
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 348, Number 1, January 1996

DEFECT ZERO p−BLOCKS FOR FINITE SIMPLE GROUPS

ANDREW GRANVILLE AND KEN ONO

Abstract. We classify those finite simple groups whose Brauer graph (or
decomposition matrix) has a p-block with defect 0, completing an investigation
of many authors. The only finite simple groups whose defect zero p−blocks
remained unclassified were the alternating groups An. Here we show that
these all have a p-block with defect 0 for every prime p ≥ 5. This follows from
proving the same result for every symmetric group Sn, which in turn follows
as a consequence of the t-core partition conjecture, that every non-negative
integer possesses at least one t-core partition, for any t ≥ 4. For t ≥ 17, we
reduce this problem to Lagrange’s Theorem that every non-negative integer

can be written as the sum of four squares. The only case with t < 17, that
was not covered in previous work, was the case t = 13. This we prove with
a very different argument, by interpreting the generating function for t-core
partitions in terms of modular forms, and then controlling the size of the
coefficients using Deligne’s Theorem (née the Weil Conjectures).

We also consider congruences for the number of p-blocks of Sn, proving a
conjecture of Garvan, that establishes certain multiplicative congruences when
5 ≤ p ≤ 23. By using a result of Serre concerning the divisibility of coefficients
of modular forms, we show that for any given prime p and positive integer m,
the number of p−blocks with defect 0 in Sn is a multiple of m for almost all n.
We also establish that any given prime p divides the number of p−modularly
irreducible representations of Sn, for almost all n.

1. Introduction

An ordinary representation of a group G of degree n is a group homomorphism
from G to Gln(C), the group of invertible n×n matrices with complex coefficients.
Such a representation may be viewed as a homomorphism from G to the group of
isomorphisms of an n−dimensional complex vector space V to itself. An irreducible
representation is an ordinary representation which does not have a non-trivial stable
subspace; and, in a finite group G, the equivalence classes of such representations
are in 1-1 correspondance with the conjugacy classes of G. In the symmetric group
Sn, a conjugacy class is the set of permutations with a given cycle structure, and so
they are in a natural 1-1 correspondance with the set of partitions of n (a partition
of n is a non-increasing sequence of positive integers whose sum is n). Thus the
number of irreducible representations of Sn equals p(n), the number of partitions

of n; which Hardy and Ramanujan showed is ∼ 1
4n
√

3
eπ
√

2n/3.
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Young [10,19] described a natural correspondence between partitions of n and
irreducible representations of Sn: Given a partition [λ] = λ1 + λ2 + · · · + λk of n
(where λ1 ≥ λ2 ≥ · · · ≥ λk), Young constructed a set of matrices for the represen-
tation of Sn attached to [λ] (which we also denote by [λ]) by examining the action
of Sn on Young tableaux, combinatorial objects constructed from the Ferrers-Young
diagram of [λ]. The Ferrers-Young diagram of a partition [λ] of n is an array of
nodes with λk nodes in the kth row. We assign numbers to the rows and columns,
and coordinates to the nodes, just as we do for a matrix. The (i, j) hook is the
set of nodes directly below, together with the set of nodes directly to the right of,
the (i, j) node, as well as the (i, j) node itself (that is, the nodes (i, k) with k ≥ j
together with the nodes (k, j) with k ≥ i). The hook number, denoted by H(i, j), is
the total number of nodes on the (i, j) hook. A t-core partition of n is a partition
of n in which none of the hook numbers are divisible by t.

Example. The Ferrers-Young diagram of the partition 4 + 3 + 1 of 8 is

1 2 3 4
1 •(1,1) •(1,2) •(1,3) •(1,4)

2 •(2,1) •(2,2) •(2,3)

3 •(3,1)

The hooks at (1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (3, 1), have hook numbers
6, 4, 3, 1, 4, 2, 1, 1, respectively. Therefore the partition 4 + 3 + 1 of 8 is a t-core
partition for t = 5 and for all t ≥ 7.

The Young tableaux of [λ] are given by the n! different ways of assigning the
numbers 1 through n to the nodes of the Ferrers-Young diagram, each node getting
a different number. A standard tableau is one where the numbers are increasing as
one goes right or down (that is, the (i, j) entry is less than or equal to the (I, J)
entry whenever i ≤ I and j ≤ J). Young showed how to formulate the properties
of a given representation [λ] of Sn, in terms of certain d-by-d matrices of rational
numbers, one for each element of Sn, which he constructed from the combinatorial
properties of the set of standard tableaux (here d is the number of standard tableaux
for [λ]). See Appendix I for further details.

It turns out that the hooks of [λ] are intimately connected with the structure
of the associated representation. In fact the degree d of the representation (which
equals the number of standard tableaux) is given by the Frame-Thrall-Robinson
hook formula [10,6.1.19]:

(1) d =
n!∏

i,j H(i, j)
.

Although Young’s matrices for the representation [λ] of Sn have rational en-
tries, there is a change of basis under which all of the matrices have integer entries
[19, 12.13]; hence we may reduce these entries modulo a given prime p to obtain
the corresponding p-modular representation [λ̄]. Under this reduction, the charac-
teristic 0 representations of Sn form equivalence classes, known as p-blocks. Let
ρ1, ρ2, . . . , ρp(n) denote the ordinary irreducible representations of Sn. The Brauer
graph is constructed by associating a node to each such representation, and then
connecting two nodes i and j by an edge if and only if the reductions of ρi and
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ρj mod p contain a common p-modularly irreducible constituent. The p−blocks
are the connected components of the Brauer graph (see [9] for p−block theory via
characters).

Of special interest are those p-blocks which consist of a single characteristic 0
representation (that is, the corresponding vertex in the Brauer graph is isolated);
these are the p-blocks with defect zero. Brauer’s Problem 19, one of many con-
jectures and problems posed in [3], asks for a description of the number of defect
zero p-blocks for a finite group in terms of its invariants. In [20], Robinson solved
this problem; however it is difficult to determine his invariants for many groups.
Since finite simple groups were classified, there has been some interest in classifying
all simple groups with defect zero p−blocks. For example, using the methods of
Deligne and Lustzig, Michler [14] and Willems [23] proved that every finite simple
group of Lie type possesses a defect zero p−block, for every prime p. However
it turns out that some finite simple groups do not have a defect zero p-block for
certain primes p: for example almost all alternating groups An have neither defect
zero 2-blocks nor defect zero 3−blocks (see corollary 2 below for details).

From the theory of modular representations of finite groups, we know [10,6.1.18]
that an ordinary irreducible representation of a finite group G is p-modularly ir-
reducible and has defect zero if and only if the power of p dividing the degree of
the representation is equal to the power of p dividing |G|. By the Frame-Thrall-
Robinson hook formula (1), this can only happen for a representation of Sn if it
is associated to a p-core partition of n. Moreover if [λ] is a p−core partition of n,
then the restriction of its associated representation to An (which may be a reducible
representation) has the property that all of its irreducible components form their
own defect zero p−blocks [10,6.1.46]. Thus a zero defect p-block for Sn implies the
existence of a zero defect p-block for An. We have thus explained the following
well-known result:

Proposition 1. Every p-core partition of n corresponds to a different defect zero
p-block in Sn, which itself implies the existence of a defect zero p-block in An.

In fact more is known: If p > 2 then An has a defect zero p−block if and only if
Sn has one (for p = 2 the situation is a little more complicated).

Let ct(n) be the number of t-core partitions of n. Garvan, Kim and Stanton [6]
proved that ct(n) equals the number of integer representations of n by the quadratic
form

(2)
t

2
(x2

0 + x2
1 + · · ·+ x2

t−1) +
t−1∑
i=0

ixi, where x0 + x1 + x2 + · · ·+ xt−1 = 0.

For example, for t = 2 this corresponds to the number of integer solutions x1 to
n = 2x2

1 +x1. Thus c2(n) = 0 for almost all integers n, and so Sn has no defect zero
2-blocks for almost all n. By the last proposition we know that An has a defect
zero 2-block if Sn has one. However if n = 2m2 +m + 2 for some integer m, then
An does have a defect zero 2−block even though Sn does not. In these cases there
are 2−blocks for Sn, consisting of two representations each of whose restrictions
to An form their own defect zero 2−block for An. However if n 6= 2m2 + m nor
2m2 + m + 2, then An does not have a defect zero 2−block. Hence An does not
have a defect zero 2−block for almost all n.
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The generating function for ct(n) is given [6, 11] by:

(3)
∞∑
n=0

ct(n)qn =
∞∏
n=1

(1− qtn)t

(1− qn)
.

If p = 2 then Jacobi’s identity gives

∞∏
n=1

(1− q2n)2

1− qn =
∞∑
n=0

c2(n)qn =
∞∑
n=0

q
n2+n

2 .

This confirms what we had above, replacing n by 2x1 or −2x1 − 1, as n is even or
odd.

We shall see in section 3 that c3(n) =
∑
d|3n+1

(
d
3

)
where

(
.
3

)
is the Legendre

symbol; and is therefore 0 if and only if there exists a prime p ≡ 2 (mod 3) such
the exact power of p dividing 3n+1 is odd. By elementary sieve theory we thus see
that there are � N/

√
logN integers n ≤ N for which c3(n) is non-zero. Therefore

An has no defect zero 3-blocks for almost all n.
Garvan, Olsson, Stanton and many others have speculated that cp(n) > 0 for

all integers n ≥ 0, whenever prime p ≥ 5. From Proposition 1 this then implies
that every symmetric group Sn and every alternating group An has a p−block
with defect zero, for each prime p ≥ 5. In fact, it has even been conjectured that
ct(n) > 0 for all integers t > 3, the so-called t-core partition conjecture. However
since ckt(n) ≥ ct(n) whenever k is a positive integer, it follows that the t-core
partition conjecture may be deduced by showing that ct(n) > 0 for all integers
n ≥ 0, for all primes t ≥ 5, as well as for t = 4, 6 and 9.

The result was proved for p = 5 and p = 7 by Erdmann and Michler [4] using
‘abaci’; and from exact formulae for c5(n) and c7(n) in [6]. The second author
[17,18] proved the result for 4 ≤ t ≤ 11, using the theories of quadratic and modular
forms. In this paper we complete the proof of the t-core partition conjecture:

Theorem 1. Every non-negative integer n has at least one t-core partition, pro-
vided t ≥ 4.

Corollary 1. For any positive integer n and any prime p ≥ 5, the symmetric group
Sn and the alternating group An have a p−block with defect 0.

We are thus able to complete the classification of defect zero p−blocks in finite
simple groups (using the main classification theorem, [8] and [14,23]):

Corollary 2. Every finite simple group G has a p-block of defect 0, for every prime
p, except in the following special cases:
• G has no 2-block of defect 0 if it is isomorphic to M12,M22,M24, J2, HS, Suz,

Ru,C1, C3, BM , or An where n 6= 2m2 +m nor 2m2 +m+ 2 for any integer m.
• G has no 3-block of defect 0 if it is isomorphic to Suz,C3, or An with 3n+1 =

m2r where r is squarefree and divisible by some prime q ≡ 2 mod 3.

See Appendix II for a brief description of how these groups arise.
In section 4 we investigate congruence properties of cp(n), the number of p-blocks

with defect 0 for Sn. In addition to verifying certain multiplicative congruences for
cp(n) where 5 ≤ p ≤ 23, conjectured in [7], we prove:
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Theorem 2. For any prime p and positive integer m, in almost all symmetric
groups Sn, the number of p−blocks with defect 0 is a multiple of m. If p is any
prime, then the number of p−modularly irreducible representations of Sn is almost
always a multiple of p.

By contrast, p(n) mod m (where p(n) is the number of irreducible representa-
tions of Sn) is believed to follow no simple patterns, except in the special arithmetic
progressions found by Ramanujan [2].

Acknowledgements

The authors thank ProfessorsGert Almkvist, Christine Bessenrodt, Nigel Boston,
Jon Carlson, Frank Garvan, Dennis Stanton and especially Jorn Olsson for helpful
discussions in the preparation of this paper.

2. The t−core conjecture for t ≥ 17

In this section we prove the conjecture for t ≥ 17. The idea behind the proof
is to use the freedom available in choosing so many variables in (2) to reduce the
problem to an application of Lagrange’s Theorem, that every non-negative integer
is representable as a sum of four squares. To begin with, though, we show that all
‘small’ n can be represented as in (2).

Lemma 1. Every integer n ≤ t2/4 may be represented by (2) with each xi = −1, 0
or 1.

Proof. For any fixed integer k ≤ t/2, we let xt−k = xt−(k−1) = · · · = xt−1 = −1,
and for a given I ⊂ {0, 1, 2, . . . , t−k−1} of size k, we let xi = 1 if i ∈ I, and xi = 0

otherwise. Then the integer given by (2) is
(
k+1

2

)
+
∑
i∈I i.

We claim that, for any given k ≤ m+1, and integer r ∈
[(
k
2

)
, km−

(
k
2

)]
, there is

a subset I of {0, 1, 2, . . . ,m} with
∑
i∈I i = r. We prove this by induction on r: it is

certainly true for r =
(
k
2

)
by taking I = {0, 1, 2, . . . , k − 1}. Assume that it is true

for r− 1; that is, we have
∑
j∈J j = r− 1. Now select the largest j ∈ J with j ≤ m

for which j + 1 6∈ J . Evidently such a j exists (unless J = {m+ 1− k, . . . ,m}, in

which case r > km−
(
k
2

)
), so let I be the set J with j replaced by j + 1, and then∑

i∈I i = 1 +
∑
j∈J j = r.

Thus above we see that every integer in[(
k + 1

2

)
+

(
k

2

)
,

(
k + 1

2

)
+ k(t− k − 1)−

(
k

2

)]
= [k2, k(t− k)]

is so represented by (2). Taking the union of these intervals for 0 ≤ k ≤ t/2 gives
the result. �

We will prove

Proposition 2. Any integer n ≥ 3t+9 may be represented by (2), provided t ≥ 17.

Now, since 3t + 9 < t2/4 for t ≥ 15, Lemma 1 combined with Proposition 2
implies:
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Theorem 3. Every non-negative integer has at least one t−core partition, provided
t ≥ 17; that is, any integer n ≥ 0 may be represented by (2) once t ≥ 17.

Proof of Proposition 2. For any integer n ≥ 3t+ 9, let n0 be the least residue of n
(mod 3). If n0 = 1 then let x0 = 1 and xt−1 = −1; if n0 = 2 then let x1 = 1 and
xt−1 = −1. We also let

x2 = x4 = a+ α, x3 = −2a+ α,

x5 = x7 = b+ β, x6 = −2b+ β,

x8 = x10 = c+ γ, x9 = −2c+ γ,

x11+J = x13+J = d+ δ, x12+J = −2d+ δ,

for some 0 ≤ J ≤ t−15, where a, b, c, d are integers which are yet to be chosen, and
α, β, γ, δ ∈ {−1, 0, 1} are also yet to be chosen and must satisfy α+ β + γ + δ = 0.
We take all other xi = 0. Substituting these numbers into (2) we get

n0 + 3tm+
3t

2
(α2 + β2 + γ2 + δ2) + 9(α+ 2β + 3γ + 4δ) + 3Jδ,

where m = a2 + b2 + c2 + d2. By Lagrange’s Theorem we can, of course, so
represent any non-negative integer m by an appropriate choice of a, b, c, d. So in
order to represent n by (2) in the manner described above, we must find non-
negative integers m and J ≤ t − 15, as well as α, β, γ, δ ∈ {−1, 0, 1} satisfying
α+ β + γ + δ = 0, for which

(4) N = tm+
t

2
(α2 + β2 + γ2 + δ2) + 3(α+ 2β + 3γ + 4δ) + Jδ,

where N = [n/3] ≥ t+ 3.
Now if we select α = β = 0, γ = −δ = ±1 in (4), then the right side equals

t(m + 1) + δ(J + 3). Similarly if we select α = γ = 0, β = −δ = ±1 we get
t(m+1)+δ(J+6); and if we select β = γ = 0, α = −δ = ±1 we get t(m+1)+δ(J+9).
As J runs through the integers 0 ≤ J ≤ t − 15, and letting δ = ±1, we represent
every integer N in [tm+ 6, t(m+ 1)−3] as well as in [t(m+ 1) + 3, t(m+ 2)−6], for
m = 0, 1, 2, . . . . This gives respresentations by (4) of all N ≥ t+ 3, except those in
the intervals [tm− 2, tm+ 2], for m ≥ 2.

Finally take β = γ = −δ, α = δ = ±1 in (4) so that the right side equals
t(m+ 2) + Jδ. As J runs through the integers 0 ≤ J ≤ t− 15, and letting δ = ±1,
we represent every integer N in [t(m+1)+15, t(m+3)−15], for m = 0, 1, 2, . . . . In
particular this includes the intervals [tm− 2, tm+ 2] for every m ≥ 2, since t ≥ 17.

Therefore we can represent every integer N ≥ t+3 by (4), and thus every integer
n ≥ 3t+ 9 by (2). �
Remark. In the proof above we picked xi = 0, 1 or−1 for all i 6∈ [2, 9]∪[11+J, 13+J ].
If instead we let these xi be in the same residue class mod 3t as before, but now

allow them to be any integer satisfying |xi| ≤
√
n
t for i ≥ 1, with x0 chosen so that

the sum of these integers is 0, then we can pick xj for j ∈ [2, 9] ∪ [11 + J, 13 + J ]
in an analogous way to before. We have thus proved that the number of t-core

partitions of an integer n is >
(√

n
2t

)t−13

for t > 13.
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3. The t−core conjecture for t ≤ 16

As noted in the introduction, the t-core conjecture holds for any multiple of t
once it has been proved for t. Therefore it suffices to prove the t-core conjecture
for t = 4, 6, 9 and any prime ≥ 5, since any integer ≥ 4 must be divisible by one
of these numbers. Given Theorem 3, it only remains to prove the conjecture for
t = 4, 5, 6, 7, 9, 11 and 13. All these cases have been handled in previous work except
for t = 13. We briefly summarize the techniques that have been used:

For t = 4 one can use (2) to show that c4(n) is the number of integer solutions
x, y, z of 8n+ 5 = x2 + 2y2 + 2z2 (see [17]); and this is always > 0 by the work of
Gauss.

For t = 6 one can factor the generating function (3) into a product of two formal
power series: The first is the generating function for the number of representations
of an integer as the sum of three triangular numbers, and the second has all non-
negative coefficients with leading term 1. Thus c6(n) > 0 since Gauss’s Eureka
theorem asserts that every non-negative integer can be represented as the sum of
three triangular numbers.

Similarly for t = 9 we factor the generating function (3) into a product of two
formal power series, the first of which is a power of an Eisenstein series, that we
prove has all positive coeffcients, and the second of which has all non-negative
coefficients with leading term 1. This forces all the coefficients of the resulting
product to be positive.

For prime values of t we can prove the result by explicitly computing the gen-
erating function (3) as the sum of an Eisenstein series and a cusp form. This was
done for t = 11 in [17], and we shall do it for t = 13 here. We begin by recalling
various definitions and facts from the theory of modular forms:

Let H be the upper half of the complex plane and let SL2(Z) act on it by linear
fractional transformations. If N is a positive integer, then let Γ0(N) denote the
subgroup of SL2(Z) defined by

Γ0(N) :=

{(
a b
c d

)
| ad− bc = 1, and c ≡ 0 mod N

}
.

Given a positive integer k and a Dirichlet character χ mod N, we say that a mero-
morphic function on H is a modular form of weight k with character χ if

f

(
az + b

cz + d

)
= χ(d)(cz + d)kf(z)

for all z ∈ H and all

(
a b
c d

)
∈ Γ0(N).

If f(z) is holomorphic on H as well as at the cusps (that is, at the rational z),
then we say that f(z) is a holomorphic modular form of type (k, χ) and level N .
The set of all such forms is denoted Mk(N,χ) and is a finite dimensional C−vector
space. The subspace of Mk(N,χ) consisting of those modular forms which also
vanish at the cusps, the cusp forms, is denoted by Sk(N,χ).

Every modular form f(z) in Mk(N,χ) admits a Fourier expansion at infinity of
the form

f(z) =
∞∑
n=0

a(n)qn
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where q := e2πiz. The Hecke operators Tp are natural linear transformations which
preserve Mk(N,χ) and Sk(N,χ). For every prime p the image of the modular form
f(z) is defined by

(5) f(z) | Tp :=
∞∑
n=0

(a(pn) + χ(p)pk−1a(n/p))qn.

We say that f(z) is an eigenform with respect to the Hecke operator Tp if there
exists a complex number λp satisfying

f(z) | Tp = λpf(z).

One can construct modular forms out of forms of a lower level, since if f(z) ∈
Sk(N,χ) then both f(z) and f(mz) belong to Sk(mN,χ), for any positive integer
m. For any given N we can form the vector space generated by all modular forms in
Sk(N,χ) obtained in this way from all Sk(M,χ), where M and the conductor of χ
both divide N . This is the subspace of Sk(N,χ) of oldforms, denoted by Sold

k (N,χ).
The orthogonal complement of Sold

k (N,χ) in Sk(N,χ) is Snew
k (N,χ).

It turns out that Snew
k (N,χ) has a basis of newforms, which are defined to be

elements of this space which are also eigenforms of all of the Hecke operators Tp.
Throughout we shall assume that a newform f(z) is normalized so that its Fourier
expansion is of the form

f(z) = q +
∞∑
n=2

a(n)qn

(that is, we divide out to make the leading coefficient 1). With this normalization
we obtain, for every prime p,

(6) f(z) | Tp = a(p)f(z).

Since newforms are eigenforms of the Hecke operators, the Fourier coefficients
a(n) possess nice multiplicative properties. Specifically the coefficients satisfy

a(mn) = a(m)a(n) if gcd(m,n) = 1,

and

(7) a(pr) = a(p)a(pr−1)− χ(p)pk−1a(pr−2).

For more details on the theory of modular forms see [13,15].
Deligne’s Theorem implies that if f(z) = q +

∑∞
n=2 a(n)qn is a newform of type

(k, χ) of level N , then for every prime p which does not divide N we have

| a(p) |≤ 2p
k−1

2 .

In [15, 4.6.17] Miyake shows that we get the better upper bound | a(p) |≤ p
k−1

2

when p does divide N . This allows us to obtain the following upper bound for
|a(n)|:

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



MODULAR REPRESENTATIONS 339

Lemma 2. If f(z) = q+
∑∞
n=2 a(n)qn is a newform of type (k, χ) of level N, then

|a(n)| < n
k−1

2 (1 +
√

2)Ω(n),

where Ω(n) denotes the total number of prime divisors of n, counting multiplicity.

Proof. Since a(n) is a multiplicative function we need only prove the result for

n = pr, the powers of a fixed prime p. Now define ur = |a(pr)/p
r(k−1)

2 |, so that (7)
implies ur ≤ 2ur−1 +ur−2 for any r ≥ 2, with u0 = 1 and u1 ≤ 2 (by the comments

above). By an induction hypothesis we immediately deduce that ur ≤ (1 +
√

2)r

for all r, and the proposition follows. �
Dedekind’s η−function, defined by the infinite product

η(z) := q
1
24

∞∏
n=1

(1− qn),

is a modular form of weight 1/2. Evidently the eta-quotient

(8)
ηt(tz)

η(z)
= q

t2−1
24

∞∏
n=1

(1− qtn)t

(1− qn)
=
∞∑
n=0

ct(n)qn+ t2−1
24 ,

and so we can try to interpret the generating function for cp(n) as a modular form.
In fact, it is shown in [11] that if p ≥ 5 is prime then ηp(pz)/η(z) ∈ M p−1

2
(p, χ)

where χ(d) =
(
d
p

)
is the usual Legendre symbol. In particular it is established that

(9)
ηp(pz)

η(z)
= αpEp(z) + f(z)

where αp is a positive constant, Ep(z) is the Eisenstein series with weight p−1
2

centered at 0, and f(z) ∈ S p−1
2

(p, χ). However there are no lower levels dividing p

which have non-trivial character χ, and so f(z) ∈ Snew
p−1

2

(p, χ). Thus we may write

f(z) = αp
∑
i cifi(z), a linear combination of newforms fi(z) of level p. Hecke

showed that the Fourier expansion of Ep(z) is

Ep(z) :=
∞∑
n=1

σp(n)qn

where σp(n) :=
∑
d|n χ(n/d)d

p−3
2 .

Very recently Almkvist [1] has managed to evaluate the constant αp, getting

1/αp =

(
p−3

2

)
!pp/2

(2π)
p−1

2

L

(
p− 1

2
,

(
.

p

))
,

where L(s,
(
.
p

)
) is the Dirichlet L-function for character

(
.
p

)
. He proves that 1/αp

is always an integer1, using a result of Dokshitzer on the denominators of values of
Bernoulli polynomials.

1In fact 1/α5 = 1, 1/α7 = 8, 1/α11 = 1275, 1/α13 = 33463. 1/α17 = 59901794, 1/α19 =
3708443635, 1/α23 = 27533989805352, . . . .
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In the special case p = 3 we replace z by 3z so that the quotient of eta-functions is
an Eisenstein series; in fact a modular form belonging to M1(9,

(−3
n

)
), with Fourier

expansion

∞∑
n=0

c3(n)q3n+1 =
η3(9z)

η(3z)
=
∞∑
n=0

σ(n)qn

where σ(n) =

{
0 if n ≡ 0 mod 3,∑
d|n
(
d
3

)
if n ≡ 1, 2 mod 3.

Thus c3(n) = σ(3n+ 1), as noted in the introduction.
We will need a lower bound for σp(n) for p ≥ 5:

Lemma 3. If p is a prime ≥ 5, and σp(n) is the divisor function defined by

σp(n) =
∑
d|n

χ(n/d)d
p−3

2 ,

where χ(d) =
(
d
p

)
is the usual Legendre symbol, then

σp(n) ≥ n
p−3

2

∏
q|n, q prime

(
1− 1

q
p−3

2

)
.

Proof. Since σp(n) is a multiplicative function, it suffices to prove the result for

n = qk, a prime power. Writing Q = q
p−3

2 we either have σp(q
k) = Qk (if χ(p) = 0)

or else

1

Qk
σp(q

k) = 1± 1

Q
+

1

Q2
± 1

Q3
+

1

Q4
+ · · ·+ (±1)k

Qk
≥ 1± 1

Q
≥ 1− 1

Q

and the result follows. �
We restrict our attention here to lower bounds for cp(n) once p ≥ 11:

Theorem 4. There are more than
2αp

5 n
p−3

2 p-blocks with defect zero, once n is
sufficiently large, provided prime p ≥ 11.

Proof. By (9) we see that cp(n) = αp(σp(N) +
∑
i cifi(N)) where N = n + p2−1

24

and fi(N) is the Fourier coefficient of qN in the Fourier expansion of fi(z). By
Lemma 2, we know that∣∣∣∣∣∑

i

cifi(N)

∣∣∣∣∣ ≤
(∑

i

|ci|
)
N

p−3
4 (1 +

√
2)Ω(N),

since each fi(z) has weight k = (p − 1)/2. Now suppose τ satisfies 1 +
√

2 = 2τ .

Then (1 +
√

2)Ω(N) = 2τΩ(N) ≤ Nτ and so |
∑
i cifi(N)| ≤ (

∑
i |ci|)N

p−3
4 +τ . On

the other hand, since p−3
2 ≥ 4 when p ≥ 11,

σp(N) ≥ N
p−3

2

∏
q|N, q prime

(
1− 1

q
p−3

2

)
≥ N

p−3
2

∏
q prime

(
1− 1

q4

)
=

90

π4
N

p−3
2 .
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Therefore, since N ≥ n and 90/π4 − 1/2 > 2/5, we have

cp(n) ≥ αpN
p−3

2

(
90

π4
−
∑
i |ci|

N
p−3

4 −τ

)
≥ 2αp

5
n
p−3

2 ,

once N
p−3

4 −τ ≥ 2
∑
i |ci|. �

As mentioned above, Almkvist [1] has now determined the value of αp explicitly
for all primes p. This gives us some hope of finding an explicit upper bound for
each ci in the proof above, which would lead to an explicit version of Theorem
4. However we do not yet know how to do this, and have to work hard to even
completely solve the case p = 13. What we will do is to fill out the steps of the
above proof explicitly, using Maple, so as to determine the actual values of the ci.

Theorem 5. Every non-negative integer has at least one 13-core partition. Actu-
ally n has more than (n/10)5 such partitions.

Proof. By (9) we have

(10)
∞∑
n=0

c13(n)qn+7 =
η13(13z)

η(z)
= α13E13(z) + f(z)

where f(z) ∈ Snew
6 (13,

( ·
13

)
). This space of cusp forms has dimension 6, and Garvan

[6] proved that it has the basis

bi(z) :=
η13(13z)

η(z)

(
η2(z)

η2(13z)

)7−i
for 1 ≤ i ≤ 6.

Now it is well known that Eisenstein series lie in the orthogonal complement to
the cusp forms, in the space of modular forms, and so E13(z) and the bi(z) are
linearly independent. Therefore in order to write f(z) = α13

∑
i γibi(z) above, and

to determine α13, we equate the first seven terms of the Fourier expansions of both
sides of (10) and solve the resulting linear equations. First note that

bi(z) = qi
∏
n≥1

(1− qn)13−2i(1− q13n)2i−1 ≡ qi
7−i∏
n=1

(1− qn)13−2i mod q8,

and so the first few Fourier coefficients are easily determined. We can compute
E13(z) from the definition given:

E13(z) = q + 31q2 + 244q3 + 993q4 + 3124q5 + 7564q6 + 16806q7 + . . . .

So we solve the matrix equation

1 1 0 0 0 0 0
31 −11 1 0 0 0 0
244 44 −9 1 0 0 0
993 −55 27 −7 1 0 0
3124 −110 −12 14 −5 1 0
7564 374 −90 7 5 −3 1
16806 −143 135 −49 10 0 −1


α13



1
γ1

γ2

γ3

γ4

γ5

γ6


=



0
0
0
0
0
0
1


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to get α13 = 1/33463 and (γ1, γ2, γ3, γ4, γ5, γ6) = −(1, 42, 578, 3960, 15446, 33462),
and so

(11) 33463
η13(13z)

η(z)
= E13 − (b1 + 42b2 + 578b3 + 3960b4 + 15446b5 + 33462b6).

It is known that Snew
6 (13,

( ·
13

)
) has a basis of newforms, which we can determine

by computing the action of the Hecke operator T2 on our chosen basis vectors.
Specifically we know that bi(z)|T2 =

∑
n≥1(bi(2n) − 32bi(n/2))qn by (5) (where

bi(n) is the nth Fourier coefficient of bi(z) if n is an integer, 0 otherwise). We can
obtain this in terms of the bj(z) by considering the first six Fourier coefficients of
each bi(z)|T2, and finding the only possible linear combination of the bj(z) that
could give this. Thus

b1(z) | T2

b2(z) | T2

b3(z) | T2

b4(z) | T2

b5(z) | T2

b6(z) | T2

 =


−11 −87 374 −110 495 −3477

1 27 −90 22 −189 945
0 −7 7 21 41 −165
0 1 5 −15 −5 15
0 0 −3 5 0 0
0 0 1 −1 0 0



•


1 −11 44 −55 −110 374
0 1 −9 27 −12 −90
0 0 1 −7 14 7
0 0 0 1 −5 5
0 0 0 0 1 −3
0 0 0 0 0 1



−1
b1(z)
b2(z)
b3(z)
b4(z)
b5(z)
b6(z)



=


−11 −208 −1014 −2197 0 0

1 38 208 507 0 0
0 −7 −56 −182 −169 0
0 1 14 56 91 0
0 0 −3 −16 −38 −13
0 0 1 6 16 11




b1(z)
b2(z)
b3(z)
b4(z)
b5(z)
b6(z)


For convenience we will write this matrix equation as B′ = TB. Let us express the
bi(z) as linear combinations of the newforms fj(z), written as the matrix equation
B = RF . Note that F ′ = DF for some diagonal matrix D, since the fi’s are
eigenforms of the Hecke operators. Now TRF = TB = B′ = RF ′ = RDF , so that
TR = RD; that is, R is the matrix of eigenvectors of T . The columns of such a ma-
trix are only defined up to a scalar multiple. However, since the fi are ‘normalized’
we can determine the correct scalar multiple by comparing the coefficient of q1 in
B = RF ; that is, we must have (1, 0, 0, 0, 0, 0)t = R(1, 1, 1, 1, 1, 1)t. Let S = (R−1)t.
Taking the transpose of TR = RD, and then multiplying on the left and right by
S, we get T tS = SD; so S is the matrix of eigenvectors of T t. Moreover, since
(1, 0, 0, 0, 0, 0) = (1, 1, 1, 1, 1, 1)Rt, thus (1, 0, 0, 0, 0, 0)S = (1, 1, 1, 1, 1, 1); that is
the top row of S must be (1, 1, 1, 1, 1, 1). Suppose that Maple gives the eigenvec-
tors rρ and sρ of T and T t, respectively, corresponding to the eigenvalue ρ. The
corresponding column of S is Sρ =sρ/σρ where σρ is the first element of sρ. If
Rρ = mρrρ is the corresponding column vector of R then, since StR = I, we must
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have 1 = Stρ · Rρ =
mρ
σρ

stρ·rρ, so that mρ = σρ/(s
t
ρ·rρ). Using Maple we obtain

3548220835392Rρ equals

1326473734176 + 870096491748ρ+ 94767875376ρ2 + 7911872133ρ3 + . . .
· · ·+ 918595056ρ4− 5815887ρ5

317901315600 + 321298585860ρ− 3005304012ρ2 + 13222526309ρ3− . . .
· · · − 101172348ρ4 + 95885041ρ5

−132164787024− 199061787876ρ− 3238095204ρ2− 6279291529ρ3− . . .
· · · − 8785908ρ4− 40796693ρ5

24210604656 + 56495681340ρ+ 893004468ρ2 + 1563549235ρ3 + . . .
· · ·+ 5006820ρ4 + 9362375ρ5

−7406385780ρ− 131628545ρ3− 483709ρ5

−1946375244ρ− 90540651ρ3− 694383ρ5


Substituting this into (11), we find that 33463η

13(13z)
η(z) = E13(z)−

∑
ρ cρfρ(z), where

1182740278464cρ = 11387025509088− 18832940453556ρ+ 544407924080ρ2

− 645774441961ρ3 + 3806036272ρ4− 4396980293ρ5.

Using a floating point routine to evaluate cρ for each ρ, we get the values

≈ −2.373± 5.33i, −5.156± 12.901i, 8.029± 26.472i,

so that 2
∑
ρ |cρ| < 190.

From the proof of Theorem 4, we need (n + 7)5/2−ln(1+
√

2)/ ln 2 ≥ 190, which is
true for n ≥ 65. The result may be verified for n ≤ 64 by explicit computation. �

By combining Theorems 3 and 5, we obtain Theorem 1.

4. Congruence properties for the number of defect zero p−blocks

There has been much interest in congruence properties of p(n) since Ramanujan
first conjectured the residue of p(n) modulo powers of 5,7, and 11, for certain values
of n. It is now believed that, besides these very special congruences, there are no
other moduli m for which p(n) behaves in a predictable way modulo m. However
for cp(n) we will find many congruence properties which follow from the theory of
modular forms as developed by Deligne, Serre and Sturm.

Considering ct(n) where t is a power of 5, 7, or 11, we obtain congruences modulo
powers of 5,7, and 11 which are equivalent to the Ramanujan congruences for p(n).

Proposition 3. If ct(n) is the number of t−core partitions of n, then for all k ≥ 1
and every integer n we have

c5k(5kn+ δ5,k) ≡ 0 mod 5k,

c7k(7kn+ δ7,k) ≡ 0 mod 7[k/2]+1,

c11k(11kn+ δ11,k) ≡ 0 mod 11k,

where δp,k := 1/24 mod pk.

Proof. By Euler’s generating function for p(n) and (3), we find that

∞∑
n=0

c`k(n)qn =

( ∞∑
n=0

p(n)qn

)( ∞∏
n=1

(1− q`kn)`
k

)
.
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If we let
∏∞
n=1(1− qlkn)l

k

= 1 +
∑∞
n=1 a`,k(n)q`

kn, then we obtain

c`k(`kn+ δ`,k) = p(`kn+ δl,k) +
n∑
i=1

p(`kn− `ki+ δ`,k)a`,k(i).

The result then follows immediately from Ramanujan’s partition congruences (see
[2]), which state that p(`km + δ`,k) ≡ 0 mod `K for any integer m (where K = k
if p = 5 or 11, and K = [k/2] + 1 if p = 7). �

In [7] Garvan proves various congruences for cp(n) and conjectures [7,5.5] that
for 5 ≤ p ≤ 23 we have

(12) cp(prn− δp) + δpcp(pr − δp)cp(pn− δp) + rp−2cp((pn/r) − δp) ≡ 0 mod p

for all primes r and any non-negative integer n, where δp = p2−1
24 . This was proved

in [7] for p = 5, 7, and 11, and also follows easily from Proposition 3 for these p.
To prove Garvan’s conjecture for primes 13 ≤ p ≤ 23, we show that the modular

form ηp(pz)
η(z) | Tp is congruent, modulo p, to a scalar multiple of the unique weight

p − 1 normalized eigenform with respect to SL2(Z). These are defined as follows:
The canonical Eisenstein series of weights 4 and 6 have Fourier expansions

E4(z) = 1 + 240
∞∑
n=1

σ3(n)qn and E6(z) = 1− 504
∞∑
n=1

σ5(n)qn,

respectively, where σk(n) :=
∑
d|n d

k. The only normalized cusp form of weight

12, with respect to SL2(Z), is f12(z) := ∆(z) = η24(z). The only normalized cusp
form of weight k (for k = 16, 18 or 22) with respect to SL2(Z), that is also an
eigenform of the Hecke operators, is f16(z) = E4(z)∆(z), f18(z) = E6(z)∆(z) or
f22(z) = E4(6)E6(z)∆(z), respectively.

Proposition 4. If 13 ≤ p ≤ 23 is prime, then

ηp(pz)

η(z)
| Tp ≡ 24fp−1(z) mod p.

Proof. Sturm [22] proved that two modular forms with integer coefficients, both of
weight k with respect to Γ0(N), are congruent modulo an integer m if the alleged

congruence holds for the first k
12

∏
p|N

(
1− 1

p2

)
+ 1 terms.

Now, both ηp(pz)
η(z) | Tp and ηp(z)

η(pz) are weight p−1
2 modular forms on Γ0(p), and

so their product has weight p − 1. We checked (in Maple) that the coefficients
of qm of this modular form and of 24fp−1(z) are congruent modulo p, for each

m ≤ p3−p2−p+1
12p . Thus, by Sturm’s theorem the two modular forms are congruent

modulo p. But this implies the result since the Fourier expansion of ηp(z)
η(pz) satisfies

the congruence

ηp(z)

η(pz)
=
∞∏
n=1

(1− qn)p

(1− qpn)
≡ 1 mod p,

because (1−Q)p ≡ 1−Qp mod p. �
As a corollary we deduce Garvan’s conjecture [7]:

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



MODULAR REPRESENTATIONS 345

Corollary 3. The congruence (12) holds for all non-negative integers n, and for
all primes p in the range 5 ≤ p ≤ 23.

Proof. fp−1(z) :=
∑∞
n=1 ap(n)qn is an eigenform of the Hecke operator Tr, and so,

by (5) and (6),
ap(r)ap(n)− ap(rn) − rp−2ap(n/r) = 0

for all non-negative n. By Proposition 4 this then leads to a congruence modulo p

for the coefficients of (ηp(pz)/η(z)) | Tp. Since δp = p2−1
24 ≡ −1 mod p, the result

then follows immediately from the expansion (8). �
It is of interest to note that for p = 13 this Proposition implies that

c13(13n− 7) ≡ 11τ(n) mod 13

where τ(n) is Ramanujan’s tau-function, the coefficient of qn in ∆(z).
In [21], Serre proved that if f(z) =

∑∞
n=0 a(n)qn is an integer weight modular

form where the coefficients a(n) are algebraic integers all from some fixed number
field, then they are almost all divisible by any given non-zero integer. Applying this
result to the decomposition (9), we deduce that any given non-zero integer divides
cp(n) for almost all n, for any given prime p ≥ 5. For p = 2 and 3 we noted, in the
introduction, that cp(n) = 0 for almost all n, and so is divisible by m.

The generating function for bt(n), the number of partitions of n all of whose
parts are not divisible by t, is

∞∑
n=0

bt(n)qn =
∞∏
n=1

(1− qtn)

1− qn .

For p prime, bp(n) is the number of p−modularly irreducible representations of Sn
[10,6.1.2]. In terms of eta-quotients, we find that the generating function for bp(n)
may be interpreted as the modular function

∞∑
n=0

bp(n)q24n+p−1 =
η(24pz)

η(24z)
≡ ηp−1(24z) mod p,

since (1 − Q)p ≡ 1 − Qp mod p. For p = 2, this implies that b2(n) is even for
almost all n, since, by Euler’s identity,

∞∏
n=1

(1− qn) =
∑
n∈Z

(−1)nq
3n2+n

2 .

Every odd prime p divides bp(n) for almost all n, by Serre’s Theorem,

since ηp−1(24z) is a cusp form with integer weight p−1
2 . We have therefore proved

Theorem 2.

Appendix I. Young’s matrices

The general construction of Young’s matrices, corresponding to a given repre-
sentation, is rather complicated to describe (see [19,2.1] for details). However,
every permutation σ in Sn can be expressed as a product of transpositions of the
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form σr := (r, r + 1) (where 1 ≤ r ≤ n − 1), say σ = σr1σr2 . . . σrm . But then
the matrix M corresponding to σ is given by M = Mr1Mr2 . . .Mrm, where Mr is
the matrix corresponding to σr. Therefore we only need to construct the matrices
corresponding to transpositions σr := (r, r + 1).

This matrix has dimension d, the number of standard tableaux for partition [λ].
We order the standard tableaux T1, T2, . . . , Td in (essentially) lexicographic order:
If row i is the first row for which the standard tableaux T ′ and T ′′ differ, and j is
the first such entry in the ith row, then we write T ′ < T ′′ if the (i, j) entry in T ′ is
smaller than the (i, j) entry in T ′′. We then construct Mr, the matrix representing
the transposition (r, r + 1), as follows:
• If r and r + 1 are on the same row of Ti then we place the number 1 in the

(i, i) entry of Mr.
• If r and r + 1 are on the same column of Ti then we place the number −1 in

the (i, i) entry of Mr.
• Otherwise r and r+ 1 are on neither the same row nor the same column of Ti,

and if we swap them around then we will get another standard tableau, call it Tj .
If i < j, and r and r + 1 are entries (u, v) and (U, V ) of Ti, respectively, then we
must have u < U and v > V because of the lexicographic ordering of the tableaux.
We then place the numbers −ρ, 1− ρ2, 1, and ρ in the (i, i), (i, j), (j, i), and (j, j)
entries of Mr, respectively, where 1/ρ := (U − u) + (v − V ).
• Zeros are placed everywhere else in Mr.

Appendix II. Simple groups

Here we briefly describe the finite simple groups which are mentioned in Corol-
lary 2. For a long time, the only known sporadic simple groups were the Mathieu
groups: M11,M12,M22,M23, and M24. These groups are highly transitive permu-
tation groups where the subscript denotes the number of letters in the defining
permutations.

Many other sporadic simple groups are obtained by examining the Leech lattice,
a 24-dimensional lattice which is defined in terms of the Mathieu group M24. One
can obtain J2, HS, Suz, C1 and C3 by examining the automorphism group of the
Leech lattice. In some cases these groups are realized as automorphism groups of
the Leech lattice which stabilize certain low dimensional sublattices, and in other
cases they are realized as the full automorphism group of the Leech lattice with an
enlarged ring of definition.

The monster group M is the largest of the sporadic simple groups. Several of
the sporadic groups are non-abelian composition factors for the centralizer of an
element in M. The Baby Monster BM is constructed in this manner.

The only remaining sporadic simple group occuring in Corollary 2 is Ru, the
Rudvalis group. This group is realized as a 28 dimensional matrix group over the
finite field with 2 elements. For more on the sporadic simple groups see [8].
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