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Two sources of room temperature visible luminescence are identified from SiO2 films containing ion
beam synthesized Si nanocrystals. From a comparison of luminescence spectra and
photoluminescence decay lifetime measurements between Xe1-implanted SiO2 films and SiO2 films
containing Si nanocrystals, a luminescence feature attributable to defects in the SiO2 matrix is
unambiguously identified. Hydrogen passivation of the films selectively quenches the matrix defect
luminescence, after which luminescence attributable to Si nanocrystals is evident, with a lifetime on
the order of milliseconds. The peak energy of the remaining luminescence attributable to Si
nanocrystals ‘‘redshifts’’ as a function of different processing parameters that might lead to
increased nanocrystal size and the intensity is directly correlated to the formation of Si nanocrystals.
Upon further annealing hydrogen-passivated samples at low temperatures~,500 °C!, the intensity
of nanocrystal luminescence increases by more than a factor of 10. ©1996 American Institute of
Physics.@S0003-6951~96!01940-7#
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Visible light emission from low-dimensional group IV
materials has received worldwide attention over the past f
years, due to scientific and technological interest in devel
ment of silicon-based light emitters that could be monolith
cally integrated with advanced silicon microelectronics1

Since the discovery of porous Si,2 many techniques have
been developed to synthesize light emitting group
nanocrystals.3–8 Ion beam synthesis of group IV nanocrysta
in thermal SiO2 offers several technologically important ad
vantages, including integrated circuit process compatibi
and significant control over the nanocrystal size distributio
as well as chemical and mechanical stability. Although i
beam synthesis has been widely reported,6–8 the origin of
visible luminescence from ion beam synthesized Si na
crystals has so far been unclear, primarily due to a lack
distinction between luminescence originating from matr
defects and luminescence originating from nanocrystals. I
well known9–11 that defects in SiO2 display luminescence a
various energies including the visible range, so the interp
tation of luminescence spectra without distinction of the co
tribution from defects can be very misleading.

In this letter, we provide experimental results on
nanocrystals in SiO2 made by ion implantation that clearly
distinguishes visible photoluminescence~PL! originating
from the nanocrystals from that which originates from matr
defects. From a comparison of PL spectra and lifetime m
surements between Xe1-implanted SiO2 and SiO2 films con-
taining nanocrystals, a luminescence feature is clearly id
tified as arising from irradiation-damaged SiO2. We
demonstrate that subsequent hydrogen passivation of
films containing nanocrystals completely quenches
defect-related luminescence. The remaining PL band att
utable to Si nanocrystals displays ‘‘redshifts’’ in peak ener
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as a function of processing parameters that might lead
increases in nanocrystal size, and the measured lifetimes
on the order of milliseconds. Upon further annealing hydro
gen passivated samples at low temperatures, the intensity
the PL band originating from Si nanocrystals increases by
much as a factor of 10.

Wet thermal SiO2 films, 100 nm thick, grown on lightly
p-doped~100! Si wafers were implanted at room temperatur
with 50 keV 28Si1 at doses of 131016/cm2, 231016/cm2,
and 531016/cm2, corresponding to peak excess Si concen
trations of 2, 4, and 10 at. % Si, respectively, as calculat
using theTRIM code.12 The samples were subsequently an
nealed in high vacuum at temperatures ranging between 4
and 1200 °C for a fixed time of 10 min or for times ranging
between 10 and 320 min at a fixed temperature of 1000 °
For selected samples, the presence of Si nanocrystals w
verified by transmission electron microscopy. Si 2p core
level x-ray photoelectron spectroscopy~XPS! was performed
using a monochromated AlKa radiation at 1487 eV. A pure
Gaussian deconvolution of the~100! Si 2p3/2 signal revealed
a full width at half maximumDEFWHM50.72 eV. All XPS
spectra were corrected for any charging effects by fixing th
adventitious C~1s! binding energy at 285 eV. For transmis-
sion electron microscopy~TEM! and XPS studies, all
samples were thinned using HF so that the analyzed cro
section lies at the peak of the implantation distribution. Hy
drogen passivation experiments were performed by means
low energy~600 eV! deuterium implantation using a Kauff-
man ion source and the D dose was determined by elas
recoil spectrometry using a 2.0 MeV4He11 beam.~Deute-
rium was chosen instead of hydrogen in order to facilita
concentration determination.! All photoluminescence spectra
were taken with 50 mW/mm2 excitation using 457.9 nm
Ar1 laser radiation, detected using a grating spectrome
and the thermoelectrically cooled 25631024 Si CCD array
20334)/2033/3/$10.00 © 1996 American Institute of Physics
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detector. All spectra have been corrected for system
sponse. Samples for all PL lifetime measurements w
cooled to 15 K using a closed-cycle He cryostat and pump
to a steady state with 475 nm Ar1 laser radiation
(1 mW/mm2) prior to measurements. Lifetime traces we
taken using a GaAs photomultiplier tube in combination wi
a multichannel photon counter. The time resolution of t
experimental setup was 100 ns.

Figure 1 shows a plan-view high resolution TEM imag
of a SiO2 film implanted with 531016/cm2 Si at 50 keV and
annealed at 1000 °C for 40 min. Despite weak contrast
dense array of Si nanocrystals is visible, with sizes rang
from 1 to 3 nm in diameter. It should be noted that due
low contrast between small Si nanocrystals and the am
phous SiO2 background, quantitative information on size di
tribution of particles obtainable from TEM is limited an
TEM analysis alone could lead to an underestimation of
particle density of small nanocrystals less than about 1.5 n

Additional information about nanocrystal formation wa
obtained using XPS. Figure 2 shows the Si 2p core level
spectra of SiO2 films implanted with 531016/cm2 Si and
annealed at temperatures between 400 and 1100 °C fo
min. For comparison, spectra of hydrogen terminated~100!
Si and the unimplanted substrate~100 nm wet thermal SiO2
on 100 Si! are also shown. Several trends are noteworthy
Fig. 2. First of all, the Si 2p core level of the as-implanted
oxide film is shifted and inhomogeneously broadened
wards lower binding energy relative to the unimplanted o
ide, characteristic of a suboxide with contributions from va
ous Six1 oxidation states.13 The phase separation of th
suboxide into Si and SiO2 occurs gradually with increasing
annealing temperature, as can be deduced from the gra
shifting of the suboxide peak towards the stoichiomet
SiO2 binding energy and a distinct bulk Si peak appeari
for samples annealed at temperatures higher than 600 °C
is noteworthy that the presence of small nanocrystals
samples annealed at 800 and 600 °C can be inferred from
XPS spectra, although we could not observe them by tra
mission electron microscopy.

From the XPS spectra of Fig. 2, we can also obtain va
able information about the annealing kinetics of SiO2, whose

FIG. 1. High resolution TEM image of Si nanocrystals in SiO2 synthesized
from thermal SiO2 implanted with 50 keV Si1 to a dose of 531016/cm2.
Precipitation was carried out by annealing in vacuum at 1000 °C for 40 m
2034 Appl. Phys. Lett., Vol. 69, No. 14, 30 September 1996
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properties are known to be significantly altered during t
process of ion implantation.14 This is important for two rea-
sons. First, suboxides leading to imperfect nanocrystal/S2
interfaces could give rise to channels for nonradiative reco
bination of quantum-confined excitons. Second, it was p
viously demonstrated11 from Xe1-irradiated SiO2 that some
defects created during the implantation process display v
ible luminescence upon annealing at 800 °C. The analysis
Fig. 2 reveals that the peak of Si 2p core level of the dam-
aged matrix approaches the value for stoichiometric Si2

only upon annealing at temperatures as high as 1100 °C.
full width at half-maximum, however, remains approx
mately 0.3 eV larger than that of the unimplanted film ev
after annealing at 1100 °C. We can, therefore, expect
presence of optically active defects in the damaged ma
even after high temperature annealing.

Figure 3~a! shows the PL spectra of the SiO2 film im-
planted with 120 keV Xe1 to a dose of 331016/cm2 and
annealed at 1000 °C for 10 min. Upon annealing, the defe
related visible PL becomes intense, marked by a broad p
around 600 nm~2.07 eV! and a lifetime less than 100 ns a
550 nm~i.e., shorter than the experimental resolution of 1
ns!. Figure 3~a! also illustrates that this defect-related visib
PL can be completely quenched with about 3.331015/cm2

deuterium. Figure 3~b! illustrates the same set of experimen
on SiO2 films implanted with 50 keV Si1. In addition to the
defect-related PL band, the PL spectra of Si1-implanted
SiO2 are characterized by the emergence of another PL b
around 790 nm~1.57 eV! upon annealing at 1100 °C in
vacuum for 10 min. While deuterium passivation leads to
complete suppression of the defect-related PL band aro
600 nm, the intensity of the ‘‘red’’ PL band around 790 nm
does not decrease further upon increasing the deuterium d
beyond 3.331016/cm2.

Several trends suggest that the origin of the ‘‘red’’ lum

in.

FIG. 2. XPS spectra of 50 keV Si1-implanted SiO2 ~531016/cm2 Si! an-
nealed at various temperatures. As a comparison, XPS spectra of u
planted 100 nm SiO2 on Si and hydrogen terminated~100! bulk Si are also
shown.
Min et al.
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nescence can be attributed to radiative recombination
quantum-confined excitons. First, the value of the lifetim
measured at 750 nm is consistent with theoretic
predictions15 for Si nanocrystals around 2.5 nm. In additio
to a faster component limited by experimental resolution
slower component was observed with a1/e decay time of
0.63 ms, as indicated in Fig. 3~b!.

Second, the peak energy of the ‘‘red’’ luminescence
ter deuteration ‘‘redshifts’’ as a function of implantatio
dose and annealing temperature. This is illustrated in
normalized PL spectra of Fig. 3~c! for 531016/cm2

Si1-implanted samples annealed at different temperatu
All samples were deuterated with an equal dose of deuter
of 3.331015/cm2. A clear shift in PL peak energy from 710
nm ~1.75 eV! to 840 nm ~1.48 eV! is observed between
samples annealed at 800 and 1200 °C. Similarly, a shift fr
650 nm ~1.91 eV! to 790 nm~1.57 eV! was observed be-
tween samples implanted with 231016/cm2 Si and 5

FIG. 3. Room temperature visible PL spectra and lifetime measuremen
100 nm SiO2 films implanted with ~a! 120 keV Xe1 to a dose of 1.3
31016/cm2 and annealed at 1000 °C for 10 min and~b! 50 keV Si1 to a
dose of 531016/cm2 and annealed at 1100 °C for 10 min. Short arrow
indicate the wavelengths at which lifetimes were measured. Long arr
indicate the effect of subsequent D passivation using 600 eV D;~c! PL peak
energy shift of 50 keV Si1-implanted SiO2 after passivation. All samples
were implanted with Si to a dose of 531016/cm2, annealed in vacuum, and
subsequently passivated with 3.331015/cm2 D to quench the defect-related
PL. All spectra are normalized;~d! PL intensity increase upon post
deuteration annealing the film of~b! at 400 °C for 10 min.
Appl. Phys. Lett., Vol. 69, No. 14, 30 September 1996
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31016/cm2 Si, respectively, after annealing at 1000 °C and
passivating with 3.331015/cm2 deuterium.

Third, deuterated samples display a dramatic increase
PL intensity upon low temperature~,500 °C! post-
deuteration annealing, which increases the mobility of deu
terium atoms. It appears that the implanted deuterium atom
have enough mobility at room temperature to passivate d
fects in the matrix but require higher atomic mobility to fur-
ther passivate dangling bonds at the nanocrystal/SiO2 inter-
face. This is illustrated in Fig. 3~d! for the deuterated sample
of Fig. 3~b!. Upon annealing at 400 °C for 10 min, the inten-
sity of the ‘‘red’’ luminescence increases dramatically, by a
much as a factor of 10. This is consistent with the notion tha
passivation of dangling bonds at the nanocrystal/SiO2 inter-
face leads to an enhancement of radiative recombinatio
The PL intensity increases to a maximum at post-deuteratio
annealing temperature of 400 °C and starts to decrease
higher temperatures, presumably due to the release of deu
rium from defects at the nanocrystal/SiO2 interface and sub-
sequent out diffusion from the film.

Finally, the luminescence intensity scales with the vol
ume density of Si–Si bonds, as revealed by XPS results. T
luminescence intensity increases with increasing dose, a
nealing temperature, and annealing time. Increasing any o
or more of these three processing parameters increases
intensity of bulk Si 2p core level signal in XPS, suggesting a
corresponding increase in the volume density of Si–S
bonds. This is most likely associated with an increase
nanocrystal density, since the particles do not coarsen s
nificantly beyond the size of about 2.5 nm, as deduced fro
our limited TEM results.
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