'       20      exp    [ -   A r    (-D)           1

1                                      (6.28)

so that the fraction of interstitials which escape correlated recombination

1S

r               B  1/2

ro      exp     1-    a r    (D) 1
E f (6.29)

r
1

Once the steady state condition has been achieved, we may legitimately con-

sider a rate equation approach:

dnr                                                       (6.30)- + 4'- f 0' -B  n  = (1-f )0' -B  n
dt     rsr   r  sr

with the solution

nr        (1 -f ) 0'  Bs-1  [1 - exp  (-Bst) ]
(6.31)
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Only the steady state limit of Equation (6.31) is truly valid

-1

nr             (1   -f 2    0,   Bs (6.32)

And, in steady state, the concentration of trapped interstitials is given

by the equation

d-r
-r B n (6.33)
dt      S

with the solution

r           B  1/2

T     (1 -fr) 4),t 0 't   {1   -  .F£  exp   [ -A r (- )          ]}
r

1
(6.34)

Since 4't is the concentration of interstitials which have been created,

it is apparent that Equation (6.33) expresses the same situation as-does

Equation (6.15).

Once again, the treatment in one dimension is parallel to the above

three-dimensional treatment and yields similar results. We merely write

down the concentration of interstitials which are trapped, similar, of

course, to Equation (6.20).

B  1/2

T                 0't   {1   -   exp    [-8x   (BE)          1 } (6.35)
X
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B.  Discussion

In formulating the mathematics in the previous section, we have included

the case of dislocations; see Equation (6.2b). In fact, the conditions

that dislocations traps outweigh competing traps is rarely met since the

effective fractional dislocations trap desnity, for typical dislocation

8   -2                                        -6
densities (10 cm , for example) is probably less than 10 Generally,

both impurity and vacancy concentrations exceed this value.  For the moment

we shall concentrate on impurities, therefore, but we shall return to dis-

locations later to indicate how the calculations still apply to appropriate

experimental situation there as well.

It,is clear that the entire time dependences developed above are

important in a detailed comparison of experiment with theory.  In the

absence of suitable data, we will be concerned solely with the infinite

time expressions:  Equations (6.15), (6.20), (6.24), and (6.25).  An impor-

tant feature to be noted is the presence of the factor r /ri' in the three-

dimensional expressions and the absence of any corresponding factor in

expressions for one-dimensional diffusion (more correctly, the presence of

a unity factor in the one-dimensional case).  The presence of r /r, or
0 1

unity can, of course, be traced back to the probability of escape of an

interstitial from its vacancy in the absence of competing traps, in the

two cases. Still another major difference between one and three dimensions

lies in the character of B  in Equations (6.2) and (6.21).  As a result of
S

Jathis difference, the exponential argument is proportional to I in the
0

three-dimensional. case  and  I     in the one-dimensional  case.
0

At the moment it would not be judicious to insert values for the vari-

Ous parameters in the expressions for trapped interstitials with any large

degree of confidence. However, such an exercise does give results which,
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when compared to experiments in which: interstitial trapping is a signifi-

cant ·factor,· fav6r a three-dimensional I formulation.      Perhaps   it  is   even

more significant ·to note. that the predicted dependence on impurity .concen-

tration in·the one-dimensional case appears to be much stronger than observed.

But a final test awaits more investigation with experiments in which the

impurity level ia varied carefully over an appropriate concentration.range.

Thermal conversion, the subject.of Section VI-B, is of particular cur-

rent interest.  The presence of a Boltzman-type factor, exp (Ec-Em)/kT,

leads to the prediction of a ·sharp temperature range in which conversion

progresses from insignificance to the dominant effect. There are no experi-

ments available which would test Equations (6.24) or'(6.25) and it may be

unfeasible to perform such an experiment.  Typically, one would wish to

irradiate at low temperature to avoid both diffusion and thermal cenver-

sion, then rise rapidly.to different temperatures in the range in which

thermal conversion becomes important.  The minimal information available

indicates that the time to reach such temperatures, through the temperature

range in which diffusion dominates, is necessarily too long.  However,

irradiations performed in the.critical temperature range should be able to

provide information needed to fit the appropriate expressions and to make

a choice between one- and three-dimensional·diffusion models.

There have been some early experiments performed to test -thermal con-

(39)version models. Bauer and Sosin compared annelaing above 80°K or bom-

bardment.at 10°K and annealing to 80°K.  No significant·difference.in

annealing pattern above 90°K was observed.  This null result indicates that

thermal conversion does not take place or that the temperature range is

(40)
above 90°K. Keefer, using dislocation pinning effects as a basis of

observation, noted small. differences in pinning which pointed to the
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possible importance of conversion 'in the range .about 100-125°K.   The most

sensitive measurements which relate to· this questi6n have been reportdd

(41)
very recently by Thompson, again .using dislocation pinning, here by

gamma irradiation. However, until the full details of.this.experiment and

others certain to follow are available, the questien of thermal conversion

remains unresolved.· Nevertheless-,   on the basis particular1y   of the results

of Section V and some of the previous comments made in the discussion, we

belidve that thermal conversion,- if. confirmed, .will· involve convdrsion  of

an interstitial from ene capable of performing three-dimensional migration

to  another form presumably also capable ef three-dimensional, migration.
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VII. ORDER OF REACTION

The literature in the area of defect annealing is dominated by chemical

rate theory, a point made in the Introduction.  A parameter of central im-

portance in these analyses is the order of the reaction, y. In this section

we shall investi*ate the utility of such references to orders of reaction

when the analysis is carried through from a more rigorous base of diffusion

theory.

For a rate theory analysis, it is assumed that the rate of decay of a

species with concentration   c is given  by an expresssion  of  the  form

dC
-    -K f (C) - K(C - C-) Ydt (7.1)

where K is a temperature-dependent, , concentration-independent constant

and y is the quantity upon which we fix our attention.  By algebraic mani-

pulation, we have

C-C
oo          df

y               -                                 (7.2)f       de

where we.have explicitly indicated that the concentration may not go to

zero at infinite times.  This is a harbinger of the difficulties that the

oversimplified statement of Equation (7.1) bears. We now apply this to a

particular case of contemporary interest.

We consider the case, first in three dimensions, of migration of

interstitials to either vacancies or to other interstitials encountered

in random manner.  No i-v correlations are assumed.  Then the governing
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rate equations, as generally wfitten , are

dci                         2-K C.C -2 K C. (7.3a)
dt                                iv                         1

dC

v= -K C.C (7.3b)
dt 1 V

where,the factor of two arises since the·net diffusion rate of interstitials

is the sum of the individual rates.  To correspond to a typical irradiation

experiment, we assume that the initial concentrations of interstitials and

vacancies are equal: (C.) = (C ) . Only a single reaction constant, K,
1 0 V 0.

is written; introduction of separate "cross-sections" for each of the two

reactions would alter the final result only slightly for any sensible values.

Carrying through the operations of Equation (7.2) with the solution to

Equation (7.3) yields the results:

(C )

Y 3-
V O (7.4)

C
V

and

Cv = 1/2(Cv) 0
at (7.5)

The last equation results from the use of a single reaction constant;

this is consistent with Corbett, Smith, and Walker's observation that about

one-half of the vacancies participating in Ie remain after the completion

of Stage I for copper. A factor other than 4 would follow from the use of

two reactions constant.  The order of reaction in Equation (7.4), therefore,
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varies from an initial value of two to a final value of one, a well-known

result.  On identifying Stage Ie as the long range process in copper, we

find  that   C #3/4   C   at  the  peak   of
the stage, Equation (7.5) predicts

V

y'ul.7, (at this point) consistent with the results of Granato and Nilan
(5)

(11)and of Snead et al.

Viewed from diffusional considerations, Equation (7.3) is incorrect.

(42)The more correct expressions have been presented by Nihoul and Stals

and are apparent from Equation (5.22); these are

dCi                                             - 1/2 _ -1/2    2          6- -K (1 + at    ) c, C  - 2X (1 + at    ) C. (7.46)'
dt 1 V         1

dC
v                -1/2- - K (1 + at    ) C. C
dt 1 V

(7.6b)

-17
where K=4Er D and a=r (AD) We have also assumed that r =r and we made

0    0                1 0

the negligible approximation that a=a//F in the coefficient of the dimer

term.

Carrying through the necessary operations,

(C.)
V 0

Y    3-C   +
V

3-1                  3        v o
-1 (C ) (C )    -1

(C )2 [4(C )r]  {1-[4(C )r] [c -1  +   2   En (2-  _12)1}
1. v o V O 0 V O  0      V CV
-l    ]

4   CV
'

3   -1       (Cv) o
(C ) 1/2

{1   -    [4(Cv) o   ro   J          I c
-1+2£n (2-

c.' )1 ,  -1V

(7.7)



..

- 54 -

and it remains true that C =4(C ) at infinite time. The limits of y as
V    V O

given by Equation (7.7) are y=00 at t=0 and y=l at t=00.  To appreciate the

intervening behavior, it is necessary to adopt values of r  and (C ) .
0 VO

Taking r  to be about four lattice constants and an initial fractional
0

vacancy concentration of 10-6 gives 834r  (C )  2 10-3. The behavior of y
0 V 0,

for this choice of parameters and for others as well is given in Figure

(11).  It will be seen that, for any of the choices of B, y decreases ra-

pidly from high values toward 2, the initial value predicted in the simple

rate theory approach. The agreement   is  best   for the snal]est value  of   B,

corresponding to the smallest choice of r . Since our choice of r  , four
0 0

lattice constants is rather large already·(about 1,000 lattide sites would

be included in this·region), this result is·comforting.

For one-dimensional diffusion, the correct kinetic expressions for the

same problem, based on diffusion theory , are

(7.8a)
dei -1/2 2 .-1/2- K C. C t

- 2K Cidt 1 V

dc
(7.8b)-1, - K C. C t-1/2

dt 1 V

with the resulting expression for y given by

C (V) 0

(C ) (C )

C Cv)  0          -1V O 2    v o
Y                [  3    -   -]     -    1/2     [ -1        [                   -    1   +   2    2.n    (2· -                      )]

CV             Cv       Cv                    CV

(7.9)
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2        4
Here, K=2r (TrD) and it·is still true that C.=4(C ) .at.t- .

0                                        V    V O

The limits on y in.Equation (7.9) are the same predicted for the three-

dimensional case.  However, the actual behavior with time is considerably

different.  Note that there are no explicit adjustable.factors in Equation

(7.9); thdre is an implicit presence of such factors, by virtue of our use

of a single.rate constant, K, but·this is small.

Figure (11) shows that y retains 'high values--values well in excess

of 2--throughout almost the entirety of the annealing process.  Once again

this prediction is at variance with observation:of Stage Ie' suggesting

again that onerdimensional diffusion is not ·the basis 'of this annealing

stage.  Of course, other models should be examined but it seems inevitable

that the· objections to onerdimensional'diffusion found 'here and in preVious

sections will remain in any case.

.'.:6
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APPENDIX

In this appendix, we indicate the mathematics  ·for the difference  in

temperature in a linear heating experiment for two i-v separations.  We

define

r. - r
1 0

4   E
1/2 (A.1)

(4Dt)

so that (see Equation [3.19 a])

r

01               ·r'     e r fc
g (A.2)

i

The   compensated  time to temperature is given through the expression:  ( 42)

Do kT2
Dt exp (- Em/kT)B E

m

(A.3)

On   evaluating,   for  a "peak temperature, "

2
d t (A.4)

1

"2 IT=T
=0

C
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we have

E

4T (_El + T)

£&2     1/2 [1 -      k

(Em   +  2 T)
2

(A.5)
k

Combining  this last expression with Equation  (A. 1) gives,  to  a good approxi-

mation,

(-1  -  1) 2  exp (_m) constant (A.6)r           kT
0

Using Equation  (A. 6)   let  rl-*r2  and  r23rl;'two 'i-v  separations  of.'approximately

equal magnitude, we have, again to a good approximation,

r2 - ro E
m   AT

En [.-      1    - -

(A.7)

rl-ro 2kT   T

where T in Equation (A. 7) is the center temperature of either process and

AT is the difference between the two center temperatures.
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FIGURE CAPTIONS

Figure la. A schematic diagram of potential energy vs. distance for

the migration of an interstitial·atom in the region near

a vacancy. Potential wells A, B, and C refer to bound

close-pairs whereas D and E refer to sites for "free"

diffusion.  Ul and U2 refer to unstable interstitial sites.

Figure lb. A, B, C, Dl' 02' ... refer to a series of close-pair

defect configurations, gradually leading to the series

limit of free migration.

Figure 2. The radial distribution of interstitials about their

vacancies for various values of the parameter z. The

modified exponential initial distribution function was

used for this calculation.

Figure 3. A comparison of experimental data on 0.40 Mev electron

irradiated aluminum with theoretical results  .that are-i given

by the solid lines. The appropriate parameters are

E /k = 1320°K, D /r 2 = 2.5 x.1012/
sec, X3 - 0.33-5,m      0 0

X4 = 0.417, AS = 1.05.

Figure 4. The radial distribution functions describing the initial

interstitial-vacancy separation distances corresponding

to the curves of Figure 3.

Figure 5. A theoretical curve showing the numerical derivative of

correlated recovery resulting from a discrete initial

distribution of interstitials about their vacancies. The

heating rate corresponds to 4°K temperature increments

with 10 minute holding times.  The appropriate parameters
2           12

are E /k.·= 1320°K: D /r   = 2.5 x 10  /sec; r /r  = 1.05,
m 0 0 1  0

r./r  = 1.21, r3/r  = 1.75, r./r  = 2.00, r /r  = 2.20;Z 0 4 0 5   0
0            0            o

n o «  n on                                  n                                  n

nL= 0.10, Ii.2-= 0.16, R .- 0.30, n4.= 0.22; n5= 0.22.0            0                          0            0



.,

Figure 6. A theoretidal curve showing the numerical derivative of

the recovery resulting from a series of bound close-pair

defect configurations.  The heating rate.corresponds to

4°K temperature increments with 10 minute holding times.
12

The·appropriate parameters are A = 10  ; nli
- = 0.2,

n0

n20         n30      .  n40         n
0

-n  = 0.25, -n  = 0.35, - n  =.0.12, --   = .08; El/k=1095°K,0 0

E2/k = 1158°K, E3/k = 1231°K, E4/k
=

1316°K; E /k
= .1387°K.

Figure 7. The fractional.recovery obtained from the solutions of

Equations 5.22 (using the modified exponential distribu-

tion, 94) plotted as a function of annealing temperature

and compared with data for 0.40 MeV electron irradiated

aluminum.  The appropriate parameters are p ' = 2 P.P.M.,
2           12

Do/ro  = 2.5 x 10  /sec, X4 = 0.417, r  = 3.5 ao,

rl = 9.0 ao, rT = 3.5 ao.  The impurity concentration,

Ii,   is   given  .in · the f igure „

Figure 8, A comparison of the complete diffusional treatment (curve

a) with one that treats correlated recovery separately

from random recovery and dimer formation (curve b).  The

parameters for this calculation are the same as those·

listed in the caption to Figure 7.

Figure 9. The fractional.recovery.obtained from the solution of

Equation 5.22 (using the Gaussian initial distribution,

95 )   plotted   as a function   of equivalent   time and compared

with 1.4 MeV electron-irradiated copper. The appropridte

parameters are p ' =1 P.P.M., D /r62 =5 x 1011/sec,

E /'k= 1360°K, 15 = 1.30, ro = 3.6 ao, rl = 4.5 ao,
r2 = rT = 0.



(

Figure 10. Representative solutions to Equation (using the

modified exponential distribution,   . 4)
corresponding  to

correlated and random recovery with impurity trapping and

double conversion.  The appropriate parameters are--for
13

the curve with v=3 x 1 0  /sec--E /  = 1320°K; X4 = 0.417,

ro = .r l=r   =2 5 a0, PT' =1 P.P.M.; for the curves with
1 

v=3 x 1 0  /sec--ro=rl=rT=30 ao.

Figure 11. Reaction kinetics for one and three dimensional diffu-

sional formulations involving random recovery and/or

dimer formation and double conversion. Curve (a) pre-

sents y as a function of the fractional vacancy concen-

tration for the one dimensional case. Note the high

order of the reaction throughout most of the annealing.

Curves (b), (c), (d) represent y for the three dimensional

case with (4cr 3)  = 10-1, . (4cr 3)  = 10-2, (4cr03)d = 10-3.o b 0 C
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