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Abstract

In recent years social and news media have increasingly been used to explain patterns in

disease activity and progression. Social media data, principally from the Twitter network,

has been shown to correlate well with official disease case counts. This fact has been

exploited to provide advance warning of outbreak detection, forecasting of disease levels

and the ability to predict the likelihood of individuals developing symptoms. In this paper we

introduce DEFENDER, a software system that integrates data from social and news media

and incorporates algorithms for outbreak detection, situational awareness and forecasting.

As part of this system we have developed a technique for creating a location network for

any country or region based purely on Twitter data. We also present a disease nowcasting

(forecasting the current but still unknown level) approach which leverages counts from mul-

tiple symptoms, which was found to improve the nowcasting accuracy by 37 percent over

a model that used only previous case data. Finally we attempt to forecast future levels of

symptom activity based on observed user movement on Twitter, finding a moderate gain of

5 percent over a time series forecasting model.

Introduction

The recent increases in global travel and the interconnected nature of modern life have led to

an increased focus on the threat of diseases, both established and newly emerging. Public health

officials need timely and accurate information on disease outbreaks in order to put measures in

place to contain them. Traditional disease surveillance techniques such as reporting from clini-

cians take 1-2 weeks to collate and distribute, so finding more timely sources of information is

a current priority.

In recent years social media, especially Twitter data, has been used to positive effect for: dis-

ease nowcasting (predicting the current level of illness from previous clinical data and current

social data) [1–5], outbreak detection [6–9] and predicting the likelihood of individuals becom-

ing ill [10]. News media has also been used to give early warning of increased disease activity

PLOSONE | DOI:10.1371/journal.pone.0155417 May 18, 2016 1 / 19

a11111

OPEN ACCESS

Citation: Thapen N, Simmie D, Hankin C, Gillard J

(2016) DEFENDER: Detecting and Forecasting

Epidemics Using Novel Data-Analytics for Enhanced

Response. PLoS ONE 11(5): e0155417. doi:10.1371/

journal.pone.0155417

Editor: Christopher M. Danforth, University of

Vermont, UNITED STATES

Received: October 8, 2015

Accepted: April 28, 2016

Published: May 18, 2016

Copyright: © 2016 Thapen et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any

medium, provided the original author and source are

credited.

Data Availability Statement: Data were collected in

2014 through the public Twitter API (https://dev.

twitter.com/overview/api). To comply with Twitter

terms of service, data cannot be publicly shared but

must be accessed directly. Interested future

researchers may reproduce the experiments by

following the procedure described in the paper.

Anonymized data may be available upon request

from the corresponding author Nicholas Thapen.

Funding: This research was carried out in

cooperation with the UK Defence Science and

Technology Laboratory. It was funded by the U.S.

Department of Defense’s Defense Threat Reduction

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0155417&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://dev.twitter.com/overview/api
https://dev.twitter.com/overview/api


before official sources have reported [11], as well as for giving an indication of the change in

reproductive number of an outbreak [12].

This paper presents a software system, DEFENDER, which leverages social media to provide

a combined disease outbreak detection and situational awareness capability. Much of the previ-

ous research in these areas focuses on specific conditions, with influenza being the most stud-

ied. Our approach seeks to generalise by focusing on symptoms of disease rather than diseases

themselves. A limited range of symptoms characterises many common diseases, so a shift to

symptoms adds flexibility without a great deal of additional complexity. Specific conditions

can then be tracked by examining combinations of their symptoms. Currently, identifying the

causal explanation for a detected event can be a difficult process. Our situational awareness sys-

tem uses frequency statistics and cosine similarity based measures, outlined in detail in a previ-

ous paper by the authors [13], to produce terms characterising the event and then retrieve

relevant news and representative tweets. Our generalised symptom focus extends to disease

nowcasting. Here we use dynamic regression to fit observed symptom levels in social media to

actual clinical disease count data, using influenza-like illness, gastroenteritis, diarrhoea and

vomiting as case studies. We attempt to forecast future values of social media symptom data

using another dynamic regression model, this time using current count data and expected

movement of symptomatic individuals as the additional regressor.

The novel contributions in this paper are:

• A technique to create a data driven location network derived from social media content.

• A software system with a general symptom focus combining event detection, situational

awareness, disease nowcasting and forecasting.

• A generalised disease nowcasting approach which leverages counts from multiple symptoms.

• Forecasting future symptom count levels using observed people movement from social

media.

RelatedWork

The term syndromic surveillance refers to methods relying on detection of clinical case features

that are discernible before confirmed diagnoses are made. In particular, prior to the laboratory

confirmation of an infectious disease, ill persons may exhibit behavioural patterns, symptoms,

signs, or laboratory findings that can be tracked through a variety of data sources [14].

The development of Google Flu Trends as a method of harnessing Internet-scale data for

syndromic surveillance [15] has led to an increasing focus on the Internet and social media as a

means to obtain early warning of disease outbreaks. In that research a logistic regression was

performed on the web search terms that best matched data from the US Centers For Disease

Control (CDC) Influenza Like Illness (ILI) data. The correlations between the regression fit

and actual CDC ILI figures were high, with mean correlations over 0.9 for all cases. However

the results have since been found to be less promising than reported. According to [16] the

early version of Google Flu Trends was “part flu detector, part winter detector”. Subsequent

studies have addressed many of these issues, both by improved term selection using the Elastic-

Net and LASSO algorithms, and through dynamic recalculation of the models to fit observed

ILI data [17][18][19][20].

Lampos et al. [4, 5] and Culotta [2] use similar methods to the Flu Trends work but apply

them to Twitter data. Both studies use keyword matching to find tweets that contain flu related

terms, and both find high correlations with ground truth clinical data. Other similar studies
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include [21] and [22]. To improve accuracy machine learning classifiers have also been devel-

oped to identify health related tweets, as in [2] and [3].

As well as monitoring the level of disease DEFENDER aims to detect outbreak events.

When looking at event detection using Twitter various approaches have been attempted. These

have included searching for spatial clusters in tweets [23][24], leveraging the social network

structure [25], analysing the patterns of communication activity [26] and identifying signifi-

cant keywords by their spatial signature [27].

Existing disease outbreak detection algorithms have also been applied to Twitter data, for

example in a case study [8] of a non-seasonal disease outbreak of Enterohemorrhagic Escheri-

chia coli (EHEC) in Germany. They searched for tweets from Germany matching the keyword

“EHEC”, and used the daily tweet counts as input to their epidemic detection algorithms.

Using this methodology an alert for the EHEC outbreak was triggered before standard alerting

procedures would have detected it. Our study uses a modified and generalised version of this

event detection approach.

When working with social media data it is difficult to apply standard epidemiological mod-

els to predict the spread and impact of disease. since parameters such as the exact type of dis-

ease and its characteristics are absent. One study [10] used the geo-located nature of tweets

about illness and the fact that the social network is known to help determine the impact. They

found that Twitter users who were friends of those exhibiting illness and those who had

tweeted at the same time and place were more likely to subsequently become ill than randomly

selected users.

In a further paper [28] the authors built on this work to develop a model allowing them to

predict the future level of influenza in US cities by modelling travel patterns of Twitter users,

determining that the most important factor in predicting the prevalence of flu in a given city

was the number of symptomatic individuals that had flown into the city over the previous

seven days.

Several software systems which detect events from Twitter and provide visualisation and sit-

uational awareness capabilities have been created in recent years. TwitInfo [29] identifies

events by finding spikes in the number of tweets mentioning keywords and provides timelines

and maps for visualisation. LeadLine [30] provides simliar visualisation capabilities while

incorporating topic modelling and named entity recognition. Systems focused on disease

include [31], [32] and [33].

Data

Data for our work was obtained from Twitter’s live streaming API using a geographical bound-

ing box containing England and Wales. News data was collected from 14 national and regional

news sources, using a daily RSS download. For evaluation purposes we used clinical data from

Public Health England in the form of the GP In Hours Weekly Bulletin [34]. The data collec-

tion period was from February to August 2014. A total of 84,438,013 tweets and 12,130 news

articles were collected during this period. Retrieving tweets in this manner only returns those

which contain exact geo-location information, which form around 1.6% of the total number of

tweets [35].

Symptom Focus

The system was developed with a focus on symptoms of illness. This approach was adopted

since a limited range of symptoms characterise many common diseases, and the identification

of disease from the symptoms presenting is itself a complex issue.
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The Freebase online database [36] was used to capture a representative set of symptoms.

The exact process is described in [13]. The end product was a list of 46 symptoms, each repre-

sented by groups of keywords. The number of tweets matching symptom keywords was tracked

on a daily basis for each geographical area being monitored.

Noise Removal

The primary problem with using unstructured social media data is that it is very noisy. Tweet

content matching a keyword may not relate to illness at all, but be an unrelated use of the word

or general discussion of illness rather than reporting (see Table 1 for example tweets).

In order to overcome the noise issue we developed two classifiers to identify health-related

content. The first is a semi-supervised Support Vector Machine (SVM) implementation that

classifies tweets as being health related or not. The second is a Naive Bayes classifier that per-

forms the same task for news articles.

The approach that has been used for tweet classification is an adapted version of the model

used by Sadilek et al. [28]. This classifier model uses a cascading approach where an initial set

of manually labelled tweets is expanded twice to form more training data for subsequent super-

vised classifier to use. The LibShortText [37] SVM library was used to perform documentation

classification.

The training set of manually labelled tweets, 4600 in total, was sampled from the tweet

datastore that consisted of over 30 million tweets at the time of collection. We performed a

structured sample, limiting the number of each symptom group sampled from the population

set. This allowed important but infrequent terms like tonsillitis or chest pain to have more

instances in the sample set and boosted classification accuracy. The final classifier achieved a

classification accuracy of 96.1% on a held out test set of 920 manually classified tweets.

We also developed a classifier to determine which news articles were health related. This uti-

lises a more traditional supervised approach where training data is created by segmenting arti-

cles definitely from health only sources and those from news sources that are not exclusively

health feeds. This training data was then fed into a standard Naive Bayes text classification

algorithm using unigrams as features. This classifier was found to have an accuracy of 84% on

a a test set of manually classified articles.

Limitations

Our approach relies on extracting a useful signal from the Twitter data. Twitter is used by a

small percentage of the population—Figures from a recent US study [38] indicate that 20% of

adults use Twitter, and only some of these will post symptom information. As we only examine

tweets with geo-location information, which make up around 1.6% of the total, this further lim-

its the pool of users being sampled. This means that the signal being derived from Twitter rests

Table 1. Key-termmatching tweet examples.

“yet again an instance of fear over haemorrhaging of labour votes. ukip ukip.”

“my 2014 has so far been sponsored by the common cold #spons”

“sore head, sore eyes, sore legs and a runny nose. looking gooooood!”

“lets not make rash statements!”

“this game boils my blood !!!! #flappybirdsshoulddie”

“i hate hay fever -_-”

These tweets were sampled from the health classifier test set.

doi:10.1371/journal.pone.0155417.t001
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on a sample from only a small fraction of the population. If that sample were random then this

would not be an issue. However the US study indicates that Twitter users tend to be younger

than the general population, and those who geo-locate their tweets may also be unrepresenta-

tive. Although these are genuine concerns, they also apply to many other currently used meth-

ods of syndromic surveillance. People who do not visit doctors or respond to surveys can be

invisible to traditional methods, and Google Flu Trends only observes those who search for

specific terms. A diversity of methods is required to capture all segments of the population. As

long as the demographic bias of the Twitter data is understood from studies such as the Pew

report cited above, information derived from it can be useful in a clinical context.

Our focus on symptoms rather than diseases makes it more difficult to extrapolate results

into concrete predictions. Each symptom might be an indication of several different diseases,

and it is knowledge of the specific disease that allows many epidemiological models to be

employed. It would ideally be preferable to pinpoint specific diseases, but the issue is that these

are mentioned far less frequently in Twitter discourse than symptoms. We will be investigating

extrapolation of specific diseases from symptoms in further work.

Methodology

Location

In a previous paper [13] we developed a methodology for identifying areas of high tweet activ-

ity within a country or region. This was done by clustering the geo-located tweets using the

DBSCAN algorithm. When applied to the UK the resulting areas were found to correlate with

the major towns and cities.

We extend this work by considering each area identified as a node within a complete undi-

rected graph network. This allows us to disregard the spatial size and location of the areas,

forming relationships between nodes based on properties of the tweets contained within them.

The important step in construction of this network is the calculation of the weights for each

edge. Since the movement of people is strongly indicative of disease transmission we use move-

ment information derived from all of the tweets. Where a user has tweeted from more than one

location in a given day this is taken as evidence that they have moved between the locations

during that day and tweeted from each one. We ran queries over our data for the period of the

study to find all such instances of tweeting from multiple locations on a calendar day. Each

movement instance was used to increment the weighting of the edges between all nodes the

user tweeted from on that day. The network generated for England and Wales with edge

weights derived from this process is illustrated in Fig 1 (Only the most significant edges are

shown for clarity.)

In order to further analyse the movement data collected we took the data for the month of

April 2014 as a sample. In this period 470,712 distinct users tweeted from only one place dur-

ing the month, while 56,807 tweeted from 2 nodes in at least one day and 10,236 tweeted from

more than 2 locations. The number of users tweeting from each number of locations is shown

in Fig 2, using a log scale. 12.5% of the users in this sample therefore exhibited some move-

ment. To examine whether those who exhibited movement differed systematically from those

who did not we retrieved user profile information for all of the users concerned. This included

the number of followers, tweets sent and friends (accounts they follow) for each user. The

median values for these are shown in Table 2. The median was employed because the distribu-

tion of values in each category was found to be long-tailed, so mean values were not very

informative.

The characteristics of the users who tweeted from multiple locations are clearly different

from those who were more static, with increasing numbers of followers, friends and tweets sent
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for each increase in movement activity. This would indicate that they are more active users of

Twitter. To further analyse the demographics of these users we took random samples of 100

users each from those who had tweeted from 1, 2, 3-5 and over 6 locations. Each of these users

was manually assessed by examining their profile pictures and Twitter biographies. They were

assessed as to the type of account (personal, company or bot), gender, age and main interests.

Fig 1. The DEFENDER Location Network for England andWales.Nodes are coloured according to their
calculated PageRank within the network. Their size corresponds to the relative average number of tweets
sent from within those nodes per day. The thickness of lines between nodes corresponds to the edge
weighting assigned to them. The numbers relate to the internal numbering system used for DEFENDER; The
‘London’ node is number 2 in our schema, while the ‘Birmingham’ node is 6.

doi:10.1371/journal.pone.0155417.g001
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Fig 2. Movement characteristics of Twitter users. The number of users in our data who have moved between each number of nodes in a day.

doi:10.1371/journal.pone.0155417.g002

Table 2. Characteristics of Twitter users by movement behaviour.

Nodes Visited Number of users Median followers Median friends Median tweets

1 470712 180 276 1352

2 56807 283 343 3518

3 7952 354 389 5448.5

4 1668 447 437.5 7356

5 414 519 499 9620

6 129 513.5 524.5 10504.5

7 32 905.5 718 14607.5

8 11 832.5 952 33571

9 8 774 48.5 16874

10 3 493 1325 36842

11 6 551.5 780.5 14446.5

12 5 610 236 36842

13 1 1068 1979 36842

14 1 368 236 337263

17 1 1109 38 16792

18 1 1109 38 16792

19 2 1088.5 1008.5 26817

20 1 1109 38 16792

22 1 1109 38 16792

doi:10.1371/journal.pone.0155417.t002

DEFENDER

PLOSONE | DOI:10.1371/journal.pone.0155417 May 18, 2016 7 / 19



With samples of 100, sampling theory states that there is a 10% margin for error in each cate-

gory due to sampling error, at a 95% confidence interval. The results are shown in Table 3.

Most accounts examined were personal rather than belonging to companies. A small num-

ber of accounts were found to be bots which spoofed the geo-location information in their

tweets, so did not contain true movement information. These included accounts which tweeted

local weather information, jobs and local events. These were only evident in the samples of

accounts tweeting from more than 3 locations in one day. The personal accounts were split

roughly evenly between males and females, within the margin of error except for accounts with

very frequent movement. Far more accounts were from young people (under 35) than from

middle aged or older users. The only notable trend seen in the assessment of interests was that

those who had travelled to more locations were more likely to be interested in football. 5/84 of

the personal accounts which had not travelled were devoted to football, rising to 14/78 in those

tweeting from more than 5 locations in a day. This could be an indication of the additional

travel undertaken by football supporters.

All of these results indicate that those who our methodology picks up as travelling do differ

in demographics from the general population, and are more active on Twitter than most Twit-

ter users. Further research would help to further refine the demographic nature of these users

as compared to the general population.

There are multiple advantages to our data-driven generalised location system. Firstly as

mentioned in [13] it is transferable to any new area within which there is sufficient tweet den-

sity to create clusters. Secondly locations which are not spatial neighbours but exhibit high

population movement, for example London and Birmingham, can be considered to be “closer”

than they are by distance alone. This is advantageous considering that human contact is the

most important factor in spreading infectious disease [39] and thus likelihood of movement

between two areas increases contact exposure chance. Finally it allows for the leveraging of

existing graph based algorithms and techniques devised for analysing the structural properties

of graphs such PageRank [40] and betweenness centrality.

The main disadvantage of this generalised approach to location assignment is that health

statistics are generally collected using a region’s own hierarchical administrative system (for

Table 3. Results of sampling Twitter users with differingmovement characteristics.

Types of user Number of nodes visited

1 2 3 to 5 over 5 Total

BOT 2 9 11

COMPANY 11 4 1 1 17

DELETED 5 9 7 12 33

PERSONAL 84 87 90 78 339

FEMALE 35 49 46 26 156

MIDDLE_AGED 2 3 3 4 12

UNKNOWN 1 3 1 1 6

YOUNG 32 43 42 21 138

MALE 47 37 39 50 173

MIDDLE_AGED 8 11 5 12 36

UNKNOWN 2 3 1 2 8

YOUNG 37 23 33 36 129

UNKNOWN 2 1 5 2 10

Total 100 100 100 100 400

doi:10.1371/journal.pone.0155417.t003
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example at local authority level in the UK). Evaluation of the predictions of our models against

ground truth health data thus requires mapping tweet locations back to this level, which

requires some effort as shown in the results section.

Architecture

The DEFENDER system is a working prototype consisting of a data processing pipeline back-

end, and a situational awareness tool using a web interface as the frontend. The DEFENDER

data processing pipeline deals with data at three different temporal resolutions: live, daily and

on-demand. Live is data that is collected and processed within seconds of its conception. Daily

data processing tasks are scheduled to execute once a day. On-demand data is produced in

response to a request from a system user. The system architecture is delineated in Fig 3.

Tweets are the primary data sources and are ingested into the system as they are posted to

Twitter. The tweets are classified to ensure they are health related. Additional pre-processing

then occurs where tweets are assigned to nodes in the network; named entities and symptom

keyword matches are also extracted at this point. The graph populator service runs daily

against the dataset of classified processed tweets. It extracts the symptom time series counts

and creates a graph where the nodes (locations) have daily symptom count properties and the

edges are the observed people movement between node pairs.

The graph database is used as an input by the forecasting service. The observed people

movement between nodes and the amount of people exhibiting symptoms within an area pro-

vide enough information to estimate the number of symptomatic people moving into an area

Fig 3. Architecture of DEFENDER. the left area shows inputs to the system: tweets, news articles and clinical data. The middle section
details the internal services and data stores and the area on the right-hand side highlights the outputs which are available to be viewed or
queried against. The different colours denote the data processing category.

doi:10.1371/journal.pone.0155417.g003
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from its neighbours. The node/symptom tweet counts are used as input for both outbreak

detection and the clinical disease nowcasting application. The Terms, News and Tweets (TNT)

event summarisation service (see [13]) uses the alarms generated by the outbreak detection

algorithm and fetches the source tweets from the processed tweet store with the aim of reveal-

ing any potential cause of the symptom event. The news data, which is ingested daily into the

system, is also used as input to the event summarisation service. News data is retrieved from a

store of news articles using search terms derived from the source tweets. The linked events

(tweets and news) are stored in an event database which can be viewed via a front-end or que-

ried directly. The disease nowcasting application attempts to forecast current actual levels of ill-

ness from lagged (one week) clinical source data. It uses GP case data and current tweet count

data as inputs to its models.

Services

Early Warning Detection. Early warning of disease outbreaks permits health officials to

develop timely intervention strategies and can prevent large scale crises. The DEFENDER sys-

tem uses an Early Warning Detection (EWD) methodology which was described in a previous

work by the authors [13]. This uses the EARS syndromic surveillance algorithm to trigger

alarms based on spikes in symptomatic tweet activity. By applying customised filtering criteria,

including removing those alarms with a low deviation from the time series median, we are able

to produce robust high confidence alarms, as evaluated in [13].

Situational Awareness. The situational awareness module provides the frontend of the

DEFENDER application. It allows viewing the list of detected events, and gives additional con-

text to each reported health outbreak alarm. This could be used by a public health official to

determine the cause, location and importance of the alarm. We use the tweets associated with

an alarm (those that match the alarm keyword and originate from the same location and time)

in order to generate the situational awareness report. We use the TNT algorithm, developed for

this system and described in [13], to extract terms which are specific to the event rather than

the baseline of symptomatic tweets from the area. These terms potentially describe the event

and can be used to retrieve relevant news articles and rank the tweets which best summarise

the event. Additionally we also extract hashtags used by more than one user, frequent terms

and geo-coordinates from the alarm tweet set. This event metadata is stored as part of the

event along with the tweets from which they were extracted. When relevant news is found the

article metadata and text is also stored as part of the linked health event. A system user can

then query the event database for symptomatic events or use a front-end to provide a visual

summary of a specific event. We have developed a front-end using open source web technolo-

gies as an example visualisation platform. An illustrative example of a detected event is pre-

sented in Fig 4.

Nowcasting. The nowcasting module aims to predict current case count data from two

time series. The first is historical case data available until the previous time point, the second

is tweet count data available up to and including the current time point. GP case data was

retrieved for four different syndromes: Influenza-like Illness (ILI), Gastroenteritis, Diarrhoea

and Vomiting at the UK local authority level from Public Health England [34]. The assumption

is that adding the current tweet count data series will aid in predicting the current case count

data.

The forecasting technique employed by this algorithm is dynamic regression, specifically

regression with ARIMA (Autoregressive Integrated Moving Average) errors. This combines

the time series focused dynamics of ARIMA models with the potential for additional regressors

to explain a certain amount of variance in the data.
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There are two modes of operation for the nowcasting module: 1) model training (including

feature selection) and 2) symptom nowcasting using trained models. The model training algo-

rithm uses a form of best-subset selection for choosing regression terms. A candidate set of

symptom features (terms) is provided as input for the case data in question. For example flu

cases may use: sore throat, fever, cough, flu, headache or other appropriate terms. From these

terms all possible combinations of these terms (up to 4 terms at once) are used. The best per-

forming keyword combinations, measured by lowest Mean Absolute Error (MAE) on a cross-

validation window of 4 time periods (28 days training 7 days test) are persisted as the best

model for that symptom/node combination. LASSO was also considered for term selection, but

was found to be inferior to best-subset selection in this case. This might be because LASSO is

most effective where the number of variables is much greater than the number of training

examples, which is not the case for our data.

An interesting note is that originally the tracker used the Akaike Information Criterion

(AIC) to determine the best forecast fit to the trained data and select forecast models based on

this. However this was found to overfit the data and have weak predictive power for unseen

data. Choosing the best fits from the MAE of 4-fold cross-validation on training data improved

the accuracy on unseen data considerably. The use of such absolute error metrics has been

encouraged over that of squared metrics in order to enhance interpretability, and we compare

our models to naive ones in order to give a scaled error [41][42].

Fig 4. DEFENDER Situational Awareness screen showing asthma event in London from April 2014.
Moving counter-clockwise from the top left the screen shows: 1. Event Details: Basic information about the
timing and severity of the event. 2. Time Series: A graph showing the symptom counts for the previous 30
days with the alarm period highlighted in red. 3. Related News:Most relevant news articles selected by TNT
algorithm. 4. Summary Tweets:Most relevant tweets selected by TNT. 5. Word Cloud: Visual
representation of words used most frequently in the tweets. 6. Hashtags: Tags used by multiple users within
the event. 7. Tweets:Map showing locations of individual tweets. The map shown here is for illustrative
purposes only due to copyright. Contains OS data, Crown copyright [and database right] (2016).

doi:10.1371/journal.pone.0155417.g004
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This is a lengthy process as it involves fitting models for all possible combinations of choos-

ing 1,2,3 or 4 terms from all candidate terms. For example, for ILI cases in the evaluation 14 flu

terms are used; the total number of model fits is then: 14 C1 +
14
C2 +

14
C3 +

14
C4 = 1470. This

however need only be done periodically. Once the best model for a GP case/location pair has

been ascertained that feature set can be used to track new data in near real-time.

The nowcasting evaluation section details the results of an experiment to determine the

effectiveness of this approach and compares the chosen model regression with ARIMA errors

(case series and tweet count series) to alternatives models including: regular ARIMA time series

forecasting, a random walk forward and a naive forecast that projects forward the mean of the

existing series.

Forecasting. The forecasting system aims to predict the future level of tweet symptom

activity across the node network. Since the system is symptom based it was not possible to

employ standard disease modelling techniques such as SIR modelling, since the details of the

disease such as the transmission and recovery rates are unknown. The information available to

the system is a time series of the tweet count activity for each node and symptom, and also the

information about the movement of people between nodes.

The assumption that was therefore made when trying to forecast future tweet counts was

that knowing the future influx of symptomatic people from neighbouring regions to an area

would lead to a more accurate prediction of future tweet count values. In order to estimate the

influx of symptomatic people from node A to node B the following simple equation was used:

Influx ¼
Symptomatic individuals in Node A

Total number of individuals in Node A
� Number travelling from A to B ð1Þ

In order to use this value as a regressor in a predictive model an iterative approach was used.

Assume that the system is making a forecast of tweet counts, starting at day t0. We have

information on the tweet counts and influx of symptomatic people from the previous days.

The model is therefore trained to use the current day’s tweet count figure and the previous

day’s influx figure. A prediction is then made for t1, allowing the influx figure for t1 to be calcu-

lated. This influx figure is then used in the prediction for t2 and so on.

Several forecasting methods were trialled before an ARIMA model was settled on. A Holtz-

Winters exponential moving average model was ineffective due to the lack of strong seasonality

in the tweet data. Potentially this model could be applicable if several years of data were avail-

able, since many illnesses, in particular influenza, exhibit an annual pattern. A machine learn-

ing forecasting approach available in theWeka toolkit [43] was also trialled, but it was unable

to deal with the strongly zero-weighted time series found for many node/symptom combina-

tions, tending to predict astronomically high values if any cases appeared in the forecasting

period.

The best performing models were found to be two commonly used forecasting algorithms.

The first is an ARIMA model that uses the historical tweet counts alone to predict future val-

ues. This is used as a baseline comparator to determine whether the addition of movement data

improves forecasting accuracy. The second adds an additional regressor in the form of future

incoming symptomatic people to a node. It is hypothesised that this extra signal should confer

more information than knowing the current symptom tweet activity does alone.

Results

The DEFENDER system evaluation has been carried out by evaluating the core components:

early warning detection, situational awareness, disease nowcasting and forecasting. The first

two of these have been primarily evaluated in our earlier work [13]. The disease nowcasting
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and future symptom count forecasting algorithms are evaluated in the subsequent sections;

both are evaluated by comparison to similar models. Additionally we carried out an initial anal-

ysis of our graph location network based on Twitter data.

Location Network Analysis

When studying disease outbreaks it is important to identify movement patterns, since these can

influence disease spread as well as the public health reaction. In order to examine the importance

of each node in the network with respect to movement we calculated its edge-weighted PageRank

[40]. PageRank is an algorithm developed for ranking web pages. An intuitive description of

PageRank is that it models a random surfer clicking links on the web, with the PageRank assigned

to a page being the probability of the surfer encountering it. In our model PageRank treats the

movement of people within the UK as a random walk in order to determine how frequently nodes

will be visited. We then ranked the nodes by PageRank and by the number of tweets assigned to

them in a one month period. The top 5 nodes by each metric are shown in Tables 4 and 5 (note

that these nodes do not correspond exactly to the urban areas for which they are named).

Examination of both lists reveals that some nodes are more central to the network than

their population would imply. For example Bristol is ranked 8th by population, but moves up

to 5th place by PageRank, ahead of Cardiff and Newcastle. This may be due to its location

within the UK’s transport network, in which it acts as a broker between the South West, Wales

and the rest of the country. In general it can be seen that central towns and those along the

‘spine’ of the UK running from Birmingham up to Manchester score more highly on PageRank,

while peripheral towns score less highly. This information could be incorporated into the early

warning system by upgrading the importance of alerts in those areas with a high PageRank,

since individuals, and therefore diseases, are more likely to travel to and from these areas.

Nowcasting Evaluation

The disease nowcasting evaluation covered a 132 day period from February 11th to the 22nd of

June 2014. GP case data was retrieved for four different cases: Influenza-like Illness (ILI), Gastroen-

teritis, Diarrhoea and Vomiting at the UK local authority level from Public Health England [34].

Table 4. Top 5 nodes sorted by Tweet Count.

Node ID Tweet Count

London 2 2,625,273

Manchester 5 1,422,641

Birmingham 6 1,056,275

Leeds 3 810,153

Newcastle 13 336,429

doi:10.1371/journal.pone.0155417.t004

Table 5. Top 5 nodes sorted by PageRank.

Node ID PageRank

London 2 0.16370

Birmingham 6 0.10796

Manchester 5 0.08667

Leeds 3 0.07985

Bristol 28 0.03549

doi:10.1371/journal.pone.0155417.t005
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A data mapping was performed from tweet counts in our node network to the local author-

ity level. The local authority boundary areas were retrieved from the Ordnance Survey [44].

These were converted from a shapefile format to GeoJSON. All of the symptom cases for the

period were then assigned from the local authority level to the nodes in the location system.

The local authority data was provided at a weekly frequency, therefore to give daily counts so

that they could be on the same scale as the tweet data, linear interpolation was used producing

7 day values from one weekly figure.

Seven different forecasting models were implemented for evaluation:

• ARIMA: autoregressive time series forecasting uses the historical case data only to predict

future values.

• ARIMA with regression: uses the historical case data and tweet count information to predict

future values.

• ARIMA with regression of simple moving average: uses historical case data and a simple

moving average (one week smoothed value) of the tweet count.

• ARIMA with regression and weekly lagged difference between time series and regressor: per-

formed due to the success of Lazer’s model [16], this model uses historical case data, current

tweet count data and a lagged (one week ago) difference between the two values.

• Naive Control Models:

• Mean: simple forecast projecting forward the mean of the series.

• RWF: random walk forward: the last value in the observation series is used for all fore-

casted values.

• RWF with drift: same as previous except a directional drift is included.

A cross-validation testing procedure was employed rather than a single train/test period, in

case the position in the series affected the results. Four folds were used, each consisting of 33

days of observations (26 days training data, 7 days test). The evaluation metric used was the

Mean Absolute Error, which quantifies the difference between the fitted and actual figures. This

was recorded for each node/case pair. Some example model outputs are shown in Fig 5. The

overall results, presented in Table 6, show that the model with combined time series forecasting

and tweet count regression (ARIMA Reg.) was the best performer. This is in-line with the

assumption that had been made that adding tweet count data would aid in forecasting the GP

case data effectively. The regression with ARIMA errors model performed almost 40% better on

average than the other models. Interestingly a similar model which performed well in [16] was

beaten by the time series forecast. There are many possible choices for choosing a lagged predic-

tor so it is left as future work to examine if any of these could improve upon these results.

The mean of all node/case MAEs is a mean figure hence it is vulnerable to outliers distorting

the results. An alternative approach to confirm the success of this model is to see the fraction

of node/case pairs where the models have had the lowest (i.e. best) MAE. From Table 7 it is

clear that this model is the best performer with a significantly higher fraction than all other

models for all cases. These aggregate level results are from all node/case pairs.

Forecasting Evaluation

Evaluation of the forecasting module covered the period from February 11th to June 3rd. The

system was evaluated by repeatedly performing forecasts and then checking the predictions

against the actual observed tweet counts. This cross-validation approach was very similar to
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that used in the evaluation of the disease nowcasting module. Four folds were used, each con-

sisting of 28 days of training data and 7 days for testing. The folds started every 28 days com-

mencing on February 11th, so the testing week for the previous fold was allowed to overlap

with the training period for the next fold.

Fig 5. Example model outputs for 5 nodes with highest population. Each figure shows the GP case
figures, with the model output after a 60 day training period indicated by the vertical line. The model shown is
the ARIMA regression.

doi:10.1371/journal.pone.0155417.g005

Table 6. Mean of all MAE errors for each node/case pair.

Model Mean MAE Percent Diff. (Min)

ARIMA 13.05 37.21

ARIMA Reg. 8.20 0.00

ARIMA SMA Reg. 17.24 52.45

ARIMA Lag. Reg. 15.06 45.59

Mean 31.50 73.98

RWF 19.06 56.99

RWF Drift. 22.02 62.78

The percentage difference from the minimum observed value is also presented (4-fold cross-validation).

doi:10.1371/journal.pone.0155417.t006
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Five of the most common symptom groups were selected for testing: Sore Throat, Tonsilli-

tis, Common Cold, Flu, Cough. In each fold, all of the above symptoms were forecast for every

node, using an ARIMA autoregressive model as a baseline, and an ARIMAmodel including

incoming tweet count data as the favoured model.

In order to obtain an accuracy measure the Mean Absolute Error was again used. For this

evaluation the difference between the final forecast figure (at t7) and the actual figure was calcu-

lated at every node and an average was taken. These errors were then again averaged over all

folds in order to ensure that the results were not skewed by especially favourable or unfavour-

able time periods.

The results are shown in Table 8, with the influx data giving a 5.8% improvement in fore-

casting accuracy.

Conclusion

We have created an integrated software system for monitoring disease outbreaks and generat-

ing explanations of detected events. The system provides tools for predicting the current levels

of clinical case counts and for forecasting future levels of symptomatic social media activity.

The DEFENDER architecture can be easily extended to handle new symptoms and geo-

graphical regions. Adding new symptoms requires only the addition of relevant keywords.

Extension to a new region requires the capture of geo-tagged tweets from the area, re-running

the location clustering to generate a node network for the area and the addition of local news

sources. Another main advantage is that the system can pick up signals from diseases that have

not been selected in advance, due to the focus on symptoms. As long as the new disease shares

symptoms with those already being tracked it will be picked up. The integrated situational

awareness module allows the system to leverage the expressive power of social content com-

bined with news media in order to provide causal explanations for detected outbreak events.

These design choices do however mean that diagnostic expertise is required to interpret symp-

tom activity detected by the system. The use of the data driven location network also means

Table 7. Fraction of node/case pairs where model hasminimumMAE (4-fold cross-validation).

GP Cases Arima Arima Reg. Arima SMA Reg. Arima Lag. Reg. Mean Rwf Rwf Drift.

ILI 0.05 0.57 0.14 0.10 0.05 0.10 0.00

Vomit 0.23 0.59 0.00 0.05 0.00 0.09 0.05

Diarrhoea 0.13 0.48 0.00 0.13 0.04 0.22 0.00

Gastroenteritis 0.00 0.57 0.09 0.04 0.04 0.22 0.04

Average (Mean) 0.10 0.55 0.06 0.08 0.03 0.16 0.02

doi:10.1371/journal.pone.0155417.t007

Table 8. Mean of all MAE errors for each symptom, showing both forecastingmethods. (4-fold cross-
validation.)

Symptom ARIMA ARIMA with influx data

Sore Throat 1.37 1.43

Tonsillitis 1.44 1.41

Common Cold 1.15 1.00

Flu 1.44 1.26

Cough 1.76 1.63

Average 1.43 1.35

doi:10.1371/journal.pone.0155417.t008

DEFENDER

PLOSONE | DOI:10.1371/journal.pone.0155417 May 18, 2016 16 / 19



that comparisons with clinical data from administrative regions requires data mapping and

transformation.

The main contributions of this paper are fourfold. Firstly we have developed a novel tech-

nique to create a data driven location network from geo-tagged social media content. Secondly

we have developed a generalised disease nowcasting approach which uses counts from multiple

symptoms to predict current disease activity. Thirdly we attempt to forecast future symptom

count levels by employing observed people movement from social media. Finally we have built

these techniques, along with those developed in an earlier paper by the authors, into a proto-

type of an integrated software system to aid public health officials working in syndromic

surveillance.

We have evaluated each of the components of our system. In our earlier work [13] we tested

the event detection and situational awareness algorithms. For event detection we examined 33

candidate alarms detected by the system. We manually assessed these alarms to identify their

causes and where possible found external verification from clinical or news data that events

had occurred. We compared these with those alarms tagged as genuine events by the system,

producing an F1 score of 0.9362. The situational awareness component was evaluated by deter-

mining the accuracy of the news linkage and tweet ranking algorithms. The news linkage,

weighted towards precision, achieved an F0.5 score of 0.79 on our example set of candidate

alarms and produced no false positives at the optimum parameter level. The top ranked tweets

fully matched our human-coded event summaries in 21 out of 26 cases that we examined.

Evaluation performed in this paper found that the social media data was able to improve the

nowcasting of diseases by 37 percent over a model that used only previous case data. The fore-

casting of future symptom counts provided only a moderate gain of 5.8 percent over a model

using only previous count data. An initial analysis of our location network using the PageRank

algorithm revealed that nodes closer to the main ‘trunk’ of the UK running from London to

Manchester gained in importance compared to their population, while seaside towns were less

highly ranked due to their peripheral position in the network.

In future work we aim to develop a diagnostic model linking symptoms to specific diseases,

incorporate additional signals into our situational awareness and event detection modules and

expand the system to different regions of the world.
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