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Abstract
Defect tolerance will become more important as feature
sizes shrink closer to single digit nanometer dimensions.
This is true whether the chips are manufactured using top-
down methods (e.g., photolithography) or bottom-up meth-
ods (e.g., chemically assembled electronic nanotechnol-
ogy, or CAEN). In this paper, we propose a defect toler-
ance methodology centered around reconfigurable devices,
a scalable testing method, and dynamic place-and-route.
Our methodology is particularly well suited for CAEN.

1 Introduction
Photolithography techniques used today are fast approach-
ing physical limits that will make it impossible to scale them
further. New technologies that have the promise to continue
the current scaling rate of device miniaturization and density
growth include Next Generation Lithography (NGL) tech-
niques such as Extreme Ultraviolet Lithography (e.g., [1,
2] ), and Chemically Assembled Electronic Nanotechnol-
ogy (CAEN), which uses directed self-assembly and self-
alignment to construct electronic circuits out of nanometer
scale devices (e.g., [3, 4, 5, 6, 7, 8]). Both these technologies
hold the ultimate promise of producing feature sizes of 20
nm or less and thus extremely high device densities: current
estimates show that CAEN-based devices should achieve
densities of at least 1010 gate-equivalents/cm2.

One significant disadvantage of both NGL and CAEN-based
fabrication is that they are likely to have significantly higher
defect densities than current technologies. This is especially
true of CAEN-based devices: we expect that the nature of
chemical fabrication will result in defect densities as high
as 10% of all the fabric resources–wires, switches and logic
elements. Such high defect densities require a completely
new approach to manufacturing computational devices. No
longer will it be possible to test a device and throw it away
if it has only a handful of defects since we expect that every
chip will have a significant number of defects. Instead, we
must develop a method to use defective chips.

A natural solution is suggested by looking at reconfigurable
fabrics, e.g., Field-Programmable Gate Arrays (FPGAs).

An FPGA is an interconnected set of programmable logic
elements. Both the interconnect and logic elements may be
programmed, or configured, to implement any circuit. The
key idea behind defect tolerance in FPGAs is that recon-
figurability allows one to find the defects and then to avoid
them. We expect that reconfigurable fabrics made from next
generation technologies will go through a post-fabrication
testing phase at which point they will be configured for self-
diagnosis. Unlike the dedicated BIST structures often in-
corporated in current digital designs, the test circuits placed
on the fabric during this self-diagnosis phase will utilize re-
sources that will be available later for normal fabric opera-
tion, and so testing will not incur either an area or a delay
penalty. The result of the test phase will be a defect map
which contains locations of all the defects. This map can be
used by place-and-route tools to layout circuits on the fabric
which avoid the defects. The ability to tolerate defects in
the final product eases the requirements on the manufactur-
ing process. In some sense, this introduces a new manufac-
turing paradigm: one which trades-off post-fabrication pro-
gramming for cost and complexity at manufacturing time.

It is worth noting here that although reconfigurable fab-
rics offer a solution to the high defect rates in both NGL
and CAEN-based technologies, the latter are particularly
well-suited for manufacturing such fabrics. Molecular junc-
tions can be made which hold their own state, obviating the
need for separate memory elements (usually SRAM cells)
in silicon-based reconfigurable devices to hold the config-
uration state of various switch and logic elements [5, 8].
This results in a huge saving in fabric resources, and a much
higher density of logic and interconnect elements.

In this paper we address the problem of finding the de-
fects in high-density reconfigurable fabrics. The proposed
approach has applicability to CAEN-based fabrics as well
as deep-submicron NGL-based manufacturing techniques,
if predictions of high defect rates turn out to be true. For the
purposes of this paper we limit ourselves to an abstract no-
tion of defects and manifested faults: a defect is permanent
and causes the defective resource to malfunction without af-
fecting other surrounding resources. Also, a defect always
manifests itself as a fault–it is not the case that faults are
manifested in some situations and not in others depending



on the operation context. Permanent stuck-open and stuck-
at faults are examples of faults satisfying these conditions;
in particular, we don’t directly consider shorts, which may
render a number of components connected to the shorted
wires unusable. We also do not consider defects which do
not affect component functionality but only parameters such
as delay and power consumption. Although these assump-
tions may seem over-simplifying, they are not unrealistic for
CAEN-based technologies (see [8] and references therein):
the switches and logic elements will be made of molecules
that should have fairly uniform operational characteristics,
and most defects will occur because molecules fail to make
contact or align properly during the assembly process. Also,
shorts can be made very rare because for CAEN-based fab-
rics, we can engineer the molecules and assembly processes
to be highly biased towards opens. This is likely to cause a
higher overall defect rate, but a single short is more harm-
ful than a handful of opens. Finally, we do not consider
faults that may occur during the operational lifetime of the
fabric, although some of our ideas for rapid defect location
and reconfiguration to avoid defects have applicability for
tolerating defects that occur in the field as well.

The remainder of this paper is organized as follows: Sec-
tion 2 reviews previous approaches to tackle similar prob-
lems, Section 3 describes the candidate fabric architecture
and how we propose to use the defect map created by the
testing, Section 4 has a description of our proposed testing
method, Section 5 describes our simulations to evaluate the
methods we propose, and Section 6 has a brief discussion.

2 Related Work
VLSI testing is a much-studied area of research. A large
number of testing strategies and design methodologies have
been proposed over the years to improve the speed and accu-
racy of VLSI testing, and hence to enhance manufacturing
yield [9]. Most such techniques have been designed around
the assumption that a single, or at most very few faults exist
in the portion of the circuit under test. The problem we wish
to tackle is significantly harder, since a large fraction of the
resources under test may be defective. One advantage we
enjoy over traditional VLSI testing is that since the fabric is
reconfigurable, we have the freedom to implement a circuit
of choice to carry out the testing, rather than being limited
to passing input vectors to the fabricated circuit.

Modern DRAM and SRAM chips and FPGAs can tolerate
some defects by having redundancy built into them: for in-
stance, a row containing a defect might be replaced with a
spare row after fabrication. With CAEN fabrics, this will not
be possible: it is unlikely that a portion of the fabric of any
appreciable size will be defect free. Moreover, these devices
are being projected as a replacement not just for memories
but also for logic, where simple row-replacement-like tech-

niques will not work since logic is less regular.

Testing and defect tolerance are widely studied problems for
FPGAs and custom computing systems. A number of test-
ing methods have been proposed for particular FPGA archi-
tectures (e.g., [10, 11, 12, 13]), as well as many FPGA archi-
tectures designed with DFT considerations in mind [14, 15].
Approaches have also been proposed for run-time defect
detection and reconfiguration to avoid defects [16, 17]. In
the domain of custom computing systems, the Piperench re-
configurable processor [18] and more notably the Teramac
custom computer [19, 20] had a notion of testing, defect-
mapping and defect-avoidance built into them. Upto 75%
of the FPGAs used in the Teramac were defective; assem-
bly was followed by a testing phase where the defects in the
FPGAs were identified and mapped. Tools for generating
FPGA configurations used this defect map to avoid defects.
The testing strategy we propose is similar to the one used
for the Teramac. However, the problem we address is sig-
nificantly harder because the Teramac used CMOS devices
with defect rates much lower than those predicted for next-
generation technologies.

Our testing and analysis techniques have resonances with a
large body of work in Statistics and Information Theory on
Group Testing [21], which is a collection of techniques for
finding members of a population which satisfy a particular
property (in other words, which are “defective”). Our work
is based on certain aspects of non-adaptive, probabilistic
group testing. Different flavors of this technique have been
applied to a variety of problems [22, 23, 24]. However,
none of the problems discussed in the group testing litera-
ture have constraints as hard as ours: they have lower defect
rates and allow a smaller granularity of access to population
members than is possible here.

An alternative approach to achieve defect tolerance would
be to use techniques developed for fault-tolerant circuit de-
sign (e.g., [25, 26, 27]). Such circuit designs range from
simple ones involving triple-mode redundancy to more com-
plex circuits that perform computation in an alternative,
sparse code space, so that a certain number of errors in the
output can be corrected. However, the best such techniques
available today require a significant amount of extra physi-
cal resources, result in a (non-negligible) slow-down of the
computation, and are hard to automate well. Also, these cir-
cuits work reliably only if the number of defects are below
a certain threshold.

3 Fabric Architecture
Our defect-tolerance approach is two-fold. First, we con-
struct a map of the defects. Then, when configuring the de-
vice to implement a particular circuit, we avoid the defects
by using only the good components of the device. Our ap-
proach requires three things from a reconfigurable device:



it must be reprogrammable, it must have a rich fine-grained
interconnect, and it should allow us to implement a particu-
lar logic function in many different ways. All three of these
attributes are necessary for both defect detection and defect
avoidance. During defect detection, we reprogram different
test circuits on the device. Each different instance of a test
structure gives us information about different sets of com-
ponents on the device. The latter two attributes are most
necessary during defect avoidance. They allow a particular
circuit to be implemented without requiring us to use any of
the defective components.

The particular architecture of the reconfigurable device is
not essential to our defect detection or defect avoidance al-
gorithms. In modeling the specifics of the algorithm we as-
sume an architecture similar to an island-style FPGA, i.e., a
mesh of interconnect resources surrounding islands of re-
configurable logic. The particular architecture that moti-
vated this work is the nanoFabric [6, 7, 8]. The nanoFab-
ric is an example of a possible implementation of a CAEN-
based reconfigurable device. The logic blocks are cross-bars
of reconfigurable diodes which can be configured to imple-
ment logic functions. Several logic blocks are grouped into
clusters which can be connected using long lines that run
between the clusters. Within a cluster, each logic block is
connected locally to 4 neighbors. The functionality of the
logic blocks and the connections to the interconnect are all
reprogrammable. This architecture satisfies all three charac-
teristics necessary for defect tolerance.

Although this paper is primarily concerned with finding the
defects, we briefly address how the resulting defect map
might be used to provide defect tolerance. The most ob-
vious solution is to create a map of every defect on a par-
ticular device. Then, a compiler1 would use the map to
create a configuration for the desired circuit which avoids
the defects. This is exactly how the Teramac implemented
defect avoidance [19]. There are two problems with this
approach. First, the final place-and-route phase could have
an extremely hard time meeting timing requirements, due
to pathological arrangements of defects. An even greater
potential problem is that the defect map, for the large, high-
density fabrics we are considering, could be as large as the
fabric itself.

An alternative approach requires two levels of compila-
tion. First, the compiler creates a soft-configuration which
is guaranteed to be place-and-routable on any fabric as long
as the defect density in any given region of the fabric is less
than a certain threshold, say t. When loading onto a par-
ticular fabric, the soft-configuration is turned into a hard-
configuration using a two-tiered defect map. The defect
map would provide two-levels of detail. For a small por-

1We use the term compiler loosely to include the CAD tool which cre-
ates the final configuration from a circuit description.

tion of the fabric it would provide a detailed map allowing
the compiler to map a circuit directly to the area in question.
For the remainder of the fabric the map would provide some
basic defect information about each region of the fabric. For
example, the map might contain, for each cluster, the num-
ber of defects in logic and routing resources. This informa-
tion would enable fast detailed-mapping when required. In
addition, regions which exceed the defect-density threshold
t would simply be marked as defective and not used at all.
Thus, any region that is not marked defective is guaranteed
not to exceed the set defect density threshold. The portion
of the fabric for which an exact defect-map is available can
be used for timing critical parts of the circuit, and poten-
tially to store the second-tier defect map for the rest of the
fabric. The rest of the fabric can be defect-mapped and con-
figured as and when required by the compiler, operating in
conjunction with an on-the-fly defect mapper.

4 Proposed Testing Method
We propose configuring sets of fabric components into test
circuits whose output is used to infer the defect status of
individual components. Test-circuits are constructed using
resources that are otherwise available for normal fabric op-
eration and usage. Therefore, out testing method does not
require any dedicated testing resources, and avoids the area
and delay overhead normally associated with designs incor-
porating BIST.

For the description in this section, we use an abstract no-
tion of a “defect” and a “fabric component”. A defect is
assumed to be permanent, and to cause some incorrectness
in the output of a circuit using that defective component (see
Section 1). When performing the tests on a real fabric, the
test-circuits used will have to be specialized according to
the type of defects being diagnosed - shorts, opens, wire-
breakages etc. What we mean by a fabric component is also
left unspecified. It will depend on the design of the fabric,
on the granularity of reconfigurability, and on how much of
the fabric resources we are willing to sacrifice to achieve
quick testing. Depending on these factors, a “component”
may be one or more simple logic gates, a small configurable
mesh of active cross-points, or a look-up table; the on-fabric
interconnect resources are also considered “components” in
the sense that they are configurable and may be defective.

As an example, consider the situation in Figure 1. Five com-
ponents are configured into one test-circuit, so that defects
in one or more circuit components would cause the circuit
output to be incorrect. By comparing the circuit’s output
with the correct result, it can be determined if any of the
circuit’s components were defective. In the first run, the cir-
cuits are configured vertically, and test circuit 2 detects a de-
fect. In the next run, the circuits are configured horizontally,
and test circuit 3 fails. Since no other errors are detected,
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Figure 1: An example, showing how a defective component is
located using two different test-circuit configurations.

we can say that the component at the intersection of these
two circuits is defective, and all others are good. This test-
ing method, used in [19], relies on the fact that most of the
constructed test circuits will be defect-free. Hence, all their
components can be assumed to be good. This assumption
will not hold when testing CAEN-based fabrics: the defects
rates will be much higher, and the test circuits will have a
much larger number of components. The latter will be true
for two reasons:
1. Controlling and observing a small set of resources in

the interior of the fabric will require fabric intercon-
nect resources, which may themselves be defective: an
incorrect circuit result would mean a defect in the cir-
cuit’s parts, or in the wires and switches used to ob-
serve the circuit’s output. These interconnect resources
will therefore have to be considered part of the “test cir-
cuit”, thus imposing a limit on how small these circuits
can be made.

2. For high-density fabrics, small test circuits would im-
ply a long testing time, so much so that the fabrics may
become economically unviable.

We believe typical test circuits used for testing these fabrics
will have hundreds or even thousands of components. With
a defect rate of 10%, a test-circuit with as few as a hundred
components is expected to have 10 defects. This implies
that the simple technique used in the example above will not
work, since an overwhelming majority of circuits will con-
tain some defects.2 The key idea we propose to deal with
this situation is that the test circuits should be more power-
ful: instead of simply indicating the presence or absence of
defects, they should provide us more information, such as an
estimate of the actual number of defective components. In
particular, we have obtained encouraging simulation results

2It is easy to see analytically that for a test-circuit size of 100 and a
defect rate of 10%, only about 1 circuit in 4 × 104 will be defect free.
Locating a significant number of defect-free components will therefore re-
quire an enormous number of test circuit configurations.

using idealized test circuits that can count the actual num-
ber of defective constituent components, as well as practical
LFSR-based circuits that provide approximate counts of the
number of defects but still give good diagnosis results.

4.1 Testing algorithm

Our testing algorithm is sketched in Figure 2. It consists of
two phases: the probability assignment phase (lines 1–10)
and the defect location phase (lines 11–22). The probabil-
ity assignment phase assigns each component a probability
of being defective, and discards the components which have
a high probability. This should result in a large fraction of
defective components being identified and eliminated from
further testing. The remaining components are now likely
to have a small enough defect rate that they can be tested
in the defect location phase using the simple method em-
ployed in the example of Figure 1 to identify all the defect
free components. In each phase, the fabric components are
configured into test circuits in a particular orientation, or
tiling; since each circuit uses only a small number of com-
ponents, many such circuits can be configured in parallel, or
tiled, across the fabric. For example, the circuits in Figure 1
are arranged in two tilings, vertical and horizontal. For now,
we assume that arbitrary tilings are possible; this will gener-
ally not be the case in a real fabric with limited connectivity.
We discuss some implications of limited fabric connectivity,
and ways to deal with it, in Section 4.3.

In the probability assignment phase, test circuits are repeat-
edly configured on the fabric, and circuit results are ana-
lyzed to compute the probability of being defective for each
component (while loop of lines 3–8). When these probabili-
ties have stabilized, components with a high probability are
discarded, or marked suspect. These suspect compo-
nents are not made a part of further test-circuits. This whole
process is repeated a fixed number of times (N1, N1 ≥ 1)
or until a point of diminishing return is reached (for loop
of lines 2–10). Note that this phase is probabilistic, and so
many good components will be misidentified as suspect.
The purpose of running the for loop multiple times is to get
a finer resolution of defect-probabilities for the components
and thus to minimize the misidentification rate. The remain-
ing points of interest here are the type-1 test-circuits used in
line 5, and the method for computing defect probabilities in
line 6. These are described in greater detail in Sections 4.2
and 4.3, respectively.

After the probability assignment phase, a number of compo-
nents have been marked suspect and are not included in
the further test-circuits. For the remaining components, the
defect density is expected to be low enough that a substantial
number of test-circuits will be defect-free. These defect-free
components are identified in the defect-location phase (lines
11–22). In this phase, the circuits used (type-2 test circuits,



// Probability Assignment Phase
1 mark all fabric components not suspect
2 for iteration from 1 to N1 do
3 while probabilities not stable do
4 for all fabric components marked not suspect do
5 configure components into type-1 test-circuits using a particular tiling
6 compute defect probability for each component using circuit results from current iteration
7 done
8 done
9 mark components with high defect probability as suspect
10 done

// Defect Location phase
11 for iteration from 1 to N2 do
12 while results improve do
13 for all fabric components marked not suspect or not defective do
14 configure components into type-2 test-circuits using a particular tiling
15 for all circuits with correct output do
16 mark all circuit components not defective
17 done
18 done
19 done
20 mark some suspect components not suspect
21 done

22 Mark all remaining components as defective

Figure 2: Proposed testing algorithm.

line 14) return a wrong answer in the presence of a defect,
but don’t need to provide any more information. Compo-
nents of error-free circuits are marked not defective.
This whole process is repeated till no more good compo-
nents are identified (while loop, lines 11–19). At this point,
some of the components previously marked suspect are
added back (line 20), and the whole process is repeated; this
is done a total ofN2 times. The purpose of this is to try to re-
duce the number of components misidentified as suspect
by the probability-assignment phase.

We define a quality metric, recovery, to judge our algorithm.
Recovery is the percentage of defect-free components which
our algorithm identifies as such. For example, if the fabric
has a 10% defect rate, and the algorithm identifies 45% of
the components as defect free, the recovery is 50% (45/(100-
10)×100%). The recovery value is usually less than 100%
because the algorithm has many false positives, i.e., good
components are identified as bad. In general, recovery will
depend on the type of test-circuits used, number of tests run
and the rigor of the post-testing analysis. There are a num-
ber of trade-offs that can be made between testing time and
recovery, for example by adjusting the value of N1 and N2,
or by changing the termination condition for the while loops

on lines 3 and 12. In particular, the value of N2 has been
set to more than 1 in our simulations and the step on line 20
has been added in an effort to maximize recovery. It should
be noted that if the test circuits used in the defect location
phase can detect all modeled defects, this method of defect-
mapping will never produce false negatives (i.e., bad com-
ponents which are identified as good): all the components
that the algorithm says are good will actually be good.

Another important trade-off in the method is the oblivious-
ness or non-adaptiveness of the test-circuit generation. By
this, we mean that the results of previous tests are not used
to generate new circuits. In the algorithm as it stands, a
small amount of re-routing of test circuits is required after
each iteration of the for loops in the two phases, when some
components are discarded or added back. This re-routing is
unlikely to require much effort since only routes to bypass
certain components need to be included in pre-computed tile
configurations; even this small amount of routing effort can
be traded-off against recovery by adjusting N1 and N2.

4.2 Some candidate test-circuits

We need test-circuits that can give us some notion of the
number of defects in the circuit’s constituent components.



We have considered two kinds of circuits for this purpose:
idealized counter circuits that can actually count the number
of defects, and none-some-many circuits, which can tell us,
with reasonable certainty, if the circuit had none, some or
many defective components.

Counter circuits: These are idealized circuits that can
count the number of defects, upto a certain threshold. For
example, if the circuit’s threshold is t, it can tell us if there
are 0, 1, 2, ..., t or > t defects in the circuit’s components.
Naturally, circuits with a higher threshold are more power-
ful and give better recovery results than those with a lower
threshold. Although it is extremely difficult to practically
realize such counter circuits with high thresholds, our sim-
ulation results in Section 5 show that even circuits with a
threshold of 1 (i.e., which can only tell us if there were 0,
1 or more defects) can give significant recovery for mod-
erate defect rates. For certain defect types, designing such
low-threshold counter circuits may be possible.

None-some-many circuits: These circuits are a weaker
version of the counter circuits described above. They can
tell us, with some degree of accuracy, if the circuit con-
tained none, some or many defects. We have designed sim-
ple LFSR-based circuits that can give us such information.
These test circuits operate as follows:

• A set of components are organized into an LFSR,
which is provided with an initial input and run au-
tonomously for a while. Its signature is then matched
against the correct output. If the signature matches, the
circuit is assumed to contain no defects. Note that this
does not mean the circuit is defect-free, because a cor-
rect output may have been obtained because of aliasing.

• If the large LFSR produced a signature mismatch, it
is split into some number of smaller LFSRs (say 4),
which are again provided initial inputs and run au-
tonomously. If less than half of the smaller LFSRs
have a signature mismatch, the entire circuit is assumed
to contain some defects; if there are more mismatches,
the circuit is assumed to contain many defects.

Breaking up a larger LFSR into some smaller ones should
require minimal reconfiguration, since only a small number
of forward and feedback connections need to be redirected.
We have found that the two-step schema above works bet-
ter than using smaller LFSRs from the start because smaller
LFSRs have a higher aliasing probability. Also, in the initial
stages of testing, most circuits will be found to contain some
or many defects. However, as components are marked sus-
pect and removed from subsequent testing steps, many of
the large LFSRs will turn out to be defect-free, obviating the
need to run the smaller LFSR circuits. This should speed
up the testing. An alternative to LFSRs would be circuits
based on linear cellular automata [28], which have the ad-
vantage of not having long feedback connections. However,

low aliasing probabilities are harder to achieve with cellular
automata and they are also harder to design since they need
more fabric resources.

4.3 Analysing circuit outputs

Once the results of the test circuits have been obtained,
they are used to determine the probability of each individual
component being defective. We have considered two meth-
ods for doing this analysis:

“Sorting” analysis: Let a component c be part of n dif-
ferent circuits. Based on the results of these n circuits, we
calculate a fault-value for the component, as follows: if the
test circuits are counter circuits, the fault-value is simply
the sum of the number of defects in each of the n circuits.
If the circuit is an LFSR-based none-some-many circuit, we
assign numerical weights to each result (e.g., 2 to many de-
fects, 1 to some and 0 to none) and sum up all n weights for
the component. Once this calculation has been performed
for all components under test, they are sorted according to
their fault-values and components with higher fault-values
are assigned a higher probability of being defective. This
method involves simple calculations and places no specific
restrictions on the shape or nature of the tilings.

Bayesian analysis: Again, let a component c be a part of n
different test circuits. Let p be the a priori known defect rate
in the fabric, obtained through some initial testing or from
knowledge of the manufacturing process. Let a1, a2, ..., an
represent numerical results for each of these circuits (these
can be actual defect counts for counter circuits, or numer-
ical weights for the none-some-many circuits as described
above). We need to find the posterior probability of com-
ponent c being defective given our knowledge of the circuit
results. Let A be the event that c is good, and let B be the
event of obtaining the circuit results that we have obtained
for the n circuits. Therefore, we need to find P (A|B).

Now, from Bayes’ rule,

P (A|B) =
P (A ∩B)

P (B)

=
P (A ∩B)

P (A ∩B) + P (A ∩B)

If c is the only component that the n circuits share, this equa-
tion simplifies to the following:

P (A|B) =
1

1 +
(1− p)n−1nn

pn−1(n− a1)(n− a2)...(n− an)

This equation is solved for each component to obtain its
probability of being good (the probability of being bad,
which is required by the algorithm, is simply this value
subtracted from 1). The simple closed-form expression ob-
tained above holds true if all the circuits that a component is



Figure 3: A schematic representation of how testing will pro-
ceed in a wave-like manner through the fabric. The black area
is tested and configured as a tester by the external tester; each
darker-shaded area then tests and configures a lighter-shaded
neighbor.

part of have only that component in common. It can eas-
ily be shown that in general, the amount of computation
grows exponentially with the number of components that
two different circuits can share. This is a significant lim-
itation of the method: on a fabric with limited routing re-
sources, it severely restricts the number and type of tilings
that are practically realizable. Although the sorting analy-
sis gives results inferior to the Bayesian analysis, it does not
suffer from this limitation. We are currently exploring ways
to combine these two techniques to get around this while
maintaining high recovery.

4.4 Scaling the testing process with fabric size

A short testing time is crucial for the usability and low cost
of these fabrics, so it is important to ensure that the testing
procedure scales with fabric size. We shall begin by ana-
lyzing the testing strategy above to see how long it takes to
run.

The size of a test-circuit will depend on the granularity of
access the fabric provides us - in general, smaller circuits
provide more accurate information but are harder to realize.
Let the circuit size be k. Then, since the circuits in a tiling
are independent of each other, a k× k piece of fabric can be
configured to run k test circuits in parallel. Let the average
number of iterations of the two while loops in lines 3–8 and
12–19 of the algorithm be x and y respectively (x and y will
depend on the termination condition used for the two loops).
Then, the total number of tilings used equals N1x + N2y.
We have observed empirically that if d is the defect rate, the
number of tilings required before recovery stops improving
scales asO(k×d). Therefore, for testing k×k components,
we require O(k × d) fabric reconfigurations. If the fabric is
larger then k × k it can be split into many sections of size
k × k, each of which can be tested separately.

We envisage that the reconfigurability of the fabric can be
leveraged to reduce the time spent on an external tester sig-

Figure 4: Recovery vs. defect rate for counter circuits using
sorting analysis of circuit results. Each line represents a circuit
with a different upper bound for the number of defects that
can be counted. inf stands for infinity.

nificantly. Once a part of the fabric is tested and defect-
mapped, it can be configured to act as a tester for the other
parts. Also, there is nothing to prevent us from having mul-
tiple testers active simultaneously. In such a scenario, the
first area to be tested tests its adjacent ones, which test their
adjacent ones and so on, and the testing can move in a wave
through the fabric (see Figure 3). For large fabrics, multiple
such waves may grow out from different externally-tested
areas. Now, as the fabric size increases, testing time grows
linearly with the distance this wave has to traverse through
the fabric, which is proportional to the length of the fabric’s
edge, and to the square root of the number of components in
the fabric.

5 Evaluation
We performed simulations of our algorithm to determine its
efficacy and to evaluate the two types of test-circuits and
analysis methods described in Section 4. These simulations
were carried out using a very abstract notion of the fabric ar-
chitecture and defect model: the fabric was assumed to con-
sist of a large number of “components” arranged in a rect-
angular array with practically unlimited routing resources
to connect them together. This allowed us to configure ar-
bitrary test-circuit tilings onto the fabric, which will in gen-
eral not be feasible on a real fabric. It was also assumed
that suitable test-circuits were available to identify each of
the different types of defects that can occur on the fabric.
Although this abstracts away all the details of the fabric ar-
chitecture and device failure model, our results are still a
fairly good indication of the level of recovery achievable in
such a high-defect-rate regime.

The simulations were carried out using test-circuits that had
about 100 components each, and with fabrics that had defect



Figure 5: Recovery vs. defect rate for counter circuits using
Bayesian analysis of circuit results. Each line represents a cir-
cuit with a different upper bound for the number of defects
that can be counted. inf stands for infinity.

rates ranging from 1 to 13 percent. What this actually means
is that our analysis methods were tested for an average of 1
to 13 defects per test circuit, and our results are valid if test
circuits used on actual fabrics have a defect count approxi-
mately in this range. Therefore, the size of the test-circuit
will have to be adjusted according to the defect rate of the
fabric: fabrics with a small defect rate can be tested using
larger test circuits, but fabrics with higher defect rates will
require smaller circuits and therefore the architecture will
need to provide more fine-grained access to fabric internals.

Figures 4 and 5 present simulation results for counter cir-
cuits using, respectively, the sorting and Bayesian analysis.
Figures 6 and 7 present results for the LFSR-based none-
some-many circuits. For all of the above simulations, we
assume that the defects have a random, uniform distribu-
tion throughout the fabric. Experience with VLSI fabrica-
tion has shown that defects are often clustered rather than
uniformly scattered. However, the assumption of randomly
scattered defects is pessimistic compared to clustered de-
fects: if the defects are clustered, a larger number of circuits
are expected to be defect-free, and hence defect diagnosis
can be expected to be easier, as we show later in this sec-
tion.

The counter circuit simulations were carried out using a
number of test circuits with different thresholds on the num-
ber of defects they can count. These thresholds were var-
ied from 1 (the circuit can only tell us if there were 0, 1 or
more defects) to 10. For comparison, a circuit that can count
an unbounded number of defects was also included. The
simulated circuits were also allowed to return an incorrect
result with a small probability. The test cycle was carried
on till the results stopped improving, i.e., the precomputed
tilings failed to identify any new defect-free components.

Figure 6: Recovery vs. defect rate for none-some-many cir-
cuits using sorting analysis of circuit results. The label for each
curve represents the number of smaller LFSRs that the larger
LFSR is split into.

The number of tilings required for each circuit varied from
about 20 to 200, depending on the type of circuit, the fab-
ric defect rate and which type of analysis was being used
(sorting analysis needed about twice the number of tilings
needed by the Bayesian analysis). Such a large number of
tilings is possible under our unrestricted fabric connectiv-
ity assumption, but may not be achievable with a real fab-
ric. For both types of analysis, good recovery results were
achieved with circuits having relatively low counting thresh-
olds. The results indicate that significant recovery is achiev-
able if the test-circuit can count about a third of the expected
number of defects per circuit (e.g., a circuit that can count
3 or 4 defects gives good results if the average number of
defects per circuit is around 10).

For the none-some-many circuits, LFSRs were first config-
ured using about a hundred components, and these were
then broken up into 2, 3, 4 or 5 smaller LFSRs (recall
that the results of the large LFSR as well as each of the
smaller pieces are taken into account while deciding if the
circuit has none, some or many defects). Breaking into more
pieces gives more accurate information about the compo-
nents being tested, but requires more effort to get inputs to
and outputs from the circuits. The simulated circuits pro-
duced incorrect results with the expected aliasing probabil-
ity for circuits of that size. These circuits required about 50
to 100 tilings, before results stopped showing an improve-
ment. The number of tilings required depended in the ex-
pected way on the type of circuit used, fabric defect rate and
analysis technique.

To show that the results presented so far will only improve
in the presence of clustered defects, we generated fabrics
in which the defects occurred in clusters, with components
around the center of the cluster having a normal probability



Figure 7: Recovery vs. defect rate for none-some-many circuits
using Bayesian analysis of circuit results. The label for each
curve represents the number of smaller LFSRs that the larger
LFSR is split into.

distribution of being defective. Clusters of different tight-
ness were obtained by varying the standard deviation of the
normal distribution. These results are presented in Figure 8:
all the fabrics had a defect rate of 9%; the bars to the left
represent larger standard deviations and hence larger clus-
ters, while those to the right represent tighter clusters. The
leftmost bars correspond to a standard deviation of infinity,
which is essentially the uniform distribution. We simulated
counter circuits with thresholds of 2 and 3 and Bayesian
analysis. As the clusters get tighter, the recovery results for
the circuits with threshold 2 improve dramatically. For the
threshold 3 counter, the results were good to start with, but
still show a small improvement.

To summarize, the more sophisticated Bayesian analysis has
significantly better recovery than the simpler sorting analy-
sis. Also, simulations using the sorting analysis technique
needed about twice the number of reconfigurations needed
by the Bayesian analysis. However, the sorting analysis is
much easier to implement, particularly because it places far
fewer restrictions on the types of tilings that can be used
(recall that the Bayesian analysis required that any two test
circuits have at most one component in common). We are
presently investigating other methods of analysing circuit
results, including a combination of sorting and Bayesian
analysis, to reduce the number of reconfigurations required
as much as possible while not sacrificing recovery.

6 Discussion
Next generation manufacturing technologies are expected to
achieve extremely high device densities, yielding computa-
tional fabrics with many billions of components. However,
this boon comes at the cost of large defect densities. In or-
der to make the entire process economical it is important

Figure 8: Recovery results for clustered defects, using counter
circuits of thresholds 2 and 3 and Bayesian analysis. The hor-
izontal axis shows different values of a clustering parameter,
which corresponds to the tightness of the clusters. Larger val-
ues represent looser clusters: infinity (inf) represents unclus-
tered, uniformly distributed defects, or the results in Figure 5.

that the resulting fabrics be defect tolerant. Assuming one
can find the defects, one possible defect tolerant architecture
is a reconfigurable computing device. In this paper we have
shown that it is possible to find the defects in a reconfig-
urable computing device, even when the device is large and
has many defects. Our method uses test-circuits that pro-
vide more information about the defect status of their com-
ponents than simply the presence or absence of defects. We
have presented a testing algorithm that uses such test cir-
cuits to obtain a reasonably high level of recovery of fabric
components.

Our algorithm attempts to minimize the amount of re-
routing required at test time, since rerouting is a slow and
computationally expensive procedure. Therefore, we re-
strict ourselves to using pre-computed tiling configurations
which undergo a minimal amount of adaptation at test time.
Of course, once the algorithm has identified some fabric re-
sources as being defect free, test circuits can be generated
which incrementally test fabric resources whose defect sta-
tus is unknown, potentially achieving close to 100% recov-
ery. A naive example of such an adaptive testing method
would be one that tests each component by making it part of
a test-circuit all of whose other components are known to be
defect-free. Although this method does the required job, it
is very inefficient, and identifying an efficient way to carry
out this final testing is a focus of our current work.

The final circuit configuration obtained after compilation
will depend on the defect distribution, and will therefore be
different for each individual fabric. With such a scheme, it
will be difficult to obtain hard guarantees for the delay of
placed and routed circuits. We envision that the compiler



will generate locally synchronous, globally asynchronous
circuits, with very loose timing constraints. This means that
timing constraints will have to be met only for small parts
of the circuit that can be placed within a small, localized
area. Communication with more distant parts of the circuit
takes place through asynchronous signals for which timing
and delay is not so much an issue. Using asynchronous logic
will also give us some protection against defects which may
only affect component delays and not functionality
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