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Introduction

Chromosomes occupy discrete, mutually exclusive volumes in 

interphase nuclei (Cremer and Cremer, 2001). These chromo-

some territories do not intermingle, except at their boundaries 

(Zink et al., 1998; Edelmann et al., 2001; Branco and Pombo, 

2006), and their size is approximately related to DNA content 

(Gilbert et al., 2005). Although most proteins diffuse rapidly 

throughout nuclei (Misteli, 2001), the diffusion of individual 

chromosome territories is constrained (Manders et al., 2003; 

Walter et al., 2003). Territories are not randomly distributed, and 

the rules governing positioning are incompletely understood 

and vary between cell types (Parada et al., 2004) and growth 

state (Parada et al., 2002). The most constant � nding is of a con-

served radial organization; gene-poor chromosomes (e.g., human 

chromosome 18) are found at the periphery, and gene-rich chromo-

somes (e.g., human chromosome 19) are found more centrally 

(Croft et al., 1999; Cremer and Cremer, 2001; Tanabe et al., 2005). 

A similar although weaker radial organization with gene-poor 

chromosomes more peripheral has recently been reported for 

the mouse, based on position analysis of chromosomes 1, 2, 9, 

11, 14, and X in a range of cell types (Mayer et al., 2005). No 

speci� c nuclear envelope (NE) component has been implicated 

in these large-scale localizations, and the inner nuclear mem-

brane protein emerin and lamina protein lamin A have been 

excluded (Boyle et al., 2001; Meaburn et al., 2005).

The signi� cance of the nonrandom distribution of chromo-

some territories within the interphase nucleus remains poorly 

understood. The nonrandom organization of territories may 

 re� ect functional associations between speci� c chromatin regions 

and other nuclear structures, the nucleolus being one obvious 

example. The inner face of the nuclear periphery, consisting of 

an inner nuclear membrane decorated with a nuclear lamina 

pierced by nuclear pore complexes (NPCs) represents another 

large domain for potential chromatin interaction. Experimental 

evidence from several groups has shown that associations 

 between certain gene loci and the nuclear periphery may play 

important roles in the transcriptional regulation of those genes. 

The association has been shown to act at the level of chromo-

somal subregions and generally has a repressive or silencing 

role, with activation involving movement away from the periph-

ery into the nuclear interior (Hewitt et al., 2004; Zink et al., 

2004; Chuang et al., 2006).
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However, peripheral association does not always result in 

repression; in yeast, transcription-dependent association with 

the NPC couples transcriptional activity with message export 

(Casolari et al., 2004; Taddei et al., 2006). Signi� cantly, engi-

neered enhancement or weakening of the association of the 

hexokinase I test locus with the NPC modulated the gene 

 expression changes seen in response to physiological triggers, 

suggesting a positional effect operating in tandem with regula-

tion because of transcription factor binding (Taddei et al., 2006). 

Using live-cell imaging of the yeast GAL1 gene marked by 

adjacent Tet operator sequences detected with GFP-tagged Tet 

 repressor protein, Cabal et al. (2006) demonstrated that tran-

scription is necessary but not suf� cient for perinuclear con� ne-

ment of active loci, which requires, in addition, direct interactions 

between components of the histone acetyltransferase complex 

and NPC components. Intriguingly, in this study, the subnuclear 

localization of the activated test locus demonstrated a peri-

pheral con� nement that was not static but, rather, involved a 2D 

sliding motion along the nuclear periphery, suggestive of mo-

lecular interactions continually formed and released.

In parallel with the emerging picture of active gene asso-

ciation with NPCs in yeast, association of chromatin with the 

nuclear lamina is increasingly recognized in mammalian cells. 

Known chromatin–lamina protein interactions (Taniura et al., 

1995; Goldberg et al., 1999), together with the observed genetic 

defects in the human laminopathies (Mounkes et al., 2003; 

 Broers et al., 2004; Worman and Courvalin, 2005), also impli-

cate this structure in additional levels of nuclear organization 

and regulation (Gruenbaum et al., 2005). Recently, a lamina-

dependent chromatin position effect has been observed during 

analysis of the localization of the human 4q35.2 region impli-

cated in fascioscapulohumeral muscular dystrophy (FSHD; 

Masny et al., 2004). In this case, the tightly peripheral position 

of the subtelomeric FSHD locus requires a lamina containing 

functional lamin A. The overall nuclear position of the chromo-

some 4 territory, however, is unchanged between wild-type 

(WT) and lamin A–null � broblasts, suggesting that the 4q35.2 

region migrates within the chromosome territory when lamin A–

dependent peripheral association is lost.

The nuclear lamina is a protein network that underlies 

the inner nuclear membrane, where it maintains nuclear shape 

and plays roles in attaching heterochromatin (Goldman et al., 

2002). The mammalian nuclear lamina contains lamins A and C 

(alternatively spliced products of a single gene, LMNA), together 

with lamins B1 and B2, products of two additional genes, 

LMNB1 and LMNB2. B-type lamins are expressed in all cells, 

whereas A-type lamins are developmentally regulated. Lamin 

A contains a C-terminal CAAX motif (cysteine, aliphatic, 

aliphatic, any of several residues) that undergoes a ras-like 

processing comprising farnesylation, endoproteolysis, and carboxy-

methylation, but this modi� ed C terminus is then removed by a 

Zmpste24-dependent maturation cleavage, which removes the 

C-terminal 15 amino acids. Mature lamin A therefore lacks the 

farnesylated and carboxymethylated C-terminal anchor. 

A point mutation that alters splicing to generate lamin A lack-

ing the maturation cleavage site produces “progerin,” a  lamin A 

with the CAAX attachment site intact. The resulting severe 

multisystem premature aging phenotype (Hutchinson-Gilford 

progeria syndrome) suggests that modi� ed C-terminal anchoring 

of the nuclear lamina is important for its function (Eriksson 

et al., 2003). The dominant toxic effect of progerin may be the 

result of competition for limited binding sites on the inner nu-

clear membrane, and it has recently been shown that reducing 

the amount of progerin within the nucleus using farnesyl trans-

ferase inhibitors (FTIs) restores nuclear shape (Glynn and 

Glover, 2005; Mallampalli et al., 2005; Meaburn et al., 2005; 

Yang et al., 2005) and may be of potential use in the treatment 

of progeria (Fong et al., 2006).

Lamin B1 also undergoes CAAX processing; the mature 

protein retains the hydrophobic processed CAAX anchor and 

remains stably associated with the lamina and with the inner 

nuclear membrane. CAAX processing is important for func-

tional lamin B1 expression at the nuclear periphery (Kitten and 

Nigg, 1991). Processing has three stages; farnesylation of the 

cysteine at −4 by a unique farnesyl transferase, endoproteolysis 

to remove the last three residues by the Ras converting enzyme 1 

(Rce1), and carboxymethylation of the newly terminal cyst-

eine by isoprenylcysteine carboxyl methyltransferase (Icmt). 

Endoproteolysis only occurs after farnesylation. The � rst two 

steps are essential for stable association of lamin B1 with the 

nuclear periphery, whereas the � nal carboxymethylation step is 

only important in the context of the isolated C terminus lacking 

the coiled-coil domains (Maske et al., 2003).

In the current study, we hypothesize that the stability of 

associations of the nuclear lamina with chromatin are important 

for gene expression. We � rst use live-cell imaging to show that 

the stability of the lamin B1 network of the nuclear lamina is 

dependent on lamin B1 processing by the endoprotease Rce1. 

Using three MIAME (minimum information for annotation of 

microarray experiments)–compliant microarray datasets, we 

show that either absence of full-length lamin B1 or lack of 

C-terminal processing affects gene expression and that some of 

the dysregulated genes form clusters on certain chromosomes. 

We identify a signi� cant cluster of three dysregulated genes 

within an �4–mega bp (Mbp) region on chromosome 18 and 

use this chromosome as a model for how loss of interaction with 

the nuclear lamina affects chromosome position and, hence, 

gene expression. This is, to our knowledge, the � rst report link-

ing a defect in the NE, an altered chromosome position, and 

changes in gene expression and supports the view that periph-

eral nuclear architecture is important for aspects of genome 

 organization that play a role in the regulation of gene expression.

Results

Nuclear lamina stability is dependent 

on lamin B1 processing

We previously demonstrated the importance of lamin B1 pro-

cessing for the integrity of the nuclear lamina and its association 

with the NE using sequential extraction of nuclear proteins 

(Maske et al., 2003). Here, we � rst looked at the effects of 

defects in lamin B1 processing on the stability of the NE using 

� uorescence loss in photobleaching (FLIP) of GFP-tagged 

lamin B1 expressed in cells lacking either of the CAAX processing 
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enzymes, Rce1 or Icmt (Fig. 1). FLIP shows that lamin B1 endo-

proteolysis by Rce1 is important for its stability within the nu-

clear lamina (Fig. 1 b), whereas loss of carboxymethylation 

by Icmt has little effect on the GFP–lamin B1 stability (Fig. 1 c). 

Restoring tagged full-length lamin B1 expression to Lmnb1−/− 

cells gives a stability indistinguishable from WT, con� rming 

that secondary changes due to selection on the transgenic cells 

are not responsible for altered stability. Lamin C dynamics are 

not altered in the absence of lamin B1 or lack of its processing, 

as FLIP of YFP–lamin C in all the knockout cells used in the 

current study shows no signi� cant difference from that in WT 

cells (Fig. S1, available at http://www.jcb.org/cgi/content/full/

jcb.200607054/DC1). These results suggest that farnesylation 

and endoproteolysis are essential for integrity of lamin B1 in the 

NE and, hence, for those aspects of nuclear architecture that 

depend on it. Given the association between chromosome position 

and gene expression, we set out to investigate the effect of the lack 

of lamin B1 or defects in its processing on gene expression.

Effect of lamin B1 processing 

and NE stability on gene expression

To study the effect of lamin B1 and its processing on gene 

expression, we performed 18 genome-wide microarray experi-

ments to compare the gene expression pro� les of Lmnb1−/−, 

Rce1−/−, and Icmt−/− cells with their WT backgrounds. 

We reasoned that genes with altered expression in both Lmnb1−/− 

and Rce1−/− cells are dependent on endoproteolyzed lamin B1, 

whereas those dysregulated in Lmnb1−/−, Rce1−/−, and Icmt−/− 

cells are dependent on carboxymethylated lamin B1. In con-

trast, genes dysregulated in either Rce1−/− or Icmt−/− cells but 

not in Lmnb1−/− cells would be dependent on Rce1 and/or Icmt 

processing of proteins other than lamin B1. The microarray 

datasets were MIAME complaint and included six biological 

replicates of RNA preparations of each cell type, with duplicate 

comparisons on each slide. Dye swaps were also included to 

eliminate any dye-speci� c effects on the microarray hybridi-

zations. All of the raw data may be downloaded from Array

Express (www.ebi.ac.uk/arrayexpress/). The microarray datasets 

were also validated by quantitative real-time PCR (qRT-PCR) 

for samples of genes up-regulated, down-regulated, or un-

changed for each cell type (Table I; qRT-PCR values are shown 

in parentheses). All of the data discussed in this paper were sta-

tistically signi� cant at P < 0.05 for a 1.5-fold change in expres-

sion between the test and WT samples. We used a 1.5-fold 

change as a cutoff for biological signi� cance; by this criterion, 

there were signi� cantly up- and down-regulated genes for each 

knockout type. For example, in the Lmnb1−/− cells, 834 genes 

were down-regulated, in contrast to only 129 genes that were 

up-regulated. For Rce1−/− cells, the corresponding values were 

42 genes down-regulated compared with 422 up-regulated.

Figure 1. The stability of lamin B1 interactions is dependent on posttranslational modifi cation by Rce1. (a) FLIP in WT mouse embryonic fi broblasts, 
Rce−/−, and Icmt−/− cells expressing GFP–lamin B1. A specifi c ROI was photobleached at full laser power for 250 s. The postbleach image shows the extent 
of fl uorescence loss in the nonbleached area, which is indicative of the stability of GFP–lamin B1 at the nuclear periphery. Bar, 10 μm. (b) Quantitative 
FLIP. An ROI outside the photobleached area shown in panel a was used to measure fl uorescence loss after photobleaching (mean values ± SD; n = 5). 
The background intensity was subtracted and the values normalized by dividing by the intensities of an ROI in an adjacent control cell to account for photo-
bleaching of the 5% laser power used for scanning the nonbleached areas. GFP–lamin B1 interactions at the nuclear periphery are more stable in WT and 
Icmt−/− (c) than in Rce−/− (b), indicating that carboxymethylation has little or no effect on the stability of the nuclear lamina. (d) FLIP of GFP–lamin B1 in the 
Lmnb1−/− cells used in the current study does not show any signifi cant difference from its behavior in WT cells, indicating that the difference observed in 
the Rce1−/− cells is due to a lack of processing and not another cell-specifi c factor.
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Three-way comparisons of expression changes were then 

made to � nd genes affected in more than one knockout cell 

type. First, genes with altered expression in only one of the 

knockout cell types were identi� ed. We found 614 genes with 

altered expression (predominantly down-regulation) only in 

Lmnb1−/− cells. Because the normal expression of these genes 

depends on lamin B1 expression but is not altered when the 

CAAX processing machinery is defective, we conclude that 

their expression is in� uenced by an unmodi� ed lamin B1 pool. 

Similarly, we found 249 genes with altered expression (pre-

dominantly up-regulation) only in Rce1−/− cells. Because the 

normal expression of these genes requires cellular CAAX pro-

cessing but is not altered when lamin B1 is absent, we conclude 

that their expression is modulated by CAAX processed proteins 

other than lamin B1; ras is an obvious candidate.

Fig. 2 a shows part of a tree view from a clustering analy-

sis that takes account of all three knockout cell types. The sec-

tion shown includes genes with altered expression (in either 

direction) in any two of the cell types. Using the 1.5-fold change 

as a cutoff, we identi� ed a group of 16 genes that were co-

ordinately dysregulated in the Rce1−/− and Lmnb1−/− cells, 11 

up-regulated and 5 down-regulated (Fig. 2 b). To con� rm the 

similarity in the pattern of expression change in the two cell 

types, we performed correlation analysis on the fold changes 

for these 16 genes in Lmnb−/− and Rce1−/− cells. The resulting 

Pearson product–moment correlation coef� cient was 0.897, 

with a value of 1.0 representing perfect correlation; this con-

� rms that this group of genes is dysregulated in a similar way 

in the two transgenic cell types. Because these genes were co-

ordinately either up- or down-regulated in each of the knockout 

cells, we conclude that their normal expression requires both 

lamin B1 expression and an intact CAAX farnesylation and 

endoproteolysis machinery, indicating that their expression 

depends on processed lamin B1.

To con� rm that this dysregulation is indeed a consequence 

of interfering with lamin B1 and its processing, we performed 

additional experiments on WT � broblasts in which CAAX pro-

cessing was abolished by treatment of the cells with an inhibitor 

Figure 2. A summary of the gene expression 
changes in cells lacking full-length lamin B1, 
Rce1, or Icmt. (a) A tree view diagram show-
ing the fold change of genes that are differen-
tially expressed in Lmnb1−/−, Rce1−/−, and 
Icmt−/− cells. (b) A detailed view of the 16 
genes with coordinately altered expression. 
The top box shows genes up-regulated in both 
Lmnb1−/− and Rce1−/−, and the bottom box 
shows genes down-regulated in both these 
knockout (KO) cells. Fold changes are shown 
as KO/WT. (c) A Venn diagram showing the 
proportion of genes that are regulated by 1.5-
fold because of abnormalities in lamin B1 
processing. The percentages represent the pro-
portion of up-regulated genes in relation to all 
dysregulated genes within a specifi c category. 
(d) Summary of changes in gene expression in 
Lmnb−/− and Rce1−/− cells, showing changes 
unique to one knockout cell type.

Table I. Examples of differentially expressed genes in the three transgenic cell populations and their RT-qPCR confi rmation

Ratio (KO/WT)

Ref Seq ID Gene Lmnb1 Rce1 Icmt

NM_009964 Crystallin, α B (Cryab) 3.0 (5.8) 2.7 (2.7) 1.8 (4.4)

NM_007486 Rho, GDP dissociation inhibitor β (Arhgdib) 2.5 3.2 1.7

NM_010415 Heparin-binding EGF-like growth factor (Hegfl ) 3.6 (6.1) 3.0 (2.6) 1.6 (4.9)

NM_019760 Tumor differentially expressed 2 (Tde2) 1.6 2.2 1.6

NM_007874 Deleted in polyposis 1 (Dp1) 1.9 4.0 1.2

NM_016774
ATP synthase, H+ transporting mitochondrial F1 complex, 
 β subunit (Atp5b)

1.44 1.7 1.1

NM_010288 Gap junction membrane channel protein α1 (Gja1) 5.5 8.3 (8.4) 0.47

XM_203363 Slit homologue 3 (Slit3) 0.39 0.52 0.83

NM_011333 Chemokine (C-C motif) ligand 2 (Ccl2) 0.41 0.33 0.66

NM_013496 Cellular retinoic acid binding protein 1 (Crabp1) 38 (50) 0.07 0.3 (0.5)

NM_019390 Lamin A (Lmna) 2.8 (2.3) 1.6 (1.3) (0.3)

NM_010722 Lamin B2 (Lmnb2) (0.8) (1.9) (0.8)

Values in parentheses represent fold changes determined using qRT-PCR. KO, knockout.
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of the farnesyl transferase enzyme. qRT-PCR on several of 

these genes in FTI-treated WT cells con� rmed that they showed 

similar changes as a result of interfering with the � rst step of 

lamin B1 processing as they do in the Rce1−/− cells (Table II). 

FTI treatment is expected to alter the gene expression of several 

genes, but the subset of genes selected here are also dysregu-

lated in the Lmnb1−/− cells, which means that we are examining 

genes that are dysregulated as a result of interfering with the 

farnesylation of lamin B1.

After identifying this group of 16 coordinately dys-

regulated genes (Fig. 2 b), we sought common features or 

characteristics between them. First, we tried to cluster these 

dysregulated genes according to function using the Gene On-

tology database but were unable to � nd a common pattern. To 

exclude any functional clustering more completely, we took all 

genes showing signi� cant dysregulation in either direction in 

one or more of the knockout cell types (a total of 4,144 genes) 

and repeated the Gene Ontology clustering. The entire data-

set is given in Table S1 (available at http://www.jcb.org/cgi/

content/full/jcb.200607054/DC1), but a small representative area 

is shown in Fig. 3. This analysis should � nd clusters of dysreg-

ulated genes associated with speci� c functions or pathways even 

if expression levels are changing in opposite directions in 

different knockout cells. We could � nd no evidence for clus-

tering of dysregulated genes by function even by this more 

relaxed criterion.

To continue the search for shared characteristics in this 

small group of genes with expression dependent on processed 

lamin B1, the position of each gene was mapped onto the mouse 

karyotype. Inspection of the result suggested that the distribu-

tion, especially of the up-regulated genes, was not random but 

bunched (Fig. 4). In particular, a group of three up-regulated 

genes were found within a short 4-Mbp region on chromosome 18. 

To test whether this apparent clustering was statistically sig-

ni� cant, we used a bootstrap sampling method to repeatedly 

draw 16 genes at random from the set of genes common to both 

lamin B1 and Rce1 knockout experiments. This method takes 

account of the genes present in both datasets from the micro-

array experiment and their nonuniform distribution within the 

karyotype. Analysis of clustering of the results of 10,000 trials 

con� rmed that the experimental cluster found on chromosome 

18 is signi� cant (P < 0.02). We then considered this signi� cant 

cluster of up-regulated genes on chromosome 18 and reasoned 

that its presence might be a consequence of movement away 

from the periphery as a result of the loss of fully processed 

 lamin B1.

Chromosome 18 position in WT versus 

knockout cells

There have been no previous reports of the radial position of 

the gene-poor mouse chromosome 18. We therefore studied its 

 position using FISH. The method used to determine its radial 

Figure 3. Genes that are dysregulated in the absence of full-length lamin B1 
or Rce1 do not show any functional clustering. A tree view of genes that 
are changed by 1.5-fold or more in Rce−/− and Lmnb1−/− cells (red indi-
cates up-regulated genes, and green indicates down-regulated genes), 
 illustrating that there is no functional clustering based on the following 
GO entries: Calcium ion binding (0005509), transcription (0003700), 
cell adhesion (0007155), zinc ion binding (0008270), heparin binding 
(0008201), development (0007275), growth factor activity (0008083), 
and transferase activity (0016740). Note that some genes are represented 
more than once because they have multiple entries in the GO database.

Table II. Fold changes of gene expression following FTI treatment of WT cells, showing that interfering with the farnesylation of lamin B1 has an 
effect that is similar to lack of endoproteolysis

Ratio (KO/WT or treated/untreated)

Ref Seq ID Gene Lmnb1 Rce1 FTI treated

NM_009964 Crystallin, α B (Cryab) 3.0 2.7 6.9

NM_010415 Heparin-binding EGF-like growth factor (Hegfl  ) 3.6 3.0 7.0
NM_010288 Gap junction membrane channel protein α1 (Gja1) 5.6 9.0 1.7

NM_019390 Lamin A (Lmna) 2.8 1.6 1.14
NM_010722 Lamin B2 (Lmnb2) 0.8 1.9 1.21

Bold indicates up-regulation; all others were not signifi cantly changed. KO, knockout.
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position involved dividing the nucleus into � ve concentric shells 

and measuring the distribution of the chromosome 18 signal 

within these shells in 50 nuclei. We found that in three indepen-

dent WT mouse embryonic � broblast populations, chromosome 18 

occupies a strongly peripheral location (Fig. 5, a and b, WT), 

possibly in association with the nuclear lamina. Indeed, when 

Con A was used as a marker for high-mannose glycoproteins in 

the intermembrane space of the NE in further FISH experi-

ments, we found no detectable separation between the NE and 

the outermost border of the chromosome 18 territory (Fig. 5 c). 

As the same result was obtained in three independent WT � bro-

blast populations, the peripheral location of mouse chromosome 18 

is unlikely to be an artifact because of inadvertent clonal 

 selection during culture.

We also performed FISH for chromosome 19, a very gene-

rich chromosome that would not be expected to be associated 

with the nuclear periphery. We found that chromosome 19 has a 

more central location in all the studied cell types (Fig. 5, 

a and b), consistent with the observation that no chromosome 

19 genes are dysregulated as a result of the lack of processed 

lamin B1 (Fig. 4).

Once the peripheral position of chromosome 18 in normal 

primary � broblasts was established, we repeated the chromo-

some 18 FISH in Lmnb1−/− and Rce1−/− cells, to test whether 

detectable chromosome territory movement had occurred. 

Vergnes et al. (2004) reported that 38–39% of the Lmnb1−/− 

cells they examined had misshapen nuclei, compared with 

2–8% of the WT cells. We also observed many misshapen nuclei 

in the Lmnb−/− cells. To exclude any secondary effects of gross 

morphological abnormalities on measured chromosome distri-

bution, we only considered nuclei that exhibited normal mor-

phology in all of our FISH analyses. Strikingly, in both Rce1−/− 

and Lmnb1−/− knockout cell types, chromosome 18 was no 

longer found at the periphery (Fig. 5, a and b, Rce1−/− and 

Lmnb1−/−). In contrast, however, Icmt−/− cells showed a periph-

eral distribution for chromosome 18 that was very similar to 

WT (Fig. 5, a and b, Icmt−/−), suggesting that just as carboxy-

methylation is not essential for the stability of lamin B1 in the 

lamina (Fig. 1), it is also not important in the maintenance of 

chromosome 18 at the nuclear periphery.

To con� rm this striking result, we sought an additional 

experimental test. In particular, we were concerned with ex-

cluding the possibility that the observed new position of chro-

mosome 18 was the result of selection of an unusual subclone 

during culture, although this would have had to occur indepen-

dently for both Rce1−/− and Lmnb1−/− cell types. We reasoned 

that a demonstration of chromosome 18 relocation as a result of 

an acute perturbation of WT cells would offer strong evidence 

that the altered position of chromosome 18 in both transgenic 

knockout cells was not the result of inadvertent simultaneous 

selection of both Lmnb1−/− and Rce1−/− subclones with altered 

chromosomal position. Accordingly, we used a selective inhibitor 

Figure 4. The distribution of genes that are dysregulated in the absence 
of full-length lamin B1 or Rce1 shows some positional clustering. Genes 
that are differentially expressed by at least 1.5-fold (red indicates up-regulated 
genes, and blue indicates down-regulated genes) in both Lmnb1−/− and 
Rce1−/− cells were mapped to their specifi c chromosomal positions using 
Ensembl KaryoView. Note that the cluster on chromosome 18 contains 
three up-regulated genes not resolved at this scale.

Figure 5. Endoproteolyzed but not carboxy-
methylated lamin B1 is required for the 
peripheral localization of mouse chromosome 18. 
(a) Adherent cells were fi xed in methanol 
acetic acid and hybridized with probes to 
mouse chromosomes 18 (red) and 19 (green). 
Nuclei were then counterstained with DAPI 
(blue). (b) 50 nuclei of normal morphology 
from each cell type were used to quantitate the 
distribution of chromosomes 18 and 19 in fi ve 
concentric shells eroded from the nuclear pe-
riphery (left) to the center (right). The y axis 
shows the proportion of FISH signal in each of 
fi ve zones; error bars show SEM. (c) Con A la-
beling (blue) alongside chromosome 18 FISH 
(red) shows that chromosome 18 is in close 
contact with the nuclear periphery.
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of farnesylation, the � rst and mandatory step of CAAX pro-

cessing, in WT cells and repeated the FISH experiment for 

chromosomes 18 and 19. As shown in Fig. 6, the relocation of 

chromosome 18 was also observed in FTI-treated WT cells, 

con� rming that it is indeed processed lamin B1 that is essential 

for the localization of chromosome 18 at the nuclear periphery.

Discussion

Previous sequential extraction studies of lamin B1 association 

with the nuclear lamina after inhibition of CAAX processing 

demonstrated the importance of these posttranslational modi� -

cations for stable lamina formation (Maske et al., 2003). Quan-

titative live-cell microscopy using GFP-tagged lamin B1 in 

FLIP experiments in WT, Lmnb1−/−, Rce1−/−, and Icmt−/− cells 

con� rms and extends this biochemical data. Using FLIP analy-

sis, we show that the stability of full-length lamin B1 lacking 

only carboxymethylation is almost identical to that of fully pro-

cessed lamin B1 (Fig. 1 c). In contrast, the stability of nonendo-

proteolyzed lamin B1 in Rce1−/− is lower, re� ected by the faster 

loss of � uorescence in FLIP experiments (Fig. 1 b). These 

results suggest that lamin B1 is much less able to contribute to 

a stable lamina when CAAX endoproteolysis does not occur, 

with consequences for any aspect of nuclear organization or 

function that depends on a stable lamin B1 scaffold. This effect 

is speci� c for the lamin B1 component, as defects in the lamin 

B1 processing machinery do not affect the stability of lamin C 

(Fig. S1), which does not undergo the same series of posttrans-

lational modi� cations.

We hypothesized that cells with defects in lamin B1 

expression or in the CAAX processing machinery would exhibit 

altered gene expression levels, partly as a result of the absence 

of processed lamin B1 in the lamina. We examined this proposal 

using microarray analyses to compare gene expression pro� les 

in WT murine � broblasts with those in cells de� cient in full-

length lamin B1 (Lmnb1−/−) or components of the processing 

pathway. Although Rce1−/− cells de� cient in the ras-converting 

enzyme endoprotease have defective CAAX processing and 

exhibit the gene expression consequences of loss of processed 

Ras, Lmnb1−/− cells de� cient in lamin B1 exhibit normal CAAX 

processing and normal Ras function. The Icmt−/− cells, which 

are de� cient in the carboxymethyl transferase, occupy an inter-

mediate position because the � nal carboxymethylation step is 

important for Ras targeting and function (Svensson et al., 2005), 

whereas the FLIP analysis (Fig. 1 c) suggests that this step is 

less critical for proper deployment of lamin B1 to a stable NE. 

Thus, we reasoned that genes showing coordinate dysregulation 

in both the lamin B1 and Rce1 knockouts would likely represent 

genes whose expression is dependent on an NE containing cor-

rectly processed lamin B1.

On this basis, we identi� ed 16 genes that showed a 1.5-

fold or greater change in expression in the same direction in 

both Lmnb1−/− and Rce1−/− cells; of these, � ve also showed 

altered expression in Icmt−/− cells. In most cases, the change rep-

resented up-regulation in the knockout cells (Fig. 2 b). Taking a 

more stringent twofold cutoff, no genes were either up- or 

down-regulated in all three cell types, suggesting that few, if 

any, of the genes examined were affected by a failure of car-

boxymethylation of lamin B1. In contrast, at this stringent two-

fold cut-off, seven genes were up-regulated and two were 

down-regulated in both Lmnb1−/− and Rce1−/− cells (Table I), 

suggesting that their expression depends on the presence 

of farnesylated, proteolyzed lamin B1, irrespective of carboxy-

methylation. When the cutoff for the p-values associated 

with the fold changes is raised from 0.05 to 0.1, we � nd that 51 

genes are coordinately dysregulated in Lmnb1−/− and Rce1−/− 

cells, 32 of which are up-regulated and 19 of which are 

down-regulated.

Conversely, genes with altered expression only in the la-

min B1 hypomorph cells are presumably responding to a de� cit 

other than the lack of processed lamin B1 in the NE; otherwise, 

they would also be dysregulated in Rce1−/− cells that expressed 

normal lamin B1, but which were unable to process it to the 

mature form. The discovery of 498 genes with at least 1.5-fold 

change in expression that are unique to the Lmnb1−/− cells (Fig. 2 a) 

is consistent with a model in which unprocessed full-length 

lamin B1 in the nuclear interior plays an important role in 

regulating gene expression. The mechanism by which nucleo-

plasmic lamin B1 might play a role in regulated gene expression 

remains unknown, although observations in other systems pro-

vide some clues (Hutchison and Worman, 2004). Intranuclear 

lamin B1 might associate with the machinery of transcription 

and RNA processing in a way similar to that observed for lamin A. 

A possible direct interaction with a polymerase complex is 

 suggested by the discovery that the germline-speci� c lamin of 

 Xenopus laevis oocytes (Liii) associates with RNA polymerase II, 

and that Pol II activity is inhibited by dominant-negative lamin 

mutants (Spann et al., 2002). A more indirect effect via spe-

ci� c transcription factors is suggested by reports of lamin B1 

binding to the repressor protein, Oct1, although in this case the 

presence of elevated levels of Oct1 at the nuclear periphery may 

implicate processed lamin B1 in the lamina, rather than an un-

processed nucleoplasmic pool (Imai et al., 1997).

We concentrated next on the small group of 16 genes 

showing a consistent expression dependence on processed 

lamin B1 (listed in Fig. 2). First, we attempted to cluster them by 

function using the Gene Ontology database. No clustering into 

any functional grouping could be detected (Fig. 3 and Table S1). 

Figure 6. Farnesylated lamin B1 is required for the peripheral localization 
of mouse chromosome 18. (a) FISH analysis of chromosome 18 position 
after FTI treatment, which disrupts the fi rst step of lamin B1 processing, 
shows that loss of farnesylated lamin B1 has an effect that is similar to that 
of loss of endoproteolysis. Bar, 10 μm. (b) Quantitative analysis of chromo-
some 18 position as described above after FTI treatment shows loss of 
 peripheral localization. Error bars indicate SEM.
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Second, the genes were mapped to identify their chromosomal 

positions; clustering at speci� c chromosomal locations was 

 observed (Fig. 4). In particular, a cluster of three genes within 

�4 Mbp coordinately up-regulated in both Lmnb1−/− and 

Rce1−/− cells was found on chromosome 18, a chromosome that 

we found to have a strongly peripheral localization in WT cells 

(Fig. 5). This result is consistent with an envelope-dependent 

suppression of gene expression that is lost when processed 

lamin B1 is unavailable.

In contrast to this up-regulated cluster on chromosome 18, 

none of the genes on chromosome 19 showed such up-regulation. 

We have shown that chromosomes 18 and 19 have peri pheral 

and central locations, respectively. The presence of the up-

regulated cluster on chromosome 18 might therefore be due to 

disruption of peripheral localization because of the absence of 

proteolyzed lamin B1. We therefore analyzed the localization 

patterns of chromosomes 18 and 19 in the three knockout cell 

types and their WT background cells by two-color FISH (Fig. 5). 

Because mouse chromosome 19 has one of the highest gene 

densities in the genome (14.1 genes/Mbp) and gene-dense chro-

mosomes are usually more central, and no coordinate dysregu-

lation of its genes was detected, its localization would not be 

expected to be altered in the knockout cells; therefore, it serves 

as an internal control. Mouse chromosome 18 has the lowest 

gene density of any mouse chromosome (7.5 genes/Mbp), sug-

gesting that a peripheral localization was likely. We found that 

chromosome 18 is indeed located at the nuclear periphery in 

three independent WT mouse embryo � broblast populations. 

This peripheral localization was preserved in Icmt−/− cells, but 

in both Lmnb1−/− and Rce1−/− cells (Fig. 5), it became centrally 

located, like chromosome 19. This suggests that farnesylated 

and proteolyzed lamin B1 anchors chromosome 18 to the pe-

riphery and that this positioning in turn plays a role in the ex-

pression of a group of genes on this chromosome. Chromosome 19, 

on the other hand, showed a central location in the WT cells 

and in all the knockouts, and none of its genes were coordi-

nately up-regulated in both Lmnb1−/− and Rce1−/− cells. This is 

the behavior expected of a chromosome that is indifferent to the 

presence or absence of peripheral processed lamin B1. Mayer 

et al. (2005) recently reported that the distribution of chromo-

some territories is cell type speci� c. Although they observed 

that the gene-rich mouse chromosome 11 is generally more cen-

trally located, they reported that it also had contact points with 

the nuclear periphery. Our current observation of two dysregu-

lated genes on chromosome 11 in the absence of processed 

lamin B1 from the periphery supports this observation because 

chromosome 11 (121.7 Mbp), which is larger than chromosome 18 

(90.7 Mbp), may be anchored at the nuclear periphery at speci� c 

points but still exhibit an internal location.

The published gene expression changes in the absence of 

lamin A or lack of its processing by Zmpste24 (Varela et al., 

2005) are distinct from genes that are coordinately dysregulated 

in Lmnb1−/− and Rce1−/− cells. Only 12 genes are coordinately 

dysregulated in Lmnb1−/−, Lmna−/−, and Zmpste24−/− cells, 

with 8 up-regulated and 4 down-regulated. Therefore, the genes 

that we report to be dysregulated in the absence of processed 

lamin B1 are speci� c to that defect and are not due to a general 

abnormality in the nuclear lamina. Furthermore, the change in 

chromosome position as a result of the absence of lamin B1 or 

its processing is speci� c, as cells lacking the inner nuclear 

membrane protein emerin do not show altered chromosome or-

ganization (Boyle et al., 2001). It has more recently also been 

reported that cells from patients with emerin and lamin A muta-

tions do not show a signi� cant change in chromosome locations 

(Meaburn et al., 2005).

Although lamin B1 de� cits have not to date been associ-

ated with any human disease, such defects are certainly not 

inconsequential. Lmnb1 mutant mice, from which the Lmnb1−/− 

embryonic � broblasts used in the current study were obtained, 

die shortly after birth, with lung and bone abnormalities 

(Vergnes et al., 2004). Although the groups of up-regulated 

genes on chromosome 18 do not seem to have a common func-

tion, heparin-binding EGF-like growth factor (Heg� ), plays 

important roles in development (Arkonac et al., 1998; Iwamoto 

and Mekada, 2006), which might explain some of the pheno-

typic aspects of the lamin B1 mutant mice. Furthermore, 

although no functional clustering is observed when the genes 

that are coordinately dysregulated in two or more of the trans-

genic cells used in the current study are considered, genes that 

are dysregulated only in the absence of full-length lamin B1 do 

show some functional clustering. A group of down-regulated 

genes—Bmp4, Cutl1, Fgf18, Fgf2, Fgfr4, Foxa1, Foxa2, Gli3, 

Hsd11b1, N� b, Sim2, and Wnt5a—are involved in lung devel-

opment (Gene Ontology accession no. 0030324), which is con-

sistent with the Lmnb1−/− mice failing to survive after birth as 

a result of respiratory failure and having reduced numbers of 

alveoli and thickened mesenchymal tissue.

It was recently reported that overexpression of lamin B1 

because of a genomic duplication covering the 5q31 region con-

taining the lamin B1 gene causes autosomal dominant leuko-

dystrophy (ADLD; Padiath et al., 2006). The increased gene 

dosage results in increased lamin B1 message and protein in 

brain tissue of affected individuals. The clinical result is a late 

(adult) onset progressive, symmetrical demyelinating disease 

that resembles multiple sclerosis except that oligodendroglia 

are preserved in lesions and there is no astrogliosis. This result 

suggests that altered lamin B1 expression can be associated 

with severe human disease and that ADLD should be added to 

the list of laminopathies.

Alongside lamin B1, lamin A and B2 are major compo-

nents of the nuclear lamina of most cells. We therefore specu-

lated that a compensatory mechanism involving the up-regulation 

of their corresponding genes might be taking place to maintain 

the structure of the nuclear lamina. qRT-PCR revealed about 

a threefold up-regulation in the Lmna transcript in Lmnb1−/− 

cells, suggesting that this may indeed be an attempt to compen-

sate for the loss of functional lamin B1. This, however, does not 

reverse the effect of the lamin B1 defect, as observed by abnor-

malities in gene expression and chromosome localization. This 

indicates that there are functions that are quite unique to lamin 

B1 that cannot be compensated for by an excess of lamin A. In 

contrast, transcription of Lmnb2 remains almost unchanged, 

suggesting, perhaps surprisingly, that lamin B2 is subject to 

entirely independent regulation.
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Some investigators have observed an activation of some 

genes while still at the nuclear periphery but by changing location 

within that vicinity (Heun et al., 2001; Ralph et al., 2005). There-

fore, the nuclear periphery probably contains regions of effective 

suppression and other regions where additional factors may be 

contributing to the regulation of gene expression. This might 

explain why not all the genes that we analyzed on chromosome 18 

are up-regulated although the whole chromosome moves away 

from the periphery in the knockout cells. Such a conclusion 

would be supported by recent high-resolution studies of a short, 

4-Mbp chromosome segment showing that zigzagging of the 

chromatin can bring discontiguous genes together, while inter-

vening genes are looped out (Shopland et al., 2006). A similar arran-

gement of the genes within the 4-Mbp cluster on chromosome 18 

would permit lamina-dependent regulation of three genes that are 

not contiguous, although they are clustered in a small region.

In summary, our results represent the � rst report of a role 

for a nuclear lamina component, speci� cally, farnesylated and 

endoproteolyzed lamin B1, in the positional organization of 

chromosomes in the interphase nucleus. We demonstrate that 

processed lamin B1 is required to anchor chromosome 18 at the 

nuclear periphery and that disruption of this interaction (directly 

or indirectly) results in dispersion of this chromosome from the 

nuclear periphery together with an up-regulation of certain 

genes on the chromosome, consistent with a context-dependent 

gene-silencing role for the NE on these genes. Alterations to the 

global organization of chromosomes in the nucleus may lead to 

the severe consequences observed in laminopathies and may 

also provide insights into the normal process of aging.

Materials and methods

Cell culture
Mouse embryonic fi broblasts Rce1+/+, Rce1−/− (Kim et al., 1999), 
Lmnb1+/+, Lmnb1−/− (an insertional mutation lacking 6 exons of the lamin 
B1 gene encompassing the C-terminal 273 amino acid residues, including 
the chromatin interaction and CAAX domains; Vergnes et al., 2004), 
Icmt+/+, and Icmt−/− (Bergo et al., 2001) were cultured in DME supple-
mented with 10% FCS, L-glutamine, and nonessential amino acids at 37°C 
in a humidifi ed atmosphere. The GFP-tagged full-length lamin B1 construct 
(GFP–lamin B1) has been described before (Maske et al., 2003). Cells 
were grown in 25-cm2 fl asks for RNA isolation, on glass-bottomed 35-mm 
dishes (MatTek) for photobleaching experiments, and on glass coverslips 
for FISH. For photobleaching experiments, cells were transfected with 
GFP–lamin B1 using Lipofectamine 2000 (Invitrogen), and experiments 
were performed 48 h after transfection. For microarray analyses, early 
passage cells were seeded at 50% confl uency, and RNA was extracted 
when cells reached �90% confl uency. FTI-treated cells were incubated 
with 100 μM FPT inhibitor III (Calbiochem) for 48 h.

Photobleaching experiments
FLIP was performed using a confocal laser-scanning system (Radiance 
2000 MP; Bio-Rad Laboratories) on an inverted microscope (Eclipse 
TE300; Nikon) at 37°C using the 488-nm line of a Kr/Ar laser with a 
60× 1.4 NA objective. Some cells with distorted nuclear morphology 
were  observed in transgenic knockout populations (Vergnes et al., 2004); 
only cells with normal nuclear morphology were selected for FLIP analysis. 
A region of interest (ROI) was photobleached at full laser power while 
scanning at 5% laser power elsewhere with 1-s intervals between scans 
over a period of 250 s. Image acquisition was controlled by Lasersharp 
(Bio-Rad Laboratories), and images were analyzed using MetaMorph 
(Universal Imaging Corp.). For quantitative analysis, background intensity 
was subtracted and intensities of a specifi c ROI outside the photobleached 
area were measured over time and normalized using intensities of an ROI 
in a transfected but nonbleached cell.

RNA isolation and data extraction
RNA was extracted from six biological replicates of early passage cultures 
for each cell type, using TRIZOL reagent (Invitrogen), further purifi ed with 
RNeasy mini columns (QIAGEN), and quantitated on a Nanodrop spectro-
photometer. RNA integrity was confi rmed before labeling using Nanochips 
on an 2100 Bioanalyzer (Agilent Technologies), according to the manufac-
turers’ instructions. Two protocols for microarray labeling and processing 
were used during these experiments, an indirect amino-allyl dUTP Alexa 
Fluor labeling system and, subsequently, a 3DNA dendrimer-based system. 
For the indirect amino-allyl dUTP-based method, RNA (5 μg of total RNA) 
was labeled and hybridized using the HiSpot RT kit (Genetix) according to 
the manufacturer’s instructions, with the exception that Superscript III was 
used in place of the supplied reverse transcriptase, followed by labeling 
with the ARES kit (Invitrogen) with Alexa Fluor 555 and 647 dyes, according 
to the manufacturer’s instructions. For the 3DNA dendrimer-based system, 
RNA (1 μg of total RNA) was labeled using the 3DNA Array 900 kit 
 (Genisphere), using Superscript III reverse transcriptase (Invitrogen) in the 
fi rst strand cDNA synthesis. The hybridization and detection steps were 
performed using a two-step hybridization procedure on a SlideBooster 
(Advalytix), each with a power setting of 25 and a pulse ratio of 3:7 at 55°C. 
The fi rst hybridization was for 16 h using hybridization buffer EB, and the 
second hybridization was for 4 h using SDS buffer. Microarrays containing 
probes for 6,482 mouse genes were fabricated using the Mouse Known 
Gene SGC Oligo set, printed in duplicate, designed by Compugen, syn-
thesized by Sigma-Genesys, and printed and supplied by the MRC Human 
Genome Mapping Project Resource Centre. After the hybridization and 
washing steps, microarray slides were scanned using the ScanArray 
ExpressHT system (PerkinElmer), and images for analysis were obtained 
using autocalibration with 100% laser power, a variable PMT, and a target 
saturation of 90%. Spot features were identifi ed, poor quality spots were 
manually fl agged, and intensity values were extracted using BlueFuse for 
microarrays version 2 (BlueGnome). Full details of the slide layout, culture 
conditions, detailed protocols, and primary extracted data fi les have been 
submitted to, and are publicly available in a MIAME-compliant form from, 
ArrayExpress (www.ebi.ac.uk/arrayexpress/; experiment references 
E-MEXP-538 DJVaux_MEF_Lmnb1, E-MEXP-539 DJVaux_MEF_Rce1, and 
E-MEXP-540 DJVaux_MEF_Icmt).

Microarray data analysis
Intensity values, extracted using BlueFuse, were analyzed using BASE 
(Saal et al., 2002). Only median fold ratio values with P < 0.05 using 
t test were used for subsequent analysis. Cluster and TreeView (rana.lbl.gov/
EisenSoftware.htm) were used to generate the tree diagrams. For the func-
tional cluster analysis, Gene Ontology IDs associated with genes that are 
differentially expressed in the three cell types were obtained using Ensembl 
MartView (www.ensembl.org). Ensembl KaryoView was used for mapping 
gene positions.

Statistical testing
The ordering of fold change ratios in selected groups of dysregulated 
genes was compared for different cell types and tested for signifi cance 
 using the Pearson product–moment correlation coeffi cient. To assess the 
signifi cance of groups of n genes identifi ed as the intersection of indepen-
dent experimental datasets, we drew n genes at random from each dataset 
and counted the number of individual genes that appeared in both lists. 
This sampling was repeated 100,000 times and enabled us to assign a 
probability for the observed intersection subsets occurring by chance. The 
signifi cance of the distribution of selected groups of genes was tested using 
a bootstrap method in which 16 genes were drawn at random from the list 
of genes meeting specifi c criteria and mapped onto the genome. The 
sampling was repeated 10,000 times, and the distribution of each of these 
16-mer gene sets was assessed using predetermined test criteria. To assess 
apparent clustering of genes, this approach was used with the test criteria 
of three genes (out of the 16 selected in each trial) mapping within a 
5-Mbp region as the defi nition of a cluster.

RT-PCR validation
Quantitative PCR was performed using a Rotor-Gene 3000 (Corbett  Research) 
using the Platinum two-step qRT-PCR kit with SYBR green according to 
the manufacturer’s instructions (Invitrogen). Primers were designed using the 
OligoPerfect designer (Invitrogen) and tested for single product generation in 
control end-stage PCR before qRT-PCR. The housekeeping gene β-actin (Actb) 
was used as an internal standard for the qPCR verifi cation of Cryab, Hegfl , 
Mgst1, Crabp1, Lmna, and Lmnb2. Relative gene expression values were 
determined using the 2-∆∆C

T method (Livak and Schmittgen, 2001).
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Two-color FISH and image analysis
Cells were fi xed in 3:1 methanol acetic acid as described previously 
(Bickmore and Carothers, 1995; Croft et al., 1999; Boyle et al., 2001) 
with the modifi cation that the cells were grown and fi xed as adherent 
monolayers rather than in suspension. Denaturation was performed for 
4 min at 65°C in 70% deionized formamide/2× SSC. Mouse chromo-
some 18 and 19 paints labeled with Cy3 and FITC, respectively, were 
 denatured according to the manufacturer’s instructions (Cambio) followed 
by hybridization to coverslips for 16 h at 37°C in a humidifi ed box. Cover-
slips were washed three times for 5 min at 45°C in 50% deionized for-
mamide/2× SSC, washed two times for 5 min at 50°C in 1× SSC, and 
mounted in Mowiol supplemented with DAPI. Cells stained with Con A–Alexa 
Fluor 633 (Con A 633; Invitrogen) were incubated with 100 μg/ml of the 
Con A conjugate for 1 h at room temperature after the 1× SSC washing 
step and washed three times for 5 min in PBS before mounting. Cells were 
examined using a fl uorescence microscope (Axioplan 2e; Carl Zeiss 
 MicroImaging, Inc.) or a Radiance 2000 MP confocal laser-scanning 
microscope. The Con A and DAPI stains were used to identify cells with 
distorted nuclear morphology, and these cells were excluded from the 
analysis. Images were viewed in MetaMorph or ImageJ 1.33u. For chro-
mosome position analysis, images were successively partitioned into fi ve 
shells. For each partition, a length, r, was determined such that all pixels 
with a distance less than r away from the immediate outer partition (or the 
boundary if they constitute the outermost partition) are grouped as one 
partition, and such that the resulting partition has �20% of the overall area 
of the nucleus. The intensity associated with each shell is the sum of the 
“bright” pixels within that shell. Because of the discrete nature of the image, 
shells may not have exactly 20% of the total area; hence, the intensity cor-
responding to each shell is renormalized by the actual area of the shell. 
Unlike some conventional analyses, this method does not depend on prior 
defi nition of a centroid for the cell.

Online supplemental material
Fig. S1 shows FLIP of YFP–lamin C expressed in WT, Lmnb1−/−, Rce1−/−, 
and Icmt−/− cells. The fi gure shows that there is no signifi cant difference 
between lamin C dynamics in the three different cell types. This indicates 
that the loss of lamin B1 or any of its processing steps does not affect the 
stability of lamin C interactions or the lamin C lamina. Table S1 provides a 
summary of the gene expression data (expressed as fold ratios) for 
Lmnb1−/−, Rce1−/−, and Icmt−/− cells. Online supplemental material is 
available at http://www.jcb.org/cgi/content/full/jcb.200607054/DC1.
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