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Defence gene expression and phloem quality contribute to mesophyll and 

phloem resistance against aphids in wild barley  

  

Highlight:  

Wild barley partial-resistance against aphids resides in the mesophyll and phloem tissue, and 

is likely associated with higher basal defence and phytohormone gene expression and altered 

phloem amino acid composition.   

Abstract:  

Aphids, including the bird cherry-oat aphid (Rhopalosiphum padi), are significant agricultural 

pests. The wild relative of barley, Hordeum spontaneum 5 (Hsp5) has been described to be 

partially-resistant against R. padi, with this resistance proposed to involve higher thionin and 

lipoxygenase gene expression. However, the specificity of this resistance against aphids and its 

underlying mechanistic processes are unknown. In this study, we assessed specificity of Hsp5 

resistance against aphids and analysed differences in aphid probing and feeding behaviour on 

Hsp5 and a susceptible barley cultivar (Concerto). We found that partialresistance in Hsp5 

against R. padi extends to two other aphid pests of grasses. Using the electrical penetration 

graph technique we show that partial-resistance is mediated by phloem- and mesophyll-based 

resistance factors that limit aphid phloem ingestion. To gain insight into plant traits responsible 

for partial-resistance, we compared non-glandular trichome density, defence gene expression, 

and phloem composition of Hsp5 with the susceptible barley cultivar Concerto. We show that 

Hsp5 partial-resistance involves elevated basal expression of thionin and phytohormone 

signalling genes, and a reduction in phloem quality. This study highlights plant traits that may 

contribute to broad-spectrum partial-resistance against aphids in barley.     
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Utamphorophora humboldti  
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ABA: Abscisic Acid   

Ala: Alanine  

Arg: Arginine  

Asn: Asparagine  

Asp: Aspartic Acid  

Concerto: Hordeum vulgare cv. Concerto  

EPG: Electrical penetration graph   

ET: Ethylene  

FTIR: Fourier Transform Infrared  

Gln: Glutamine  

Glu: Glutamic Acid  

Gly: Glycine  

His: Histidine  

Hsp5: Hordeum  spontaneum 5  

Ile: Isoleucine  

JA: Jasmonic Acid  

Leu: Leucine Lys: 

Lysine:  

Met: Methionine Phe: Phenylalanine rm: 

the intrinsic rate of population increase  

SA: Salicylic Acid  

Ser: Serine  

Thr: Threonine  

Trp: Tryptophan  

Tyr: Tyrosine  

Val: Valine  
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Introduction  

Barley, Hordeum vulgare, is the fourth most agriculturally important cereal by production 

quantity (Newton et al., 2011). Aphids are major pests of cereals and feed directly from plant 

phloem using specialised mouthparts known as stylets (Auclair, 1963; Guerrieri and Digilio, 

2008). Aphid feeding causes direct plant damage by ingesting phloem sap and indirect damage 

by transmission of economically important plant viruses (Guerrieri and Digilio, 2008), 

including Barley Yellow Dwarf Virus (BYDV). Virus infection can cause yield losses of up to 

30% in barley and 80% in wheat (Smith and Sward, 1982; Perry et al., 2000; Murray and 

Brennan, 2010).  

Aphids are primarily controlled by insecticides and as a consequence insecticide use is 

increasing (Jess et al., 2018), leading to the emergence of insecticide-resistant aphid 

populations (Chen et al., 2007; Foster et al., 2014), negative impacts on non-target organism 

(Unal and Jepson, 1991; James et al., 2016), and a potential increase in BYDV prevalence 

(Dewar and Foster, 2017). This has resulted in legislative restrictions on insecticide use and 

promotion of integrated pest management (Directive, 2009/128/EC). Consequently, there is a 

growing requirement for more sustainable pest management solutions, and improving crop 

resistance against aphids is one avenue which could be explored to achieve this.   

Plant resistance traits against insect pests can be allocated to one of three categories: 1) 

chemical deterrence of insect settling and feeding; 2) physical barriers to insect feeding; and 3) 

reduction in palatability (Mitchell et al., 2016). Partial-resistance against aphids has been 

associated with each of these categories (respectively, Gibson and Pickett (1983), Tsumuki et 

al. (1989) and Greenslade et al. (2016)). Aphid resistance in cereals, and many other plant 

species, is partial in that aphid colonisation is reduced but not completely abolished. Full and 

partial-resistance can be mediated by Resistance genes (R), which function in a gene-for-gene 

manner through recognition of specific aphid biotypes within a species. For example, resistance 

in tomato against the potato aphid, Macrosiphum euphorbiae, has been linked to the R gene 

Mi-1 (Kaloshian et al., 1995; Cooper et al., 2004) and RAP1 in Medicago truncatula confers 

resistance against the pea aphid, Acyrthosiphon pisum (Kanvil et al., 2015). In cereals, Dn and 

RA R genes confer effective resistance against the Russian wheat aphid, Diuraphis noxia, and 

S. avenae, respectively (Liu et al., 2001; Liu et al., 2012; Li et al., 2018).  
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Inherent molecular defences also play a key role in conferring resistance against aphids (Smith 

and Boyko, 2007; Delp et al., 2009; Guan et al., 2015; Escudero‐Martinez et al., 2017).  

Defences involved in aphid resistance in Hordeum spp. include increased expression of thionin 

(antimicrobial peptides) genes (Delp et al., 2009; Mehrabi et al., 2014; Escudero‐Martinez et 

al., 2017), increased chitinase and β-1,3-glucanase activity (Forslund et al., 2000), and the 

presence of plant secondary metabolites (Gianoli and Niemeyer, 1998). Plant phythormone 

signalling pathways, including Abscisic Acid (ABA), Salicylic Acid (SA), Jasmonic Acid (JA) 

and Ethylene (ET) signalling, mediate coordinated molecular responses to herbivory via the 

regulation of defence signalling genes and the biosynthesis of defensive allelochemicals (Smith 

and Boyko, 2007; Bari and Jones, 2009; Morkunas et al., 2011; Foyer et al., 2016); higher 

constitutive expression of phytohormone signalling genes can lead to improved resistance 

against aphids in cereals (Losvik et al., 2017). With a lack of full resistance, especially in cereal 

crops, the use of partial-resistances to provide crop protection is a powerful approach 

(Broekgaarden et al., 2011; Dempewolf et al., 2014).    

Wild relatives of modern crops feature many resistance traits against herbivorous pests that 

have been lost during domestication (Moreira et al., 2018). Screening crop wild relatives for 

(partial-)resistance against aphids provides an opportunity to identify potentially beneficial 

traits (Zhang et al., 2017) for introduction into agricultural cultivars (Xu et al., 2015; Li et al., 

2018; Arora et al., 2019). Screening of wild relatives in wheat (Xu et al., 2015; Aradottir et al., 

2017) and maize (Maag et al., 2015) has identified partial-resistance traits associated with 

reduced palatability and elevated levels of secondary metabolites (Barria et al., 1992; Ahmad 

et al., 2011; Greenslade et al., 2016; Chandrasekhar et al., 2018; Li et al., 2018). In crops such 

as wheat, maize, potato, and tomato, partial-resistance has been associated with both singular 

and interacting epidermal- mesophyll- and phloem-based resistance factors (Alvarez et al., 

2006; Greenslade et al., 2016; Machado-Assefh and Alvarez, 2018). The underlying 

mechanisms of these resistances can involve factors based at the leaf epidermis such as  leaf 

trichomes (Glas et al., 2012) and waxes (Tsumuki et al., 1989; Agrawal et al., 2009), factors 

residing in the leaf tissue such as allelochemicals (Ahmad et al., 2011; Betsiashvili et al., 2015), 

elevated phytohomone signalling (Louis et al., 2015), and elevated defence gene expression 

(Zhai et al., 2017), as well as phloem-based factors:, including reduced phloem quality 

(Greenslade et al., 2016). Despite this recent progress, our understanding of partial-resistance 

against aphids in many key crops, including barley, is limited and requires further exploration.  
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Partial-resistance against R. padi was identified in the barley wild relative H. spontaneum 5 

(Hsp5) (Åhman et al., 2000; Delp et al., 2009). Although Hsp5 features higher tissue 

concentrations of indole alkaloid gramine, a plant defensive compound, this did not correlate 

with increased partial-resistance (Åhman et al., 2000). Instead, partial-resistance in Hsp5 is 

thought to involve increased expression of plant defence genes (Delp et al., 2009; Mehrabi et 

al., 2014), including higher constitutive expression of thionin genes (Delp et al., 2009) and 

higher expression of a proteinase inhibitor (Mehrabi et al., 2014). Initial attempts have been 

made to characterise the molecular processes contributing to partial-resistance in Hsp5 (Delp 

et al., 2009), with the underlying mechanism(s) of resistance and the tissue location of these 

resistance factors remaining to be elucidated.   

The primary aim of this study was to characterise the plant traits and mechanisms contributing 

to partial-resistance in Hsp5. To date, Hsp5 partial resistance was reported to be effective 

against one aphid species, R. padi. Here, we show that Hsp5 resistance is broad and effective 

against two additional aphid species, S. avenae (a cereal pest) and Utamphorophora humboldti 

(an invasive species). To investigate where in the plant tissue partial-resistance factors may 

reside we monitored R. padi probing and feeding behaviour on Hsp5 and compared this with 

aphids feeding on susceptible barley cultivar Concerto using the electrical penetration graph 

(EPG) technique. This revealed that resistance factors predominantly reside in the mesophyll 

layers and the phloem. Characterisation of leaf surface architecture, defence and phytohormone 

signalling, and amino acid composition linked Hsp5 resistance with higher basal gene 

expression of JA, ABA, and ET signalling markers and defensive thionin genes as well as to 

reduced availability of essential amino acids in the phloem. Our work highlights the 

involvement of complex defence mechanisms against aphid pests in wild barley that involves 

multiple components in different plant tissues and identifies several traits which could be 

exploited to improve barley resistance against aphids.   

Materials and methods  

Plant growth and insect rearing conditions  

Hordeum vulgare Linnaeus cv. Concerto (Concerto) and H. spontaneum 5 Linnaeus (Hsp5) 

seeds were surface-sterilised by washing in 2% (v/v) hypochlorite and rinsing with d.H2O. 

Seeds were kept moist in the dark: Hsp5 seeds were incubated at 4oC for 14 days and Concerto 
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seeds were kept at room temperature for 48h. Germinated seedlings were planted into a bulrush 

compost mix (Bulrush, Northern Ireland) and grown under glasshouse conditions with a 16:8h  
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214 (L:D), light intensity (Photosynthetically Active Radiation: PAR) was a minimum of 150 215 

µmol/m-2
 s-1 (facilitated using supplementary lighting when required) and a maximum 400 216 µmol/m-

2
 s-1 (with screens employed when light intensity exceeded this), and a 20:15oC 217 day:night 

temperature. Plants were grown until the first true leaf stage (1.1 – 1.2 on the Zadoks 218 et al. (1974) 

growth staging key).  

219 Asexual laboratory cultures of the bird cherry-oat aphid, Rhopalosiphum padi (Linnaeus)  

220 (genotype B; Leybourne et al. (2018)), the English grain aphid, Sitobion avenae Fabricius and  

221 the American grass leaf aphid, Utamphorophora humboldti Essig were established from 222 

individual apterous adults collected from Dundee, UK. Molecular barcoding of the cytochrome 

223 oxidase subunit I gene (Folmer et al., 1994) was used to confirm identity of aphid species.  

224 Aphid cultures were reared in controlled growth rooms on one week old barley seedlings (cv.  

225 Optic) contained in ventilated cups at 20oC, 16:8h (L:D) with PAR 150 µmol/m-2
 s-1.  

226  Insect fitness measurements  

227 The performance of all aphid species was assessed in glasshouse conditions (described above) 228 

on Hsp5 and Concerto (n = 12) in a randomised block design (each block contained one  

229 replicate of each treatment combination). Plants were infested with a single apterous aphid  

230 which was allowed to reproduce overnight, then a total of three nymphs were retained on each 

231 plant. Nymph mass and survival was recorded at 72h and 168h, aphids were manipulated 

using  

232 a fine horsehair brush and a microbalance (Mettler Toledo MX5, Mettler Toledo, UK) was  

233 used to measure aphid mass.  After the 168h measurement a random single nymph was returned 

234 to the plant; for this nymph, data were collected on the length of the pre-reproductive period 

235 (d) and the intrinsic rate of population increase (rm). Aphids were caged onto the first fully 

236 expanded true leaf using Perspex clip-cages of 25mm internal diameter (MacGillivray and 

237 Anderson, 1957). Nymph mass gain was calculated as the change in mass between 168 and  

238 72h and aphid rm was calculated using the equation of Wyatt and White (1977): r𝑚 = 
ln (𝐹𝑑) 

239 0.74   , where d is the time period between birth and production of first progeny, and Fd  𝑑 
240 is the total progeny produced over a time period equal to d.  

241  Electrical penetration graph (EPG) monitoring of aphid feeding  

242 The DC-EPG technique (Tjallingii, 1978; Tjallingii, 1988; Tjallingii, 1991; Tjallingii, 2001)  
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243 was employed to monitor the probing and feeding behaviour of adult apterous R. padi  

244 (approximately 7-10 days old) over a 6h period using a Giga-4 DC-EPG device (EPG Systems,  
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The Netherlands) on plants at the true-leaf stage. A plant probe (copper rod approximately 50 

mm long x 5 mm diameter), was soldered to electrical wire extending from the plant voltage 

output of the Giga-4 device and inserted into the plant soil. An aphid probe was made by 

soldering a piece of copper wire (30 mm long x 2 mm diameter) to a brass pin (tip diameter 2 

mm). Approximately 30 mm of gold wire (20 µm diameter; EPG Systems, The Netherlands) 

was adhered to the copper end of the aphid probe using water-based silver glue (EPG Systems, 

The Netherlands) and aphids were connected by adhering the free end of the gold wire onto the 

aphid dorsum using the same water-based adhesive. Wired aphids were connected to the Giga- 

4 device by placing the end of the brass pin into the EPG probes with a 1 GΩ input resistance 

and a 50x gain (Tjallingii, 1988). The order in which R. padi – plant combinations were tested 

and allocated to an EPG probe was randomised. Data were acquired using Stylet+D software 

(EPG Systems, The Netherlands). A total of 18 and 16 successful recordings (recordings where 

aphids were probing into plant tissue for at least 80% of the total recording time) were made 

for aphids feeding on Concerto and Hsp5, respectively. All EPG recordings were obtained 

within a grounded Faraday cage.  

EPG waveforms were annotated using Stylet+A software (EPG Systems, The Netherlands). 

Waveforms were annotated by assigning waveforms to np (non-probing), C (stylet 

penetration/pathway), pd (intercellular punctures), E1 (saliva secretion into phloem), E2 (saliva 

secretion and passive phloem ingestion), F (penetration difficulty) or G (xylem ingestion) 

phases (Tjallingii, 1988; Alvarez et al., 2006). No E1e (extracellular saliva secretion) phases 

were detected. Annotated waveforms were converted into time-series data using the excel 

macro developed by Dr Schliephake (Julius Kühn-Institut, Germany).  

Determination of non-glandular trichome density  

Non-glandular trichome densities of Hsp5 and Concerto (n = 9) were determined using 

polarised light microscopy following a procedure adapted from Pomeranz et al. (2013). Briefly, 

the first true leaf was excised from plant stems and treated to two incubation steps to clear the 

leaf epidermis. Firstly, leaf area was measured and leaves were soaked in 96% Ethanol 

(SigmaAldrich, UK) for 48h before being treated with 1.25 M NaOH:EtOh (1:1, v:v) at 70oC 

for 2h. Leaves were stored in 50% glycerol prior to trichome visualisation; if NaOH:EtOH 

treatment did not clear the leaf epidermis leaves were further treated with 80% lactic acid for 

6h. To analyse trichome density samples were placed adaxial side up on microscope slides (75 

x 25 mm; Corning, UK). A polarising light microscope was created using two 50 mm2 
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polarising filters (Sigma-Aldrich, UK), one placed below the stage of a stereo-microscope but 

above the light source and the second attached below the objective lens. Non-glandular 

trichomes appeared illuminated under the polarised microscope setup and the number of 

trichomes per unit area were counted manually. To allow correlation of trichome density with 

aphid performance, an additional R. padi performance experiment (as described above) was 

carried out on these plants prior to trichome density analysis.  

Epicuticular wax analysis  

A Fourier Transform Infrared (FTIR) spectrometer (Bruker Vertex 70 FTIR spectrometer, 

Bruker, Ettlingen, Germany), incorporating a Diamond Attenuated Total Reflection (DATR) 

sampling accessory, was used to identify the functional groups present in chemical extracts 

from the surfaces of Hsp5 and Concerto leaves. The waxes from upper and lower leaf surfaces 

of the first true leaf (n = 4) were extracted with dichloromethane (DCM) by running 

approximately 1-2 ml of DCM along the leaf surface directly onto the diamond window of the 

ATR sampling accessory; after evaporation of the DCM, FTIR spectra were recorded of the 

films deposited on the DATR. Signal-to-noise ratio was enhanced by taking 200 scans for each 

sample and averaging to obtain a single spectrum. The spectral range scanned was 4000 cm-1 

to 400 cm-1 and a background reading was taken before each sample was analysed.   

Analysis of phloem amino acid composition  

Hsp5 and Concerto plants were grown under glasshouse conditions (as described above) in a 

temporally-split randomised block design: three temporal blocks, one initial temporal block 

comprising two replicate sub-blocks, and two further temporal blocks each comprising four 

replicate sub-blocks. Each sub-block contained a single replicate of every treatment 

combination. Plants at the first true-leaf stage were infested with either ten seven day old 

apterous R. padi adults caged onto the plants with microperforated bags (Polybags, UK) or 

aphid-free bagged controls. Samples were collected at 0 and 24h post-aphid infestation. Phloem 

sap was collected using the method of King and Zeevaart (1974); leaves (n = 10) were excised 

from the stem by cutting at the base of the leaf blade at the petiole, placed in a dish containing 

1 mM EDTA (Sigma-Aldrich, UK) solution and immediately re-cut. The cut surface of the leaf 

was placed into 200µl of filter-sterilised 1mM EDTA solution (pH 7.5 with NaOH) in a 2 mL 

EppendorfTM microcentrifuge tube and incubated for 1.5h at room temperature in a darkened 

exudation chamber (a polystyrene box containing a dish of 6 M K2HPO4 (Sigma-Aldrich, UK), 
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and moistened paper towels to maximise humidity and decrease leaf transpiration). After 

incubation, leaves were removed and the samples of EDTA solution containing exuded phloem 

sap were stored at -80oC until analysis.  

Reverse-phase HPLC was used to separate phloem amino acids Asp, Glu, Asn, His, Ser, Gln, 

Arg, Gly, Thr, Tyr, Ala, Trp, Met, Val, Phe, Ile, Leu and Lys using an Agilent HP1100 series 

auto-sampling LC system equipped with a ZORBAX™ Eclipse AAA column and fluorescence 

detector. Amino acids were derivatised using o-phthaldialdehyde (Sigma-Aldrich, UK) 

following the method developed by Jones et al. (1981); all protein amino acids except proline 

and cysteine could be detected by this method, with a detection limit of approximately 0.5 

pmol. Samples were processed in their experimental blocks along with blanks (1 mM EDTA 

solution that was not exposed to an excised leaf) as controls. Amino acids were identified and 

quantified by comparison with known concentrations of amino acid standards (AA-S-18 

(Sigma, UK), supplemented with Asp, Glu and Trp).   

RT-qPCR analysis of plant defence genes  

Five sub-blocks over the three temporal blocks (one from the first block and two from each 

subsequent temporal block) were chosen at random from the phloem exudation experiment 

described above and leaf tissue was sampled for gene expression analysis. Approximately 

25mm length of leaf tissue was cut from the apex of the true leaf and flash-frozen in liquid 

nitrogen immediately prior to the excision of the leaf for phloem exudation. Plant material was 

stored at -80oC until RNA extraction. RT-qPCR experiment design followed the MIQE 

guidelines (Bustin et al., 2009).  

Leaf samples were ground to a fine powder under liquid nitrogen using a mortar and pestle and 

total RNA was extracted with the Norgen Plant/Fungi RNA Extraction Kit (Sigma-Aldrich, 

UK) following the manufacturer’s protocol with additional DNAse I treatment (Qiagen, UK);  

RNA quality and quantity was assessed with a NanoDrop® ND-1000 Spectrophotometer 

(ThermoFischer, UK). cDNA synthesis was carried out with approximately 1000 ng RNA 

using the SuperScript® III cDNA synthesis kit (Sigma-Aldrich, UK), following the 

manufacturer’s protocol. RT-qPCR primers were designed using the Roche Universal Probe 

Library Assay Design Centre. Reference gene primers were described by Hua et al. (2015). All 

primer sequences are shown in Supplementary Table 1 and were supplied by Sigma-Aldrich, 
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UK. Primers were validated for PCR efficiency prior to use, and reference gene primers were 

tested for stability across all treatments following the geNorm procedure (Vandesompele et al.,  

2002). Gene expression analysis used SYBR® Green chemistry with GoTaq® qPCR  Master 

Mix (Promega, UK) on a StepOne™ Real-Time PCR Machine (Applied Biosystems, UK). 

Reactions were carried out in 12.5 µl reactions with a final concentration of 1x GoTaq® qPCR 

Master Mix, 1µM of each primer, 1.4 mM MgCl2,  2.4 µM CXR reference dye and a cDNA 

quantity of approx. 12.5 ng (assuming 1:1 RNA:cDNA conversion). The qPCR conditions were 

as follows: 95oC for 15 mins followed by 40 cycles of denaturing for 15s at 95oC, annealing 

for 30s at 60oC, and 30s at 72oC for DNA extension. Fluorescence was recorded at the end of 

each annealing cycle and a melting curve was incorporated into the end of the qPCR 

programme. Data were normalised to the geometric mean expression of two reference genes,  

HvCYP (AK253120.1) and HvUBC (AK248472.1), and 2-ΔΔCt methodology (Livak and Schmittgen, 

2001) was used to determine differential expression, with Concerto at 0h aphid infestation used 

as the experimental control treatment. Expression levels at 24h were further normalised to 

uninfested control plants. Samples were processed in experimental blocks with three technical 

replicates at the PCR level and five biological replicates per treatment.  

Statistical analysis  

Statistical analyses were carried out using R Studio v.1.0.143 running R v.3.4.3 (R Core Team, 

2014) using packages: car v.2.1-4 (Fox and Weisberg, 2011), coxme v.2.2-7 (Therneau, 2018), 

dunn.test v.1.3.5 (Dinno, 2017), ggplot2 v.2.2.1 (Wickham, 2009), ggpubr v.  

0.1.2 (Kassambara, 2017), ggfortify v.0.4.5 (Tang et al., 2016), lawstat v.3.2 (Hui et al., 2008), 

lme4 v.1.1-13 (Bates et al., 2015), lmerTest v.2.0-33 (Kuznetsova et al., 2017), lsmeans 

v.2.2762 (Lenth, 2016), survival v.2.41-3 (Therneau and Grambsch, 2000), survminer v.0.4.2 

(Kassambara and Kosinski, 2017), vegan v.2.5-3 (Oksanen et al., 2013).   

Nymph mass gain and adult rm, were modelled using linear mixed effects models with 

experimental block incorporated as a random factor. ANOVA with type III Satterthwaite 

approximation for degrees of freedom was used to analyse the final models with calculation of 

Least Squares Means used for post-hoc testing. A Cox proportional hazards regression model 

was used for nymph survival analysis (Therneau and Grambsch, 2000; Therneau, 2018), 

incorporating experimental block as a random factor; a χ2 test was used on the final model. A 

log-rank test with Benjamini-Hochberg correction was used to carry out pairwise comparisons 

between aphid-plant combinations. Aphid feeding behaviour was assessed globally by fitting a 
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permutated MANOVA to the dataset. Response variables with normal data distribution were 

analysed by either ANOVA or general linear models, while non-normally distributed data were 

analysed with Kruskal-Wallis tests.   

Levene's test (Hui et al., 2008) was used to analyse differences in trichome density; a Kendall’s 

rank correlation tau was then used to test for correlations between trichome density and R. padi 

performance. Differences in leaf surface chemistry were analysed using a Welch two sample t-

test by comparing the total number of identified functional groups in the two plant species.  

Phloem amino acid concentrations (pmol/µl) were expressed as relative amino acid 

composition by converting into mole % of total amino acid content and subjected to principal 

component analysis with a correlation matrix. Three principal components explained 69% of 

observed variation and were analysed by fitting a linear mixed effects model incorporating 

aphid treatment, plant, time-point, plant x time-point interaction, and leaf subsampling for RNA 

(to test effect on amino acid composition) as explanatory variables with temporal block, 

randomised block and HPLC batch as random factors. Final models were analysed with a χ2 

test. Differential gene expression (2-ΔΔCt) data were analysed using Kruskall-Wallis rank-sum 

tests, with subsequent Dunn’s test post-hoc analysis of the plant x infestation interaction.   

Results  

A wild relative of barley exhibits partial-resistance against multiple aphid species  

Aphid performance experiments were undertaken to assess whether partial-resistance in Hsp5 

against R. padi (Delp et al., 2009; Leybourne et al., 2018) extends to other aphid species. We 

assessed the fitness of R. padi, S. avenae, and U. humboldti on Hsp5 in comparison with a 

commercial barley cultivar (Concerto) and found evidence for partial-resistance against all 

three aphid species. Specifically, nymph survival was significantly lower on Hsp5 (χ2
1 = 10.65; 

p = 0.001; Fig. 1A; Table 1); pairwise comparison showed that nymph survival was reduced 

on Hsp5 for U. humboldti (p = <0.001), but not for R. padi (p = 0.057) or S. avenae (p = 0.973). 

Furthermore, nymph mass gain (F56,1 = 9.14, p = 0.003; Fig. 1B; Table 1) and the rate of 

population increase (rm) (F54, 1 = 27.43, p = <0.001; Fig. 1C; Table 1) were reduced for all aphid 

species when feeding from Hsp5. Differences were also detected between aphid species, with 

R. padi exhibiting the highest rm (F 54,2 = 99.10, p = <0.001; Fig. 1B; Table 1) and S. avenae 

the largest mass gain (F 56,2 = 49.82, p = <0.001; Fig. 1C; Table 1). On average U. humboldti 

was the least fit species (Fig. 1A-C).   
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Partial-resistance against R. padi involves mesophyll and phloem resistance factors  

To elucidate the potential underlying partial-resistance mechanism(s) against aphids in Hsp5  

R. padi feeding behaviour was monitored using the EPG technique. Overall, the feeding 

behaviour of R. padi differed significantly when feeding on Hsp5 compared with Concerto 

(F1,33 = 2.61; p = 0.022; Fig. 2; Table 2). Aphids showed significant differences in feeding 

behaviour at the leaf epidermis and within mesophyll tissue (Fig. 3; Table 2). We observed an 

approximate three-fold decrease in the time to the first epidermal probe when feeding on Hsp5 

(F1,33 = 7.99; p = 0.008), alongside a shorter duration of the first probe (F1,33 = 6.94; p = 0.013) 

and an increased time to the first sieve element puncture (F 1,33= 6.33; p = 0.017). Aphids 

feeding on Hsp5 also showed a two-fold delay in initiating passive phloem ingestion (χ2 1,33 = 

4.29; p = 0.038) and a decrease in the number of intracellular punctures observed during the 

first aphid probe of plant tissue (10 on Hsp5 vs. 24 on Concerto; F 1,33 = 3.95; p = 0.047; Table 

2).  

Feeding patterns within the vascular tissue also differed (Fig. 4; Table 2). Aphids feeding on 

Hsp5 showed delayed initiation of sustained phloem ingestion (ingestion for >10 mins) after 

the first sieve element puncture (χ2
1,33 = 4.29; p = 0.038). The total length of time aphids spent 

in the sustained feeding phase was also 2.5x shorter (χ2
1,33 = 7.49; p = 0.006), and the ratio of 

time aphids spent ingesting phloem relative to the length of time probing plant tissue 

(ingestion:pathway ratio) was four-fold lower (χ2
1,33 = 7.43; p = 0.006). Furthermore, aphids 

feeding on Hsp5 spent three times longer ingesting xylem (χ2
1,33 = 5.28; p = 0.022). Table 2 

reports additional feeding parameters which highlight further mesophyll and vascular-mediated 

resistance against R. padi in Hsp5. The results for the non-significant parameters are reported 

in Supplementary Table 2 and the full statistical results for the significant parameters are 

displayed in Supplementary Table 3.  

Leaf surface architecture differs between susceptible and partially-resistant plants.  

The leaf surface represents a key interface between plants and insects. Many surface factors, 

including leaf trichomes and epicuticular waxes, can modulate plant-insect interactions, 

(Agrawal et al., 2009; Glas et al., 2012; Karley et al., 2016). Non-glandular leaf trichome counts 

revealed Hsp5 had a significantly higher abundance than Concerto (F1,18 = 6.24; p = 0.022; Fig. 

5). Trichome abundance showed a negative correlation with R. padi fecundity (Z = -3.60; p = 

<0.001; Τ = -0.56; Adj-R2
 = 0.68; Supplementary Fig. 1A) but no relationship with nymph 
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mass gain (Z = -0.29; p = 0.770; Τ = -0.04; Adj-R2 = -0.05; Supplementary Fig. 1B).  In 

addition, we found differences in the epicuticular wax composition between the two plants. The 

complexity of the epicuticular wax differed in that aliphatic hydrocarbons were detected in 

surface extracts of Hsp5 leaves, two Hsp5 replicates also contained weak ester bands 

(Supplementary Table 4). In Concerto the chemical mixture contained a more consistent 

mixture of aliphatic hydrocarbons and more pronounced ester bands, alongside a more 

complex, but variable, mixture of chemical groups, including carboxylates and amides (t = 

4.89; df = 6; p = 0.002). Overall, the results were consistent within Hsp5 but more variable in 

Concerto (Supplementary Table 4). However, the detection of some Nitrogen-containing 

functional groups in Concerto leaf extracts could be a result of extracting some components 

within the upper tissue layers, this potentially highlights differences in the thickness of the wax 

between Hsp5 and Concerto.  

Basal expression levels of thionins and multiple phytohormone signalling genes are 

elevated in Hsp5  

To investigate the level of defence gene expression in Concerto versus Hsp5 we selected marker 

genes for defensive thionins (HvTHIO1, HvTHIO2, HvβTHIO) alongside JA (HvLOXA, 

HvLOX2 and HvJAZ), SA (HvNPR1), ET (HvERF), and ABA (HvA1) signalling pathways. We 

assessed expression of marker genes in both plant types constitutively and in response to 24h 

of aphid infestation. We observed 10-(HvTHIO1), 13-(HvTHIO) and 7-fold (HvβTHIO) higher 

expression of the three thionin genes in Hsp5 (Fig 6; Table 3). Thionin gene expression levels 

remained higher in Hsp5 24h after aphid infestation but were not differentially regulated in 

either plant in response to aphid infestation (Fig 6; Table 3). In addition, HvLOXA, HvLOX2, 

HvA1, and HvERF1, were more highly expressed in Hsp5, with 3.5-, 6-, 10- and 14-fold higher 

expression levels, respectively (Fig 6; Table 3).  

No genes were differentially expressed in response to aphid infestation. However, several of 

the phytohormone signalling genes were differentially expressed in response to the plant x 

aphid infestation interaction; namely HvLOXA, HvLOX2, HvNPR1, and HvERF1 (Table 3). 

HvLOXA was significantly down-regulated in Hsp5 after 24h aphid infestation to levels similar 

to those observed in Concerto (Fig. 6; Table 4). For HvLOX2, HvNPR1, and HvERF, expression 

levels were higher in Hsp5 after 24h of aphid infestation compared with levels in Concerto 

(Fig. 6; Table 4), and HvNPR1 levels were significantly lower in Concerto 24 h after aphid 
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infestation compared with constitutive levels (Fig. 6; Table 4). HvJAZ was not differentially 

regulated in response to any treatment factor.  

Phloem amino acid composition in Hsp5 is characterised by a reduction in the proportion 

of essential amino acids and an increased abundance of asparagine  

To investigate phloem factors contributing to partial-resistance against aphids (Fig. 4; Table 2) 

we analysed the amino acid composition and the proportion of essential and non-essential 

amino acids in phloem exudates (Fig. 7). Principal component analysis of amino acid 

composition (mol% of Asp, Glu, Asn, His, Ser, Gln, Arg, Gly, Thr, Tyr, Ala, Trp, Met, Val, 

Phe, Ile, Leu, and Lys) of phloem exudates revealed that three principal components explained 

69% of the observed variation in overall amino acid composition, with all three principle 

components showing a degree of separation between the two plant types (Table 5). 

Furthermore, >50% of the variation was explained by the first two principal components (Fig. 

7C; Table 5) with separation of Hsp5 from Concerto largely occurring along PC1 due to 

differences in the relative amounts of Asn and His vs. most other essential amino acids (Fig. 

7C). The total percentage of essential amino acids (Arg, His, Ile, Leu, Lys, Met, Phe, Thr, Trp, 

Val; described in Morris (1991)) was higher in Concerto compared with Hsp5 (18.97% vs 

11.45%; χ2
1 = 25.43; p = <0.001; Fig. 7D; Table 6).   

The difference in composition of non-essential amino acids was most pronounced between the 

two plant types, with a higher proportion of Asn and lower proportions of Glu and Gly in Hsp5 

(42.75%, 7.34% and 12.69%, respectively) compared with Concerto (7.55%, 15.18% and 

22.43%, respectively) (Fig 7A-B). Amino acid composition and percentage of essential amino 

acids changed over the 24h of the experiment, but not in response to aphid treatment (Table 5; 

Table 6). Harvesting of leaf material for RT-qPCR analysis had no effect on the phloem amino 

acid composition (Table 5; Table 6).  

Discussion  

Resistance factors contributing to partial-resistance in Hsp5 are based primarily in the 

mesophyll and phloem  

Our observation that R. padi feeding on Hsp5 spends more time in the pathway phase (probing 

into plant tissue) and takes longer to reach the phloem is representative of mesophyll-based 

resistance (Alvarez et al., 2006). In addition, R. padi shows a reduction in salivation into and 
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ingestion of the phloem, in line with resistance factors residing in the phloem (Alvarez et al., 

2006).   

Partial-resistance against aphids in other plant-aphid systems have similarly pointed to the 

importance of mesophyll and phloem-based resistance factors (Montllor and Tjallingii, 1989; 

Caillaud et al., 1995; Pegadaraju et al., 2007; Guo et al., 2012; Greenslade et al., 2016; Simon 

et al., 2017). Partial resistance in Triticum monococcum lines (a wild relative of wheat) against 

S. avenae and R. padi involved resistance at the phloem level, as determined by EPG (Caillaud 

et al., 1995; Greenslade et al., 2016; Simon et al., 2017). Metabolic profiling of resistant and 

susceptible lines by Greenslade et al. (2016) highlighted contrasting metabolite profiles, 

including lower levels of primary metabolites and elevated Asn in the partially-resistant lines 

(Greenslade et al., 2016), in line with our observations in Hsp5. Resistance against M. persicae 

and Ma. euphorbiae, in Solanum stoloniferum was associated with the up-regulation of a suite 

of defence genes (Alvarez et al., 2013). For M. persicae this resistance was associated with an 

increased difficulty in accessing and ingesting the phloem sap compared with aphids feeding 

on susceptible S. tuberosum (Alvarez et al., 2013; Machado-Assefh and Alvarez, 2018). In 

contrast, Ma. euphorbiae feeding on S. stoloniferum showed an increased period of salivation 

into the phloem (Alvarez et al., 2013).   

The anatomy of the vascular bundle can also affect aphid feeding and influence plant 

resistance/susceptibility to aphids. Simon et al. (2017) showed that the vascular bundle of the 

susceptible T. monococcum line MDR037 was wider than the resistant line MDR045. Infection 

with mycorrhizal fungi increased the width of the vascular bundle in both plants, amplified 

susceptibility to aphids, and promoted phloem ingestion (Simon et al., 2017). The inorganic 

chemistry of leaf tissue can also play a role in plant defence (Lane, 2002; Boyd, 2012), with 

oxalates highlighted as important contributors towards plant defence against pathogens in 

cereals (Lane, 2002) and against leaf-chewing insects in Medicago truncatula (Korth et al., 

2006; Park et al., 2009). The inorganic chemistry of Hsp5 and Concerto leaves was not assessed 

in this study, however comparing leaf chemistry could highlight further chemical groups which 

could be involved in mediating plant-aphid interactions.  

Leaf surface characteristics contribute little to partial-resistance against aphids in Hsp5  

Leaf surface architectural differences were detected between Concerto and Hsp5 and included 

a higher abundance of non-glandular leaf trichomes and a less complex epicuticular chemistry 
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in Hsp5. Non-glandular trichomes have been reported to decrease R. padi fitness in wheat 

(Roberts and Foster, 1983), but have contrasting effects on herbivore fitness in other plants 

(Karley et al., 2016).  

Although we detected a positive correlation between trichome abundance and R. padi rm, there 

was no correlation between trichome abundance and juvenile R. padi mass gain,  indicating 

that either non-glandular trichomes have differential effects on aphids at different life-stages or 

that the higher abundance of non-glandular trichomes are not a primary cause of 

partialresistance against aphids in Hsp5. Indeed, EPG analysis indicated that leaf surface traits 

contributed little to partial-resistance in Hsp5. Aphids feeding on Hsp5 did not show increased 

time spent in the non-probing phase (a key indicator of epidermal-mediated resistance: Alvarez 

et al. (2006)). Moreover, the time taken for aphids to penetrate the leaf surface was shorter on 

Hsp5, indicating aphids experienced fewer barriers to probing the leaf epidermis on Hsp5. Less 

complex epicuticular chemistry in Hsp5 may promote aphid probing of plant tissue and 

previous studies have shown that epicuticular chemical compounds can either promote or deter 

aphid probing of plant tissue (Powell et al., 1999), however the influence of specific chemical 

functional groups on aphid behaviour is not well characterised.   

Contribution of defensive thionins and multiple phytohormone signalling genes to 

partialresistance in Hsp5   

In line with Delp et al. (2009) and Mehrabi et al. (2014), basal expression levels of thionin 

genes, which contribute to barley defences against aphids (Escudero‐Martinez et al., 2017), and 

LOX2, a JA-signalling marker, were elevated in Hsp5. The feeding parameters exhibited by R. 

padi while feeding on Hsp5 indicated that mesophyll-based mechanisms conferred shortterm 

(6h) partial-resistance against aphids. Thionins are located in plant cell walls and within the 

intracellular space (Reimann-Philipp et al., 1989; Stec, 2006). It is therefore likely that aphids 

are exposed to thionins when probing mesophyll tissue, contributing to the reduced aphid 

performance on Hsp5.   

In addition, several phytohormone signalling genes, LOX (JA), ERF1 (ET) and A1 (ABA) 

showed higher basal expression in Hsp5, indicating that Hsp5 can respond more efficiently to 

biotic stimuli. In line with our data, HvLOX2 genes and other components of the JA (HvAOS), 

ET (HvACCO), and Auxin (HvTDS) signalling pathways showed higher basal expression in the 

barley cultivar Stoneham, which is partially-resistant against D. noxia, relative to susceptible 
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cultivar Otis (Marimuthu and Smith, 2012). Furthermore, overexpression of HvLOX2 in barley 

resulted in decreased R. padi fecundity (Losvik et al., 2017), pointing to a functional role of 

this gene and JA signalling in short-term barley defence against aphids. Expression levels of 

CmERF1 in early responses (6h) to aphid infestation were around ten-fold higher in a resistant 

variety of melon compared with a susceptible variety (Anstead et al., 2010), and higher ET 

levels have been reported to contribute to R. maidis resistance in maize (Louis et al., 2015). 

ABA mediated-processes have been implicated in increasing plant resistance (Zhu-Salzman et 

al., 2004; Park et al., 2006) and susceptibility (Kerchev et al., 2013; Hillwig et al., 2016) to 

aphids. Therefore the consequence of elevated HvA1 in the context of partial aphid resistance 

is not clear. Guo et al. (2016) reported that elevated ABA levels in response to drought 

conditions can lead to increased aphid xylem ingestion. This finding suggests that elevated 

expression of components of the ABA signalling pathway could indirectly contribute to partial-

resistance by encouraging xylem ingestion, thereby reducing phloem ingestion. Indeed, longer 

periods of xylem ingestion were detected from R. padi feeding on Hsp5, indicating that there 

may be potential fitness consequences for aphids as a result of higher basal expression levels.    

In contrast, basal expression levels of HvNPR1, a SA-signalling marker, were not significantly 

different between Hsp5 and Concerto. However, levels in Concerto were down-regulated 24h 

after aphid infestation to levels that were significantly lower than HvNPR1 levels in Hsp5 after 

24h of aphid infestation. Therefore, SA-mediated defences in Concerto, but not Hsp5, may be 

repressed upon aphid infestation leading to increased susceptibility of this cultivar. Indeed, 

NPR1 is required for initiation of SA-mediated defence against aphids in A. thaliana (Moran 

and Thompson, 2001; Wu et al., 2012).  

Reduced nutritional quality of Hsp5 phloem sap likely contributes to partial-resistance  

The lower relative concentration of essential amino acids in the phloem of Hsp5 compared with 

Concerto likely contributes to the phloem-based resistance factors in Hsp5. Alterations to 

amino acid composition can reduce plant palatability and nutritional quality and contribute to 

increased resistance against aphids (Sandström and Pettersson, 1994; Ponder et al., 2000; 

Karley et al., 2002). Decreased survival and fecundity of M. persicae and Ma. euphorbiae 

feeding from older “tuber-filling” potato plants compared with younger “pre-tuber-filling” 

plants was linked to changes in amino acid composition (Karley et al., 2002). When presented 

with chemically-defined diets representative of the phloem sap composition of young and 

mature potato plants, M. persicae and Ma. euphorbiae showed decreased feeding rate on the 
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“tuber-filling” diets (Karley et al., 2002). In addition, R. padi feeding from barley plants grown 

under nitrogen-limited conditions exhibited reduced rm compared with R. padi feeding on 

barley grown under nitrogen-rich conditions (Ponder et al., 2000). Interestingly, plants under 

nitrogen-limited conditions contained a higher percentage of Asn, a lower percentage of Gly 

and a small reduction in the concentration of essential amino acids compared with 

nitrogenfertilised plants (Ponder et al., 2000), similar to the phloem amino acid composition of 

Hsp5.   

Changes in the abundance of specific amino acids cannot be readily associated with increased 

insect resistance/susceptibility. It is most likely that any observed effect on aphid fitness is due 

primarily to the ratio of essential:non-essential amino acids as a result of compositional 

changes. Indeed, essential amino acids are generally elevated in susceptible plants compared 

with varieties showing increased resistance against aphids (Auclair, 1976). Vogel and Moran 

(2011) found that the mass of multiple A. pisum biotypes was reduced when essential amino 

acids were removed from aphid artificial diets; this was observed even though aphids have the 

capacity to synthesise essential amino acids via their essential endosymbiont, Buchnera 

aphidicola (Douglas and Prosser, 1992). Some aphid species actively remobilise plant nutrients 

to increase the abundance of essential amino acids (Telang et al., 1999; Sandström et al., 2000). 

However, Sandström et al. (2000) showed that R. padi does not remobilise amino acids in the 

phloem of its host, similar to observations made in our experimental system.  

Conclusion  

Our work shows that resistance against aphids in the wild barley Hsp5 is not only effective 

against R. padi, as previously shown (Delp et al., 2009), but also against other aphid pests of 

cereals. By characterising aphid probing and feeding patterns using EPG we were able to show 

that Hsp5 resistance factors reside predominately within the mesophyll cell layers and the 

phloem. Subsequent morphological, biochemical, and molecular assessment of the differences 

between Hsp5 and a susceptible modern barley cultivar, Concerto, indicated that this resistance 

likely involves higher basal expression levels, and in some cases higher induced expression, of 

multiple phytohormone signalling genes as well as a reduced nutritional quality of the phloem 

sap. Thereby this study provides new insight into the determinants and complexity of 

partialresistance in a wild progenitor of barley and highlights resistance mechanisms of 

agricultural importance.  
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Supplementary Data  

Supplementary Table 1: primers used in RT-qPCR analysis.  

Supplementary Table 2: Additional EPG parameters.  

Supplementary Table 3: Full statistical results of significant EPG parameters.  

Supplementary Table 4: FTIR results for leaf surface extracts.  

Supplementary Fig. 1: Correlation of insect fitness with non-glandular trichome density.  
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Table 1: Statistical results of aphid performance experiments  
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Nymph  
Survival  

Plant  

Aphid  

Plant x Aphid  

Cox  
Proportional 

Hazards  
Regression  

N/A  
Type II Wald χ2  

Analysis of 
Deviance  

Χ2
1 = 10.65  

Χ2
2 = 13.94 

Χ2
2 = 5.85  

0.001*  

<0.001*  

0.054  

Nymph  
mass gain  

(mg)  

Plant  

Aphid  

Plant x Aphid  

  
Linear  
Mixed  
Effects  
Model  

  
  
  

Restricted  
Maximum  
Likelihood  

  

Type III  
Analysis of  

Variance with  
Satterthwaite 
approximation 
for degrees of 
freedom  

F1,56 = 9.14  

F2,56 =  
49.83  

F2,46 = 3.12  

0.004*  

<0.001*  

0.054  

Rate of 
population 
increase 
(rm)  

Plant  

Aphid  

F1,54 =  
27.43  
F2,54 =  
99.10  

<0.001*  

<0.001*  

 Plant x Aphid        F2,52 = 1.49  0.234  

* Indicates which variables are significantly different Table 2: Statistical results of the significant 
EPG parameters. The mean value for each plant host and the standard error of the mean are also 
displayed; full statistical results are displayed in Supplementary Table 3  

 
 Mean Value ±  Number of  

 Hypothesised  Standard Error of the Mean produced waveformindividuals which  

 Value
P  

  
 EPG Parameter  location of  

 
 resistance factor  Concerto  HsP5  Concerto  Hsp5    

All parameters (Global 
analysis)  All tissue  -  -  -  -  0.022  

Number of potential drops  
(intracellular punctures) in first probe  Mesophyll  24 ± 5.36  10 ±  

2.82  18/18  16/16  0.047  

Time to the first phloem phase 
containing E1 and/or E2  Mesophyll  3761 s ± 

675 s  
9864 s ± 
1884 s  18/18  16/16  0.019  

Time to the first phloem ingestion 
(E2) phase  Mesophyll  

4395 s ± 
846 s  

9946 s ± 
1880 s  18/18  16/16  0.028  

Number of probes before first  
E1  Mesophyll  

0.66 ±  
0.34  

2.38 ±  
0.76  18/18  16/16  0.002  

Number of probes before first  
E2  Mesophyll  1 ± 0.38  2.5 ±  

0.79  18/18  15/16  0.042  

Total number of xylem phases  Xylem  0.72 ±  
0.13  

1.56 ±  
0.30  12/18  13/16  0.029  
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Total time ingesting phloem  
(E2)  Phloem  7965 s ± 

1306 s  
3299 s ± 
1188 s  18/18  15/16  0.004  

Average time of phloem ingestion 
(E2)  Phloem  5317 s ± 

1533 s  
1717 s ± 

702 s  18/18  15/16  0.011  

Total time of phloem phases 
containing E1 and/or E2  Phloem  8824 s ± 

1348 s  
3620 s ± 
1241 s  18/18  15/16  0.002  

Maximum time of a single 
phloem phase with E1 and/or E2  Phloem  

7913 s ± 
1442 s  

3225 s ± 
1172 s  

18/18  15/16  0.002  
Maximum length of a single E2 period  Phloem  7215 s ± 

1371 s  
2884 s ± 
1134 s  18/18  15/16  0.004  

Average time of phloem phase 
containing E1 and/or E2  Phloem  5911 s ± 

1653 s  
1913 s ± 

722 s  18/18  15/16  0.008  

Total number of sustained E2 phases  Phloem  
1.39 ±  
0.16  

0.75 ±  
0.17  17/18  10/16  0.014  

Mean duration of sustained E2  Phloem  
6500 s ± 
1424 s  

2779 s ± 
1141 s  17/18  10/16  0.008  

Median duration of sustained  
E2  Phloem  6425 s ± 

1440 s  
2779 s ± 
1141 s  17/18  10/16  0.011  

Table 3: Statistical results of plant defence gene expression assessed by RT-qPCR showing χ2 and p 
values  

 
Explanatory variable  

 Gene  
Plant  Aphid infestation  Plant x infestation  Experimental Block  

HvTHIO1  Χ2 = 
11.06  

p =  
<0.001*  

Χ2 = 0.57  p = 0.450  Χ2 = 11.67  p = 0.009*  Χ2 = 1.10  p = 0.894  

HvTHIO2  Χ2 = 
13.62  

p =  
<0.001*  

Χ2 = 0.57  p = 0.449  Χ2 = 14.31  p = 0.002*  Χ2 = 0.47  p = 0.976  

HvβTHIO  Χ2 = 
14.29  

p =  
<0.001*  

Χ2 = 1.12  p = 0.290  Χ2 = 16.10  p = 0.001*  Χ2 = 0.15  p = 0.997  

HvLOXA  Χ2 = 4.81  p = 0.028*  Χ2 = 4.48  p = 0.034*  Χ2 = 8.05  p = 0.045*  Χ2 = 3.11  p = 0.539  

HvLOX2  Χ2 = 5.49  p = 0.019*  Χ2 = 2.76  p = 0.096  Χ2 = 8.46  p = 0.037*  Χ2 = 3.97  p = 0.410  

HvJAZ  Χ2 = 2.85  p = 0.131  Χ2 = 0.57  p = 0.450  Χ2 = 3.55  p = 0.315  Χ2 = 9.42  p = 0.055  

HvNPR1  Χ2 = 1.12  p = 0.290  Χ2 = 1.85  p = 0.174  Χ2 = 8.46  p = 0.037*  Χ2 = 3.64  p = 0.457  
HvA1  Χ2 = 5.77  p = 0.016*  Χ2 = 1.46  p = 0.226  Χ2 = 4.57  p = 0.210  Χ2 = 4.58   p = 0.206  

HvERF1  Χ2 = 7.00  p = 0.008*  Χ2 = 4.81  p = 0.028*  Χ2 = 12.26  p = 0.006*  Χ2 = 2.24  p = 0.691  

* Indicates which variables are significantly different  
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Table 4: Dunn’s test post-hoc analysis of RT-qPCR results significant for plant x time-point 
interaction, showing t and p values for each pairwise comparison; C = Concerto, H = Hsp5, 0 = 0 h 
infestation, 24 = 24 h aphid infestation  

 
Pairwise comparison  

Gene C0:C24  C0:H0  C0:H24  C24:H0  C24:H24  H0:H24  

HvTHIO1  t =  
0.69  

P = 
0.244  

t = - 
2.19  

P = 
0.014*  

t = - 
1.82  

P = 
0.034*  

t = - 
2.89  

P = 
0.001*  

t = - 
2.51  

P = 
0.006*  

t =  
0.37  

P = 
0.354  

HvTHIO2  t =  
1.28  

P = 
0.099  

t = - 
1.76  

P = 
0.038*  

t = - 
1.97  

P = 
0.024*  

t = - 
3.05  

P = 
0.001*  

t = - 
3.26  

P = 
<0.001*  

t = - 
0.21  

P = 
0.415  

HvβTHIO  t =  
1.33  

P = 
0.090  

t = - 
2.08  

P = 
0.018*  

t = - 
1.92  

P = 
0.022*  

t = - 
3.42  

P = 
<0.001*  

t =-  
3.26  

P = 
<0.001*  

t =  
0.16  

P = 
0.436  

HvLOXA  t =  
1.12  

P = 
0.132  

t = - 
1.66  

P = 
0.048*  

t =  
0.21  

P = 
0.415  

t = - 
2.77  

P = 
0.002*  

t = - 
0.91  

P = 
0.182  

t =  
1.87  

P = 
0.030*  

HvLOX2  t =  
1.49  

P = 
0.067  

t = - 
1.33  

P = 
0.091  

t = - 
0.48  

P = 
0.315  

t = - 
2.83  

P = 
0.002*  

t = - 
1.97  

P = 
0.024*  

t =  
0.85  

P = 
0.196  

HvNPR1  t =  
2.62  

P = 
0.004*  

t =  
0.91  

P = 
0.182  

t =  
0.21  

P = 
0.415  

t = - 
1.71  

P = 
0.043*  

t = - 
2.41  

P = 
0.008*  

t = - 
0.69  

P = 
0.244  

HvERF1  t =  
2.03  

P = 
0.021*  

t = - 
1.38  

P = 
0.082  

t = - 
0.32  

P = 
0.374  

t = - 
3.42  

P = 
<0.001*  

t = - 
2.35  

P = 
<0.001*  

t =  
1.06  

P = 
0.143  

*Indicates which variables are significantly different  
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Χ 2   ( ) df   
11.98 

  

  

  

  

  

  
Table 5: Analysis of deviance table for the scores on each principal component (% variation explained 
is indicated in brackets) derived from Principal Component Analysis of phloem amino acid composition   

  

 PC1 (34.38%)  PC2 (17.80%)  PC3 (10.89%)  

 Explanatory Variable  Χ2 (df)  p-value  Χ2 (df)  p-value  p-value  
Plant  40.11 (1)  <0.001*  5.40 (1)  0.020*  (1)  <0.001*  

Aphid infestation  0.29 (1)  0.585  0.24 (1)  0.626  2.26 (1)  0.131  
Time-point  5.42 (1)  0.019*  3.05 (1)  0.080  0.08 (1)  0.765  

Plant x time-point  0.05 (1)  0.816  2.17 (1)  0.140  1.97 (1)  0.159  
RNA Harvest ǂ  0.17 (1)  0.671  1.92 (1)  0.166  0.67 (1)  0.413  

 
*Indicates which variables are significantly different ǂ RNA harvest is a binary variable introduced by 
the sub-sampling of 50% of the plant material for RT-qPCR analysis.   
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Table 6: Analysis of deviance table for essential amino acids as a percentage of total amino acids in 
phloem sap of Hsp5 and Concerto leaves   

    
Essential Amino acid (%)  

 Explanatory Variable  Χ2 (df)  p-value    
Plant  23.35 (1)  <0.001*  

Aphid infestation  0.13 (1)  0.716  

Time-point  8.82 (1)  0.002*  

Plant x time-point  0.39 (1)  0.530  

RNA Harvest ǂ  2.01 (1)  0.155  

*Indicates which variables are significantly different ǂ RNA harvest is a binary variable introduced by 
the sub-sampling of 50% of the plant material for RT-qPCR analysis.   
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Figure Legends  

Fig 1. Aphid performance on a susceptible barley cultivar (Concerto) and partially-resistant 

wild relative (HsP5). A) Survival of aphid nymphs over seven days. Number of model 
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observations = 216. B) Nymph mass gain and C) intrinsic rate of population increase (rm) of 

the three aphid species while feeding from the two plant types. Values represent means ± SE. 

Number of model observations = 72.. N = 36 for each aphid-plant combination for survival 

analysis (A), for nymph mass gain (B) n = 12 for the R. padi – Concerto, n = 11 for the S. 

avenae – Concerto, S. avenae – Hsp5 and U. humboldti – Concerto combinations, n = 10 for 

the R. padi – Hsp5 combination, and n = 5 for the U. humboldti – Hsp5 combination. For rm 

(C) n = 12 for the R. padi – Concerto and R. padi – Hsp5 combinations, n = 10 for the S. 

avenae – Concerto, S. avenae – Hsp5 and U. humboldti – Concerto combinations, and n = 4 

for the U. humboldti – Hsp5 combination. Letters indicate which groups are similar to each 

other based on log-rank testing (A) and least squares means analysis with Tukey correction 

(B, C). This figure is available in colour at JXB online.  

Fig. 2: Graphical representative feeding patterns of R. padi feeding on the susceptible 

(Concerto) and partially-resistant (Hsp5) plant types. A and B are graphical models showing 

an overview of aphid feeding behaviour on Concerto (A) and Hsp5 (B). Models show the 

frequency and length of each feeding parameter over a 6h (21600s) period split into the five 

main waveforms observed: non-probing of plant tissue (np), probing into epidermal and 

mesophyll tissue (the pathway phase (C)), saliva secretion into phloem (E1), phloem ingestion 

(E2), and xylem ingestion (G). C and D display representative waveforms collected from 

aphids feeding on Concerto (C) and Hsp5 (D) and are annotated with the corresponding 

waveforms: np, C, pd (cellular punctures during C phase), E1 and E2. Waveform G is not 

displayed in panels C and D.   

Fig 3: EPG parameters indicative of epidermal, mesophyll and mesophyll/phloem resistance 

factors. A) Time (s) from start of EPG recording to first stylet puncture of leaf tissue, n = 18 

and 16 for aphids feeding on Concerto and Hsp5, respectively. B) Duration (s) of first stylet 

probe into plant tissue, n = 18 and 16 for aphids feeding on Concerto and Hsp5, respectively. 

C) Time (s) since start of EPG recording until stylet puncture of a sieve tube element, n = 18 

and 16 for aphids feeding on Concerto and Hsp5, respectively. D) Time (s) from start of EPG 

recording until sustained phloem ingestion n = 17 and 10 for aphids feeding on Concerto and 

Hsp5, respectively. Panels A, B and C display means ± SE, panel D displays the median and 

confidence intervals. Number of model observations = 34. This figure is available in colour at 

JXB online.  

Fig 4: EPG parameters indicative of vascular (phloem and xylem) resistance factors. A) Time  
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(s) from first stylet penetration of a sieve tube element to first sustained phloem ingestion, n = 

17 and 10 for aphids feeding on Concerto and Hsp5, respectively. B) Total time (s) of 

sustained phloem feeding, n = 17 and 10 for aphids feeding on Concerto and Hsp5, 

respectively. C) Ratio of time spent in phloem phase relative to the pathway phase, n = 18 

and 15 for aphids feeding on Concerto and Hsp5, respectively. D) Total time (s) ingesting 

xylem, n = 12 and 13 for aphids feeding on Concerto and Hsp5, respectively. Panels A, B, 

and D display the median value and confidence intervals, panel C displays the mean ±SE.  

Number of model observations = 34. This figure is available in colour at JXB online.  

Fig. 5: A) Median non-glandular trichome densities (No. cm-2) and confidence intervals for 

Concerto and Hsp5. B) Polarised light micrograph showing the contrasting leaf hair densities 

between HsP5 (top) and Concerto (bottom). Number of model observations = 30. This figure 

is available in colour at JXB online.  

Fig 6. Expression patterns of thionin and phytohormone signalling genes 0 h and 24 h after 

aphid infestation. All gene expression values are relative to the mean expression of two 

reference genes, HvUBC and HvCYP, and normalised to uninfested control plants. 

Foldchange, 2-ΔΔCt, is relative to the expression of Concerto at 0 h. Boxplots show median 

and confidence intervals; total number of model observations for each gene = 20; n = 5 for 

each treatment. Letters indicate which groups are significantly different based on Dunn’s 

Test post-hoc analysis. This figure is available in colour at JXB online.  

Fig. 7: Amino acid composition of leaf phloem exudates of Hsp5 and Concerto. A and B) 

phloem amino acid composition in uninfested leaves of Concerto and Hsp5, respectively, at 

time zero. C) Biplot of scores on the first two principal components explaining >50% of the 

detected variation in amino acid composition. D) % proportion of essential and non-essential 

amino acids in phloem exudates of uninfested Concerto and Hsp5 leaves at time zero. N = 10 

for each treatment.  
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Figures   

  

Fig 1. Aphid performance on a susceptible barley cultivar (Concerto) and partially-resistant wild 

relative (HsP5).   
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Fig. 2: Graphical representative feeding patterns of R. padi feeding on the susceptible (Concerto) 

and partially-resistant (Hsp5) plant types.   
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Fig 3: EPG parameters indicative of epidermal, mesophyll and mesophyll/phloem resistance 

factors.   
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Fig 4: EPG parameters indicative of vascular (phloem and xylem) resistance factors.   
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Fig. 5: A) Median non-glandular trichome densities (No. cm-2) and confidence intervals for 

Concerto and Hsp5.   
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Fig 6. Expression patterns of thionin and phytohormone signalling genes 0 h and 24 h after aphid 

infestation.   
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Fig. 7: Amino acid composition of leaf phloem exudates of Hsp5 and Concerto.   

  



Supplementary table 1: primers used in qPCR analysis 

Gene Name Accession no. 

Amplicon 

Length 

(bp) 

Forward primer Reverse Primer 

Primer 

Efficiency 

and R2 

value 

Primer 

Reference 

HvUBC 

Ubiquitin-

conjugating 

enzyme 

AK248472.1 218 tcaattcccgagcagtatcc agattgcctgagtcgcagtt 87%, 0.98 
Hua et al 

2014 

HvCYP 
Cytochrome 

P450 
AK253120.1 237 ctgtcgtgtcgtcggtctaa tgaaagcgacaaacagatgc 102%, 0.95 

Hua et al 

2014 

HvLOXA 
Lipoxygenase 

1 
AY220737.2 61 gccagatccagaccatcatc tcggaggagtgcttcgac 108%; 0.94 

Designed 

for this 

study 

HvLOX2 
Predicted 

Lipoxygenase 
AK357253.1 60 atgtcctatcccacgacacc agtgcgtcctcagccagt 103%; 0.91 

Escudero-

Martinez 

et al 2017 

HvJAZ 

Jasmonate 

ZIM-domain 

protein 3 

MLOC_9995.2 60 atctggagcaatccgttgac aggaaaagtggtcgtggttg 92%; 0.95 

Escudero-

Martinez 

et al 2017 

HvA1 

ABA-inducible 

late 

embryogenesis 

abundant 

protein 

X13498.1 66 atgggaggggacaacacc ggaaattaagcgcgaacg 91%; 0.95 

Designed 

for this 

study 

HvNPR1 

Non-expresser 

of 

pathogenesis-

related genes 

1-Like 

MLOC_64922.1 64 ttgataacatctagaggcaatgct tgcgtgaaactgttcgagag 84%; 0.93 

Designed 

for this 

study 

HvERF1 

Ethylene-

response 

factor 1 

HQ328941.1 62 
ctatataatgattgggtgcatgtt

g 
ggcatatgacccaaggtgtt 87%; 0.98 

Designed 

for this 

study 

HvTHIO1 Thionin 1 AK359149 84 tatggccaaggtcgttttgt 
cataactaagatgatacatttgct

tcg 
118%; 0.94 

Escudero-

Martinez 

et al 2017 

HvTHIO2 Thionin 2 AK357884 
88 

 
gcggttcaaaatgtcctagtg ccaatggtgcagtactgagtg 112%; 0.97 

Escudero-

Martinez 

et al 2017 

HvβTHIO β Purothionin AK252675.1 90 tactgggtttagttctggagcag acgtgtccttgcagcaactt 115%; 0.95 

Escudero-

Martinez 

et al 2017 

 



Supplementary table 2: Additional EPG parameters 

EPG Parameter 
Hypothesised location 

of resistance factor 
Transformation 

Mean Value  

Concerto 

Mean Value 

Hsp5 

Statistical 

Test 

Test 

Statistic 

p 

value 

average non probing (period duration)  Epidermis - 804.11 s 442.26 s K.W 0.87 0.352 

median non probing (period duration) Epidermis - 654.92 s 380.85 s K.W 0.80 0.352 

sum of non probing  Epidermis sqrt 2552.92 s 2095.83 s ANOVA 0.51 0.483 

number of non probing periods Epidermis log[2] 5.22 0.89 GLM  0.40 0.534 

number of brief probes < 3 min before 1st E Epidermis, Mesophyll - 0.11 0.81 K.W 2.17 0.141 

number of probes before 1st pd  Epidermis, Mesophyll - 0.66 0.87 K.W 1.98 0.159 

number of probes before the first G Epidermis, Mesophyll - 1.94 1.87 K.W 0.50 0.480 

number of probes Epidermis, Mesophyll log[2] 5.22 5.62 GLM  0.40 0.534 

sum of probing  Epidermis, Mesophyll - 19057.08 s 19504.17 s K.W 0.43 0.558 

sum of  C  Epidermis, Mesophyll sqrt 7357.38 s 8051.17 s ANOVA 0.30 0.590 

median time to 1st pd in all probes with a pd Epidermis, Mesophyll sqrt 112.47 s 118.31 s ANOVA 0.28 0.605 

number of brief probes (probes < 180 s) Epidermis, Mesophyll - 0.61 1.06 K.W 0.80 0.949 

number of C periods Epidermis, Mesophyll - 11.00 11.12 GLM  0.01 0.950 

median  probe Epidermis, Mesophyll - 5691.88 s 3627.73 s K.W 0.01 0.973 

min. time to 1st pd in 1st probe Epidermis, Mesophyll - 60.47 s 60.53 s K.W 0.00 0.973 

no. pd per min C , only C_phases with pd Mesophyll - 0.54 0.67 GLM  1.85 0.183 

sum of pd Mesophyll sqrt 353.79 416.04 ANOVA 1.54 0.223 

duration of the first pd Mesophyll - 4.27 s 5.33 s K.W 1.46 0.227 

no. pd per min C  Mesophyll - 0.65 0.75 GLM  0.97 0.332 

median duration of pd Mesophyll - 4.05 s 4.72 s K.W 0.93 0.334 

number of F Mesophyll - 0.17 0.06 K.W 0.86 0.354 

time to 1st pd (from start of 1st probe) Mesophyll sqrt 220.34 s 289.85 s ANOVA 0.80 0.378 

mean duration of the first 5 pd Mesophyll - 4.30 s 5.07 s K.W 0.74 0.388 

average F Mesophyll - 492.66 s 825.67 s K.W 0.69 0.405 

median F Mesophyll - 492.66 s 825.67 s K.W 0.69 0.405 

sum of  F Mesophyll - 492.66 s 825.67 s K.W 0.69 0.405 

average duration of pd Mesophyll - 4.34 s 4.97 s K.W 0.68 0.408 

number of pd Mesophyll - 72.61 83.12 K.W 0.58 0.448 

median C Mesophyll log[2] 502.91 s 459.90 s ANOVA 0.25 0.618 

average probe Mesophyll log[2] 6802.31 s 4884.68 s ANOVA 0.25 0.622 

duration of the second pd Mesophyll - 4.45 s 5.29 s K.W 0.22 0.641 

average C; with pd without E1e, F and G  Mesophyll - 742.72 s 763.48 s ANOVA 0.03 0.866 

time to 1st pd in 1st probe with a pd Mesophyll sqrt 205.05 s 160.95 s ANOVA 0.01 0.894 

average time to 1st pd in all probes with a pd Mesophyll sqrt 153.11 s 131.63 s ANOVA 0.01 0.924 

time to 1st E within the 1st probe with E Mesophyll, Phloem log[10] 1018.99 s 1453.15 s ANOVA 1.35 0.253 

number of probes before 1st sE2 Mesophyll, Phloem - 1.72 1.68 K.W 0.59 0.442 

number of probes after 1st sE2 Mesophyll, Phloem - 2.17 1362.00 K.W 0.59 0.442 

time from the 1st E1 to 1st E2 Mesophyll, Phloem - 1538.73 s 2493.86 s K.W 0.39 0.535 

minimum time to 1st E within probes Mesophyll, Phloem - 687.47 s 1043.44 s K.W 0.17 0.678 

average time to 1st E within probes Mesophyll, Phloem - 912.91 s 1581.33 s K.W 0.12 0.729 

number of all E1 periods (sgE1 + frE1) Mesophyll, Phloem log[2] 5.44 4.56 GLM  0.11 0.749 

Total time in E1 before E2 Phloem - 825.60 s 300.07 s K.W 3.37 0.066 

E2 index: %  Phloem - 0.50 0.35 K.W 3.11 0.078 

Total time in E1 Phloem log[10] 1029.75 s 459.12 s ANOVA 3.08 0.089 

sum of fractions of E1  Phloem - 858.83 320.75 K.W 2.86 0.091 

number of E12 phloem periods i.e. with both E1 

and E2 
Phloem sqrt 2.88 1.93 GLM  3.03 0.091 

median E2  Phloem - 4803.10 1601.25 K.W 2.52 0.113 

number of E2 periods Phloem sqrt 2.88 2.00 GLM 2.62 0.115 

median E12 (with both E1 and/or E2) Phloem - 5363.61 s 1751.12 s K.W 2.30 0.129 

number of fractions of E1;: E1followed/preceded 

by E2 
Phloem sqrt 2.88 2.06 GLM 2.26 0.142 

maximum E1 period (either sgE1 or frE1) Phloem - 762.95 s 225.69 s K.W 2.10 0.147 

maximum duration of a fraction of E1  Phloem - 738.92 s 215.04 s K.W 2.00 0.157 

average E1  Phloem - 334.70 s 87.26 s K.W 2.00 0.157 

median E1 (sgE1 and E1fr) Phloem log[10] 290.67 s 69.61 s ANOVA 1.70 0.202 

E1 index:duration E1/ allE as % Phloem - 0.16 0.25 K.W 1.46 0.227 

average fraction of E1   Phloem - 593.51 117.22 K.W 0.69 0.408 

median fraction of E1  Phloem - 550.17 95.72 K.W 0.53 0.469 

median single E1 Phloem sqrt 47.17 s 47.32 s ANOVA 0.44 0.513 

number of single E1 (without E2) periods Phloem sqrt 2.55 2.50 GLM  0.37 0.545 

average single E1 Phloem sqrt 52.66 s 49.33 s ANOVA 0.20 0.658 

number of E2 before the 1st sE2 Phloem - 0.72 0.56 K.W 0.16 0.685 

sum of E2 before 1st sE2 Phloem - 123.11 s 127.56 s K.W 0.09 0.762 

maximum duration of a single E1 period Phloem sqrt 85.07 s 75.23 s ANOVA 0.08 0.774 

sum of sgE1 Phloem - 170.92 s 138.37 s K.W 0.05 0.809 



Abbreviations in the table: np - non-probing of plant tissue, C phase – stylet probing into epidermal and 

mesophyll tissue (the pathway phase), pd – potential drop (stylet puncture into plant cells during C phase), E1 

phase - saliva secretion into phloem, E1e – extracellular saliva secretion, E2 phase - phloem ingestion, sE2 

phase – sustained E2 (period of ingestion >10 mins), E – any phase involving stylet activities in the phloem, 

sgE1 – single E1 phase, frE1 – fraction of E1 phase from E phase containing E1 and E2, G phase -xylem 

ingestion, and F phase – stylet penetration difficulties 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mean duration of E2 periods before the 1st sE2 Phloem - 59.25 s 65.46 s K.W 0.02 0.900 

time to the first G (after first penetration) Mesophyll, Xylem - 10761.03 s 6577.95 s K.W 1.22 0.270 

Average xylem ingestion time Xylem - 2117.75 s 4043.78 s K.W 3.03 0.082 

median G  Xylem - 2117.75 s 3770.59 s K.W 2.24 0.134 



Supplementary Table 3: Statistical results of the significant EPG parameters; in the test statistic 

column χ2 values are italicised and F values are underlined. 

EPG Parameter 
Hypothesised location 

of resistance factor 
Transformation Statistical Test 

Test Statistic 

and Degrees 

of Freedom 

(Residuals) 

P Value 

All parameters (Global analysis) All tissue - 

Permutated 

Multiple 

Analysis of 

Variance 

2.61 1(33) 0.022 

Number of potential drops 

(intracellular punctures) in first 

probe 

Mesophyll Sqrt ANOVA on glm 3.95 1(33) 0.047 

Time to the first phloem phase 

containing E1 and/or E2 
Mesophyll - 

Kruskall-Wallis 

Test (KW) 
5.50 1(33) 0.019 

Time to the first phloem ingestion 

(E2) phase 
Mesophyll - ANOVA 5.32 1(33) 0.028 

Number of probes before first E1 Mesophyll - KW 9.36 1(33) 0.002 

Number of probes before first E2 Mesophyll - KW 4.14 1(33) 0.042 

Total number of xylem phases  Xylem - KW 4.77 1(33) 0.029 

Total time ingesting phloem (E2) Phloem - KW 8.00 1(33) 0.004 

Average time of phloem ingestion 

(E2) 
Phloem - KW 6.52 1(33) 0.011 

Total time of phloem phases 

containing E1 and/or E2 
Phloem - KW 9.22 1(33) 0.002 

Maximum time of a single phloem 

phase with E1 and/or E2 
Phloem - KW 9.01 1(33) 0.002 

Maximum length of a single E2 

period 
Phloem - KW 8.40 1(33) 0.004 

Average time of phloem phase 

containing E1 and/or E2 
Phloem - KW 6.88 1(33) 0.008 

Total number of sustained E2 

phases 
Phloem - KW 6.06 1(33) 0.014 

Mean duration of sustained E2 Phloem - KW 7.12 1(33) 0.008 

Median duration of sustained E2 Phloem - KW 6.40 1(33) 0.011 

 

 



Supplementary table 4: Functional groups identified using FTIR spectral analysis on dichloromethane leaf surface extracts for Hsp5 and Concerto, showing 

presence of band (cm-1) in the spectra and allocated functional group 

 

 

Plant Rep 

Number of 

functional 

groups 

Identified Bands (cm-1) 

and Functional Groups 

HsP5 

1 3 

2959 

CH3 

stretching 

2920/2852 

CH2 

stretching 

1736 C=O 

stretch for 

ester group 

(v. weak) 

    

1473/1462 

CH2 

deformation 

731/719 

CH2 wag 

2 2 

2959 

CH3 

stretching 

2920/2852 

CH2 

stretching 

     

1473/1462 

CH2 

deformation 

731/719 

CH2 wag 

3 2 

2959 

CH3 

stretching 

2920/2852 

CH2 

stretching 

     

1473/1462 

CH2 

deformation 

731/719 

CH2 wag 

4 3 

2959 

CH3 

stretching 

2920/2852 

CH2 

stretching 

1736 C=O 

stretch for 

ester group 

(v. weak) 

    

1473/1462 

CH2 

deformation 

731/719 

CH2 wag 

Concerto 

1 4 

2959 

CH3 

stretching 

2920/2852 

CH2 

stretching 

1736 C=O 

stretch for 

ester group 

  

1578/1540 

RCOO- 

carboxylic 

acid salt 

 

1473/1462 

CH2 

deformation 

731/719 

CH2 wag 

2 5 

2959 

CH3 

stretching 

2920/2852 

CH2 

stretching 

1736 C=O 

stretch for 

ester group 

 

1605/1515 

C=C stretch 

aromatic 

compound 

1581/1390/ 

1263 RCOO- 

carboxylate 

 

1473/1462 

CH2 

deformation 

731/719 

CH2 wag 

3 5 

2959 

CH3 

stretching 

2920/2852 

CH2 

stretching 

1736 C=O 

stretch for 

ester group 

1653/1549  

amide I 

and II 

protein or 

amide 

  

1354 nitro 

containing 

component 

(possibly 

NO3) 

1473/1462 

CH2 

deformation 

731/719 

CH2 wag 

4 3 

2959 

CH3 

stretching 

2920/2852 

CH2 

stretching 

1736 C=O 

stretch for 

ester group 

    

1473/1462 

CH2 

deformation 

731/719 

CH2 wag 



 

 

Supplementary Fig. 1: Comparison of insect fitness with plant trichomes. A) Correlation between leaf non-

glandular trichome density (cm2) and R. padi rm. Line represents model correlation coefficient. Number of 

model observations = 19. B) Correlation between leaf non-glandular trichome density (cm2) and R. padi nymph 

mass gain. Line represents model correlation coefficient. Number of model observations = 20. Plots also 

display test statistic (Z value), p value, correlation (T) and adjusted R2
 value. 

 

 

 

 

 

 

 

 


