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1. INTRODUCTION

As early as 1946 Edward Purcell1 described the modifica-
tion of the coupling of matter to the electromagnetic field
by placing the system in a cavity. Almost forty years
later Kleppner2 reinvestigated the idea of cavity modifi-
cation of spontaneous emission, and later Yablonovitch3

applied these concepts to the modification of spontaneous
emission in photonic bandgap materials.4 The use of
electromagnetic cavities to control spontaneous emission
is now an active field of research. Owing to the inherent
size scale, initial studies were focused on cavity struc-
tures for microwave devices.5,6 With the maturation of
nanometer-size photonic crystal fabrication in semi-
conductors7–9 and other dielectrics10,11 there has been
strong interest in creating optical microcavities for spon-
taneous emission control.

The VCSEL was the first device to utilize an optical
cavity to shrink the optical mode to sizes of the order of
the wavelength of light while still maintaining the low
modal loss required of a laser.12 The microdisk laser is
another example of the successful implementation of a
high quality factor (Q), dielectric optical microcavity with
a mode volume of the order of a cubic wavelength.13–15

More recently studies were done by several groups on
high-Q, ultrasmall volume cavities in photonic wire/
waveguide structures with a one-dimensional in-plane
photonic crystal.16–18 Two-dimensional (2D) photonic
crystals have also been fabricated and characterized in a
variety of semiconductor materials9,19–22; however they
are not effective, by themselves, in confining optical
modes in the third direction. Three-dimensional (3D)
photonic crystals can be used to trap light in all three di-
rections, and they, too, have been fabricated at optical
wavelengths in semiconductors,8 although of lesser qual-
ity and with much more difficulty than in the 2D case.

Technologically, a more appealing method of localizing
light in all directions is the combination of a microdisk-
type structure and a 2D photonic crystal.23 This struc-
ture, shown in Fig. 1, is composed of a thin dielectric slab,
for total internal reflection of the light in the vertical di-
rection, and a 2D photonic crystal to provide in-plane lo-

calization. The optical cavity itself is created by a defect
in the photonic crystal, thereby forming an optical mode
localized to the defect region.24 Also, the 2D photonic
crystal reduces spontaneous emission into many of the
lateral radiation modes present in the microdisk.15 Un-
like the microdisk the 2D patterned dielectric slab is con-
nected laterally; thus the in-plane radiation from the de-
fect mode can be coupled efficiently to a waveguide for in-
plane routing. This opens up the possibility of a low-
threshold, single-mode, in-plane analog to the VCSEL.
Such an in-plane source might be a useful component in
low-power, high-density optoelectronic systems.25

Single-mode, high-Q, small volume optical cavities also
hold the promise of highly efficient, low-noise LED’s.26

We begin in Section 2 by outlining the important char-
acteristics of optical cavity modes in the design of semi-
conductor light emitters. In Section 3 we analyze the
properties of a 2D photonic crystal in a high-index slab
with thickness of the order of the wavelength of light.
We then perform a 3-D finite-difference time-domain
(FDTD) analysis27 of localized defect modes of the photo-
nic crystal in Section 4. In Section 5 we conclude with a
study of the effect of a symmetry breaking defect, which
splits the defect mode degeneracy.

2. DISCUSSION OF PROBLEM

A number of key parameters determine the performance
of an optical cavity in a semiconductor light emitter.
Here we limit our discussion to design issues relevant to
low-power, low-noise devices, such as those described in
the Section 1. The b factor is one of the most important
characteristics of the optical-cavity semiconductor sys-
tem. For a given mode m, bm is the fraction of sponta-
neous emission that is channeled into m, as opposed to all
the other modes that are supported by the cavity. An op-
tical mode m in a microcavity is also described by its qual-
ity factor Q. The Q of a cavity mode is equal to the mode
frequency divided by the modal loss rate Q 5 v/g. The
loss rate g is the number of photons lost from the optical
mode per second. Here we consider lost photons to be
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those that escape outside the cavity where they can be
collected; in other words, we analyze a cold cavity in
which gain and absorption are neglected.

For low-power semiconductor lasers, the figure of merit
is the threshold current. A simple relation for the
threshold current of a semiconductor laser can be written
as follows28:

Ith ' S qNoVactive

tsp
1

qg

b D 1 Inr . (1)

The first term on the right-hand side of Eq. (1) represents
the current needed to reach transparency in the semicon-
ductor, defined by the transparency carrier density No .
The transparency current is proportional to the total
spontaneous emission rate into all optical modes tsp

21 and
to the volume of the active region Vactive . The second
term in Eq. (1) represents the current needed to overcome
losses in the optical cavity. The final term Inr is the cur-
rent that is required for supplying all the nonradiative
processes inside the semiconductor, such as leakage over
the barriers of the quantum wells, Auger recombination,
and surface recombination. b and tsp are also important
LED parameters. However, in an LED one is not con-
cerned with reaching a lasing threshold; therefore it is
beneficial in this case to lower tsp to reduce the effects of
nonradiative processes and to improve the modulation
speed.26

A careful analysis of spontaneous emission in semicon-
ductor microcavities15,29 shows that the spontaneous
emission rate into a single-cavity mode is inversely pro-
portional to the optical mode volume. In a semiconductor
the optical mode volume is in fact an effective mode vol-
ume that also contains information about the overlap of
the active region and the optical mode.23 The challenge
is to design and build a microcavity that has the optical
properties of small volume, near unity b factor, and large
Q, while simultaneously the nonradiative processes are
limited in the semiconductor.

Here we are interested in forming an optical cavity by
using a 2D photonic crystal in an optically thin dielectric
slab. A straightforward method of forming periodic di-
electric structures is to etch holes in the material. The
etched surface quality, and the resulting surface-state
trap density, pose a large problem in many materials,
such as GaAs. The InGaAsP–InP material system is a
promising candidate for implementation of photonic-

crystal-based light emitters. Because of the low surface
recombination velocity23,30 in InGaAsP, one can reduce
the nonradiative surface recombination loss by an order
of magnitude or two relative to GaAs. For this reason we
chose to design around this material system. Prelimi-
nary work on the fabrication of these microcavities in an
InGaAsP multi-quantum-well structure is shown in Fig.
2(a), which shows a top view of the cavity, and in Fig.
2(b), which shows a cross section of the undercut pat-
terned membrane.31 The quantum wells in this
structure32 were designed to have larger gain for electric-
field components polarized in the plane of the quantum
wells (TE gain). For this reason we focus here on design-
ing an optical cavity that supports localized TE-like
modes that will couple much more strongly to the elec-
trons in the quantum well than TM-like modes.

Fig. 1. Schematic of the 2D patterned dielectric slab. The slab
is surrounded by air, and the 2D array of holes completely per-
forate the slab.

Fig. 2. (a) Top view of a microfabricated 2D hexagonal array of
air holes with a single central hole missing. The interhole spac-
ing a is 500 nm, and the radius of the holes is approximately 150
nm. (b) Cross section through the patterned membrane struc-
ture. The thickness of the undercut membrane is 180 nm, ap-
proximately one half-wavelength in the material. The mem-
brane contains four strained quaternary quantum wells,
optimized for 1.55-mm emission wavelength.
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3. TWO-DIMENSIONAL PHOTONIC
CRYSTAL DESIGN

In this section we analyze the 2D hexagonal pattern of air
holes, without any defects, to establish the properties of
the photonic crystal in a thin slab. We begin the analysis
with a 2D-band-structure calculation in which the dielec-
tric slab is infinitely thick. The effects of vertical guiding
on the photonic crystal modes are approximated by re-
placement of the slab material refractive index with an ef-
fective refractive index30 of propagation for a guided slab
mode. We then perform a 3D FDTD calculation to inves-
tigate more accurately the 2D band structure for a slab of
finite thickness.

A. Two-Dimensional Band Structure
An illustration of the top view of the microcavity is shown
in Fig. 3. The microcavity is composed of a dielectric ma-
terial with a hexagonal array of air holes. In this subsec-
tion we treat the structure as infinite in the third direc-
tion. The modes of the structure can be classified as TE
(electric field polarized normal to the axis of the infinitely
long air holes) and TM (electric field polarized parallel to
air hole axis).4 The properties of the 2D photonic crystal
are determined by the interhole spacing a, the ratio of the
radius of the air holes to the spacing r/a, and the refrac-
tive index of the material nslab . The ratio r/a affects the
size of the TE and TM bandgaps. Also, as the r/a ratio is
increased, the frequencies of the photonic crystal modes
tend to rise, owing to the larger air fraction and resulting
lower average index.4 In the 2D calculations we take r/a
equal to 0.3, chosen conservatively to lessen the fabrica-
tion tolerances. The refractive index of InGaAsP is ap-
proximately 3.4 at a wavelength of 1.55 mm.33 This gives
an effective index of 2.65 for the fundamental TE guided
mode in a half-wavelength-thick slab. We use this effec-
tive index as the refractive index of the slab to approxi-
mate the effects of waveguiding on the photonic crystal
modes in a thin slab. This approximation dramatically
reduces the computation time necessary for full 3D calcu-
lations and is generally quite useful as a guide in deter-
mining the fundamental bandgap frequency and lower-
lying frequency band dispersion curves.

Dispersion diagrams showing normalized frequency
versus in-plane wave vector for TE and TM modes of the
2D photonic crystal are given in Figs. 4 and 5, respec-
tively. The band-structure calculation was performed
with the plane-wave expansion method.34 The band dia-
grams show a frequency bandgap for TE-polarized modes
but no gap for TM modes with this refractive-index con-
trast and relatively small r/a. This limits the number of
possible localized defect modes below, because TM modes
will in general not be well contained by the photonic crys-
tal. Throughout the paper we use a normalized fre-
quency a/lo to describe the band frequencies in the pho-
tonic crystal, where lo is the wavelength in air. In
addition we use the term dielectric band to describe the
lower-frequency band that defines the bandgap and air
band to describe the top band. In the TE-band diagram
of Fig. 4 the fundamental bandgap is centered near a nor-
malized frequency of 0.3 and is formed between the air
band at the X point and the dielectric band at the J point.

B. Three-Dimensional Finite-Difference Time-Domain
Analysis of the Two-Dimensional Patterned Slab
Waveguide
In Subsection 3.A the 2D photonic crystal was formed
from infinitely long air holes in an infinitely thick dielec-
tric slab. Here we shrink the dielectric slab to a thick-
ness of the order of the wavelength of light and surround
it with air, thus providing a high degree of localization in
the third direction. The properties of the 2D photonic
crystal are still determined by a, r/a, and nslab , but now
the thickness of the slab is also important.

The resonant modes (leaky and guided) of a symmetric
dielectric slab waveguide separate out into TE and TM
polarizations that also have even or odd spatial symmetry

Fig. 3. Schematic of a 2D slice through the middle of the pat-
terned high-index slab. The center hole has a refractive index
larger than air, nd , which forms a defect in the hexagonal lattice
of air holes.

Fig. 4. Band diagram for TE-polarized light (E field polarized in
plane). The holes have an index nair 5 1. The material has an
index nslab 5 2.65. The radius of the holes is defined by the ra-
tio r/a 5 0.3. The resulting TE bandgap extends between a
normalized frequency, Dvgap 5 a/lo 5 0.28– 0.35.
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with respect to the center of the waveguide. The TE
modes have the electric field polarized in the plane of the
waveguide, and the TM modes have the magnetic field po-
larized in the plane of the waveguide. The resonant
modes of a 2D patterned dielectric slab surrounded by air,
however, are not purely TE or TM but rather what we
designate TE-like and TM-like. The TE-like and TM-like
modes are classified by how they transform under the
horizontal mirror operation in the middle of the dielectric
slab. TE-like modes are even under reflection, and TM-
like modes are odd. TE-like modes are composed of even
TE slab modes and odd TM slab modes, whereas TM-like
modes are formed from even TM slab modes and odd TE
slab modes. As mentioned in Section 2, we are interested
primarily in active regions with predominantly TE gain.
Only the even TE slab modes will couple to such quantum
wells placed at the center of the waveguide, or, in the 2D
patterned waveguides, coupling will be limited to the TE-
like modes. For this reason we focus on designing defect
cavities that support TE-like localized modes. Also, de-
pending on the thickness of the dielectric slab, there can
be higher-order guided modes supported by the patterned
slab.35 Here we consider dielectric slabs approximately a
half-wavelength thick in which there is a bandgap be-
tween the fundamental (0th order) air and dielectric band
TE-like modes.

A 3D FDTD simulation is used to model the fundamen-
tal TE-like band structure of the optically thin patterned
waveguide. By applying appropriate Bloch boundary
conditions over a unit cell of the photonic crystal, one can
obtain the spectral response for a given in-plane wave
vector. The peaks in the frequency spectrum give the
eigenmodes of the photonic crystal at the k vector deter-
mined by the boundary conditions. The interested
reader is referred to the paper by Chan et al.36 for further
details. In our case the unit cell consists of an in-plane
geometry given by the 2D unit cell of the hexagonal lat-
tice. In the ẑ direction we do not have periodicity, so a
full description of the slab and surrounding air must be
given. The Bloch boundary condition is applied to all

four sides normal to plane of the slab, and Mur’s absorb-
ing boundary condition37 is applied to the top boundary.
At the bottom boundary we apply an even mirror reflec-
tion positioned at the middle of the slab to select out only
the TE-like modes of the structure. A uniform spatial
resolution of 20 points per interhole spacing is used to dis-
cretize the unit cell, and the initial field is evolved for 214

time steps. This gives a normalized frequency resolution
of 0.0012 and a spatial resolution of approximately 20
points per wavelength in the high-index slab for frequen-
cies within the bandgap. In these 3D calculations the
real slab refractive index of 3.4 is used as opposed to the
effective index from Subsection 3.A.

The TE-like band structure for a 2D patterned slab
waveguide with thickness d 5 0.4a is plotted in Fig. 6.
The light line, indicated by a solid line in Fig. 6 and a
dashed line in Fig. 4, is the dividing line between guided
and leaky modes of the perforated dielectric slab. The
light line is simply the linear dispersion curve of a photon
in air (as the thin slab is surrounded by air in this struc-
ture). The region above the light line corresponds to
leaky modes in which the optical mode leaks energy into
the surrounding air as it propagates down the waveguide.
The parts of the frequency bands that are below the light
line are guided and do not leak energy as they propagate.
Only the regions of the frequency bands that are guided
are displayed in Fig. 6. The air band is guided near the
band edge at the X point but eventually becomes leaky as
it moves toward the G point. The dielectric band, how-
ever, is guided throughout k space. In the approximate
TE band structure of Fig. 4 the frequency bands are plot-
ted throughout k space, showing both the guided and the
leaky regions. The approximate 2D model of Subsection
3.A and the 3D model presented here compare well for the
first few lower-lying bands.

A plot of the air band edge at the X point and the di-
electric band edge at the J point for varying slab thick-
nesses is given in Fig. 7. Also shown in this figure is the
midgap frequency. A plot of the bandgap width is given
in Fig. 8. As expected the midgap frequency increases as

Fig. 5. Band diagram for TM-polarized light (E field polarized
in the ẑ-direction). In this case the index contrast and r/a are
not large enough to open a full 2D bandgap between the first (di-
electric) and second (air) bands.

Fig. 6. Band structure of the TE-like modes of the 2D patterned
slab waveguide surrounded by air (d 5 0.4a). The solid line
represents the light line. Only the guided modes are plotted.
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the slab thickness is reduced, owing to increasing photon
momentum in the ẑ direction. However, the increase of
the bandgap width with thinner dielectric slabs38 seems
at first to be counterintuitive. A simple argument might
be made to explain this result by analogy with the fre-
quency dispersion relation for a photon in a constant in-
dex material,

S v

c
D 2

5

1

n2
~k i

2
1 k

'

2 !, (2)

where n is the material refractive index, c is the speed of
light in vacuum, k' is the photon momentum normal to
the slab, and k i is the in-plane momentum (in this discus-
sion fixed at the X or J point). The bandgap increase re-
sults from the concentration of the air band mode in the
air holes and the dielectric band in the high dielectric re-
gion. The energy required for a given photon momentum
is larger in a lower-index material. Thus, as the slab be-
comes thinner and k' increases, the air band frequency
increases faster than the dielectric band, and the bandgap
increases. The variation of bandgap with slab thickness
will have nonnegligible effects on the defect cavities ana-
lyzed below.

4. THREE-DIMENSIONAL FINITE-
DIFFERENCE TIME-DOMAIN ANALYSIS OF
DEFECT MODES

We now introduce a defect into the photonic crystal and
analyze the properties of the localized modes that de-
velop. By analyzing the defect modes in three dimen-
sions, we are able to evaluate the effectiveness of the ver-
tical confinement of the defect modes for a finite-thickness
dielectric slab. The FDTD calculations in this section are
performed for three different thicknesses of the slab d:
(i) d 5 0.933a, (ii) d 5 0.533a, and (iii) d 5 0.4a. For
frequencies in the bandgap of the photonic crystal, these
thicknesses correspond to approximately l, l/2, and 3l/8,
where l is the wavelength of light in the slab.

To simulate the defect cavity we use the FDTD method,
where we truncate the computational mesh by placing a
nonreflecting absorber at all boundaries.39,40 Our com-
putational mesh has a resolution of 15 points per inter-
hole spacing, or equivalently 15 points per wavelength for
frequencies within the photonic crystal bandgap. As in
the previous calculations the radius of the air holes are
equal to 0.3a. The number of layers of air holes that sur-
round the defect is three, as shown in Fig. 3.

An initial TE-polarized electric field is used to excite
the TE-like modes of the defect structure. Then the ini-
tial field is evolved in time with the FDTD method. A
fast Fourier transform is applied to the resulting time se-
ries of the field at a point of low symmetry in the cavity, to
pick out the resonance peaks of the defect mode. The
field is then convolved in time with a bandpass filter to
select out the defect modes.41 In the following calcula-
tion the radius of the defect hole is kept constant at 0.3a,
whereas its refractive index is varied between 1.4 and 3.4.
With the chosen r/a and nslab , and for the defect
refractive-index range 1.4–3.4, only one defect band is
formed. A plot of the defect band frequency versus defect
refractive index is given in Fig. 9 for the three different
slab thicknesses.

Because we chose to use a circular defect, the symme-
try of the defect cavity is the point group of the hexagonal

Fig. 7. Plot of the air and dielectric band edges as a function of
slab thickness. The midgap frequency is also plotted, as a
dashed curve.

Fig. 8. Plot of the bandgap between the fundamental guided air
band and dielectric band versus slab thickness.

Fig. 9. Plot of the normalized frequency versus defect refractive
index of the degenerate defect mode. The radius of the defect
hole was kept constant at 0.3a, whereas the refractive index was
varied.
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lattice of air holes C6y . The modes can be labeled by the
irreducible representations (IRREP) of C6y .42 We plot-
ted the magnitude of the electric field of one of the modes
of the defect band in Fig. 10(a). The defect mode trans-
forms like the x component of a vector under the point-
group operations of C6y . Thus we label it an x dipole
mode. The character table of C6y (Ref. 43) shows that the
x dipole mode is a member of a doubly degenerate IRREP.
This IRREP can be represented by a pair of basis func-
tions that transform like x and y vector components. We
plotted the other defect mode, which we term the y dipole
mode, in Fig. 10(b). To excite the x dipole mode we used
an initial field with x̂ symmetry. Similarly, for the y di-
pole mode we used an initial field with ŷ symmetry. The
dipole modes are mainly TE polarized in the slab and
have an antinode in the center of the defect region. This
is important for maximizing the overlap of the defect
mode and the semiconductor gain region, where we antici-
pate that electron and hole densities will be much lower

near the surfaces of the etched holes. In Fig. 11 we show
plots of the magnitude of the electric field for the x and y

dipole modes, enhanced so as to highlight the radiation

Fig. 10. 2D slice through the middle of the slab, showing the
electric-field amplitudes of the degenerate defect modes. (a) x
dipole mode, (b) y dipole mode.

Fig. 11. Guided in-plane radiation losses of the x and y dipole
modes (degenerate case) are shown in (a) and (b), respectively.
In (c) a cross section along the ŷ direction shows the radiation out
the top half of the cavity for the y dipole mode. In each plot the
electric-field amplitude has been enhanced to highlight the
losses.

280 J. Opt. Soc. Am. B/Vol. 16, No. 2 /February 1999 Painter et al.



pattern in the in-plane directions. From the field plots
one can see that the guided in-plane radiation is highly
directional and is well suited for coupling to waveguides
for in-plane routing. The fundamental k component of
the envelope of the defect modes is clearly near the X

point of the Brillouin zone. As discussed above, this is
because the air band edge is at the X point. Also plotted
in Fig. 11 is the radiation pattern in the vertical direction
for the y dipole mode. With a definition of modal volume
similar to that of Foresi et al.16 the volume of the x and y

dipole modes is calculated to be approximately 2(l/2n)3.
The in-plane symmetry of the defect modes allows us to

apply the appropriate mirror conditions to reduce the
computation size by one fourth. Because we are inter-
ested only in TE-like modes, we can also reduce the mesh
size by a factor of 2 in the ẑ direction by applying an even
mirror boundary condition at the middle of the slab. Us-
ing the reduced mesh, we calculated the quality factor of
the y dipole mode for the defect refractive-index range
1.4–3.4. As the defect refractive index is varied, the di-
pole mode frequency sweeps across the bandgap as shown
in Fig. 9; thus we are able to obtain plots of the quality
factor versus frequency.

We used two different methods to calculate the quality
factor of the cavity modes. The first method measures
the slope of the exponential decay of the energy of a given
cavity mode44:

U~t ! 5 U~0 !exp~2t/tph! 5 U~0 !exp@2~vot !/Q#, (3)

where U is the energy in the mode and we have used the
relation

Q [ votph . (4)

The photon lifetime of the cavity mode is tph , and vo is
the angular frequency. This method is useful for rela-
tively low Q modes; however, for high Q modes, the slope
is nearly zero and an alternate method is employed. The
second method calculates the power absorbed in the
boundary P(t) and divides it by the energy stored in the
cavity mode,44

Q [
voU~t !

P~t !
. (5)

For the defect modes of the structure analyzed in this sec-
tion we found little discrepancy between the two methods.
In the following plots we chose to display the quality fac-
tor of the defect modes calculated with the second
method, because this method allows one to separate out
the radiation losses into different directions.

A plot of Q versus normalized frequency is given in Fig.
12 for three different slab thicknesses: d 5 0.933a, d

5 0.533a, and d 5 0.4a. The quality factors of the de-
fect modes seem at first sight to be rather unspectacular
and the cavity losses too high to support lasing in such a
small volume structure. To separate out radiation loss in
the vertical direction that is due to leaky modes, and the
losses that are due to the small number of photonic crys-
tal layers that surround the defect region, we plot the ef-
fective vertical Q and in-plane Q for the y dipole mode in
Figs. 13 and 14, respectively. We define these effective
quality factors as follows:

Fig. 12. Plot of the quality factor versus normalized frequency
of the y dipole mode.

Fig. 13. Plot of the effective quality factor in the vertical direc-
tion Q' versus normalized frequency.

Fig. 14. Plot of the effective in-plane quality factor Q i versus
normalized frequency.
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QT represents the total modal quality factor, whereas Q'

is equal to the effective vertical quality factor, and Q i is
equal to the effective in-plane quality factor. These effec-
tive Q values are calculated by spatial separation of the
power radiated by the dipole mode that is absorbed in the
outer boundary. The in-plane radiation P i is defined as
the radiated power that is absorbed into the sidewalls
that extend from approximately a half-wavelength above
the waveguide to a half-wavelength below the waveguide.
The vertical radiation P' is then taken to be the absorbed
power over the rest of the boundary. These effective Q

values, although not a strict separation of guided and
leaky mode losses, do help to determine what factors are
limiting the Q of the defect modes.

A number of interesting features found in the plots of Q

are worth noting. As shown in Fig. 12, the total Q drops
off as the defect mode frequency approaches either the di-
electric or the air bands, because the envelope function
will decay into the photonic crystal more slowly. The
relative heights of the peak effective in-plane quality fac-
tors for the different slab thicknesses is a result of the
shrinking bandgap as described in Subsection 3.B. The
thinnest slab, d 5 0.4a, thus has the largest effective in-
plane Q. The strange structure near the peak of Q i dis-
appears for more layers of photonic crystal that surround
the defect45 and is most likely due to the waveguide mis-
match between the patterned photonic crystal and the un-
patterned waveguide at the exterior of the photonic crys-
tal.

The effective vertical Q is a strong function of the posi-
tion of the air band below the light line. This results as
the defect modes are pulled out of the air band and into
the frequency bandgap of the surrounding photonic
crystal4 as the dielectric constant of the defect is in-
creased. Initially, as the dielectric constant of the defect
is increased slowly above that of air, the defect modes are
composed predominately of Bloch modes of the air band
near the band edge (X point). The defect mode decays ex-
ponentially into the surrounding photonic crystal, owing
to the forbidden energy gap there. This exponential de-
cay is formed from a linear combination of k components
of the air band that surrounds the X point. Following the
air band from the X point toward the G point in Fig. 4, one
crosses above the light line and the mode becomes leaky.
It is this spread of k components of the air band into the
region above the light line that results in vertical losses of
the defect cavity and a reduction of the Q of the defect
mode. The air band in Fig. 6 is well below the light line
at the X and J points of the Brillouin zone; thus the defect
modes couple only weakly to the leaky modes. From
Figs. 9 and 13 the effective vertical Q peaks sharply at a
frequency just below the center of the bandgap for each
slab thickness. The maximum Q' is approximately
16,000 for the slab of thickness 0.533a, well above the in-
plane Q, which is limited to 250, owing to the small num-
ber of photonic crystal layers. The modal loss in this case
is dominated by in-plane radiation, and the microcavity is
essentially an in-plane emitter.

One can dramatically increase the total Q of the defect
modes and in the process change the device into a surface
emitter by adding more photonic crystal layers. In Fig.
15 we plot the quality factor of the y dipole mode for in-
creasing numbers of layers of air holes that surround the
defect (d 5 0.533a). As one would expect, Q i increases
exponentially with the number of photonic crystal layers.
Q' stays relatively constant, because adding more crystal
layers is ineffective in capturing radiation in the vertical
direction. The total Q for three layers of photonic crystal
is dominated by the in-plane losses, but as the number of
layers increases, the total Q asymptotically approaches
Q' . When the number of layers of holes surrounding the
defect is changed from 3 to 7, Q i can theoretically be in-
creased well above Q' , thus resulting in a vertical emit-
ter with a total Q near 20,000. Of course, realistically
the quality of the fabrication of the 2D photonic crystal
will limit the obtainable in-plane Q. The optical cavity
can also be designed to radiate in the vertical direction by
simple adjustment of the r/a ratio so as to shift the air
band frequency closer to light line, thereby increasing the
defect mode coupling to leaky modes.

5. DEGENERACY SPLITTING OF DIPOLE
MODE

In the defect cavity analyzed in Section 4 we found that
the localized defect modes were a pair of doubly degener-
ate dipole modes. Here we analyze the effects of creating
a defect that is of lower symmetry than the hexagonal lat-
tice, thereby splitting the dipole degeneracy. Because
the x dipole mode is extended in the x̂ direction, one
method of splitting the degeneracy would be to increase

Fig. 15. Plot of the quality factor for increasing number of pho-
tonic crystal layers that surround the defect region.
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the nearest neighbor holes along the x̂ axis. This has the
effect of lowering the symmetry of the defect cavity to
C2y , which splits the (x, y) IRREP of C6y into two nonde-
generate IRREP’s, thus splitting the x and y dipole modes.

An illustration of the modified cavity is given in Fig. 16.
The 3D FDTD calculations are done only for a slab thick-
ness of 0.533a. The radius of all holes, except those we
modified explicitly, have r/a 5 0.3. The refractive index
of the defect hole is set to ndefect 5 3.4, which corresponds
to removal of a single hole. Now, instead of varying the
defect hole index, the hole radius r8 of the two nearest
neighbor holes along the x̂ axis is varied, as shown on Fig.
16. Also, as r8 is increased the two holes are moved si-
multaneously toward the center defect so as to maintain
the rib size in the x̂ direction.

A plot of Q, Q' , and Q i versus r8/a is given in Fig. 17
for the y dipole mode. The Q factors peak for a dipole
mode frequency just below the center of the bandgap.
The peak value of Q' is lower than in the degenerate
structure, but it is still relatively large. A Fourier spec-
trum of the time-evolved field for the structure with r8

5 0.35a is shown in Fig. 18. The x dipole is shifted
much higher in frequency than the y dipole, because the x

dipole has more of an overlap with the enlarged air holes.
At larger r8/a ratios the x dipole mode is pushed com-
pletely out of the bandgap, whereas the y dipole frequency
is shifted only slightly. The frequency separation be-
tween the x and y dipoles increases above 0.04 (in normal-
ized units) for r8/a . 0.4. This corresponds to a wave-
length separation of approximately 200 nm, assuming the
y dipole is resonant at a wavelength of 1.55 mm. The
linewidth of the spontaneous emission from quantum
wells at this wavelength is approximately 200-nm wide13;
thus the mode splitting forces the x dipole out of the in-
homogeneously broadened emission linewidth, creating a

Fig. 16. Cavity geometry for splitting of the dipole mode degen-
eracy. Only the nearest neighbor holes of the defect are shown.
The two nearest holes in the x direction are enlarged. The cen-
tral defect hole is filled in and has a dielectric constant equal to
that of the slab. Notice that the two enlarged holes are also
moved inward toward the central hole to preserve the spacing be-
tween holes in the x̂ direction.

Fig. 17. (a) Plot of the calculated Q of the y dipole as a function
of r8/a. (b) Plot of the normalized frequency of the y dipole
mode.

Fig. 18. Fourier spectrum of an initial field chosen to excite both
the x and y dipole modes. r8/a 5 0.35 in this case. For larger
r8/a ratios the splitting of the x and y dipoles is strong enough to
push the x dipole frequency out of the bandgap. The y dipole,
however, is still highly localized, and its frequency is changed
only moderately.
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cavity with a single high-Q mode. Of course, because the
microcavity is formed from a photonic crystal with only an
in-plane photonic bandgap as opposed to a full 3D photo-
nic bandgap structure, there are still radiation modes
that couple to the quantum well active regions.

6. CONCLUSION

We have analyzed the defect modes of a 2D photonic crys-
tal microcavity in a thin slab of high-index material, us-
ing a three-dimensional (3D) finite-difference time-
domain (FDTD) method. We find that the high-Q,
localized defect modes of the 2D photonic crystal with a
single missing hole are a pair of degenerate (x, y) dipole
modes. The quality factor of the cavity modes are calcu-
lated for varying membrane thicknesses. The defect
mode can be either a surface emitter or an in-plane emit-
ter, depending on the number of layers of 2D photonic
crystal that surround the defect. A maximum Q for the
slab thickness of 0.5a is calculated theoretically to be as
great as 20,000, limited by radiative losses in the vertical
direction. We have also analyzed a lower-symmetry de-
fect cavity, where the x and y dipole mode degeneracy is
split, thus creating a truly single high-Q mode cavity.
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