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ABSTRACT State estimation plays a critical role in monitoring and managing operation of smart grid.

Nonetheless, recent research efforts demonstrate that data integrity attacks are able to bypass the bad data

detectionmechanism andmake the system operator obtain themisleading states of system, leading tomassive

economic losses. Particularly, data integrity attacks have become critical threats to the power grid. In this

paper, we propose a deep-Q-network detection (DQND) scheme to defend against data integrity attacks

in alternating current (AC) power systems. DQND is a deep reinforcement learning scheme, which avoids

the problem of curse of dimension that conventional reinforcement learning schemes have. Our strategy in

DQND applies a main network and a target network to learn the optimal defending strategy. To improve

the learning efficiency, we propose the quantification of observation space and utilize the concept of slide

window as well. The experimental evaluation results show that the DQND outperforms the existing deep

reinforcement learning-based detection scheme in terms of detection accuracy and rapidity in the IEEE 9,

14, and 30 bus systems.

INDEX TERMS Cyber-physical systems, smart grid, data integrity attacks, deep reinforcement learning,

Q-learning.

I. INTRODUCTION

As a typical energy Cyber-physical Systems (CPS), the smart

grid is designed to effectively monitor and control the two-

way power and information flow between consumers and the

grid by integrating advanced sensing, control and measure-

ment technologies [1]–[5], [48], [54]. Nonetheless, the smart

grid is more vulnerable to threats from the cyber space than

traditional power systems because of the diversified and open

network environment [6]–[9]. For example, Ukrainian power

grid was attacked by Blackenergy and Kill Disk in 2015,

causing several substations to be powered down for up to

3 hours [48]. Moreover, the Stuxnet attacked SIMATIC sys-

tem in 2010, invaded the industrial control system and forged

the centrifuge operating data, causing damage to nearly

1,000 centrifuges in the Iran’s nuclear power system [9].

The associate editor coordinating the review of this manuscript and
approving it for publication was Zhen Ling.

During the recent past, cyber attacks in the smart grid

have drawn great attentions [12], [14]. Among them, data

integrity attacks [15]–[19] are extremely dangerous to the

power system due to the difficulty in analyzing the attack

behavior, the difficulty in detecting the abnormal information,

and the difficulty in recovering the system state. Depend-

ing on the target of the adversary, data integrity attacks

fall into the following categories: attacks against state infor-

mation (i.e., measurements) [16], [20], [32], [33], attacks

against interactive electricity information (i.e., load demands,

electricity price) [22], [42]. For instance, regarding to the

attack against state information, Sandberg et al. proposed

security parameters to quantify the minimum number of

measurements to compromise so that an attack could be

successfully launched, and utilized graph theory to derive

data integrity attack vector [33]. Regarding to attack against

interactive electricity information, Bi and Zhang et al. inves-

tigated the problem that the adversary could manipulate
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the real-time electricity price and designed corresponding

countermeasures [22]. Moreover, our prior works [8], [16],

[49], [50], [52] presented the investigation of data integrity

attacks with least efforts against static state estimation,

dynamic state estimation, optimal power flow, multiple-step

electricity price in power systems.

To defend against data integrity attacks, detection-based

and protection-based schemes have been proposed. In terms

of detection-based schemes, most of the existing research

efforts are targeted at Energy Management System (EMS)

modules in traditional power system such as static state

estimation, optimal power flow [14], [21], [24], [36], [39],

[45]. For example, Lee et al. proposed an adaptive denial-

of-service attack mitigation scheme by applying historical

data statistics information of the power system to filter data

integrity attacks [30]. To deal with data integrity attacks,

Yang et al. proposed a detection scheme using a Gaussian-

Mixture Model-based mechanism to improve the detection

accuracy [39]. Likewise, Ashok et al. [21] investigated a bad

data detection algorithm for smart grid real-time monitoring

based on load forecasting, power generation planning and

phasor measurement data to defend against data integrity

attacks. Likewise, Esmalifalak et al. analyzed the data dis-

tribution of the historical state information and proposed

a detection scheme based on support vector machine [24].

Related to this efforts, an optimal PMU placement-based

protection scheme and an integrated detection schemes were

proposed as well [9], [51].

In recent years, due to the benefits of obtaining opti-

mal action policies, reinforcement learning techniques have

received great attention in addressing the sequential decision

problems, i.e., game, control, as well as attack detection

[10], [11], [53]. For example, Chen et al. adopted a novel

Q-learning schemes that utilized the concept of the nearest

sequence memory to learn the optimal attack strategy from

the adversary’s perspective [23]. Kurt et al. utilized SARSA

reinforcement learning scheme to detect cyber-attacks in the

state estimation module of smart grid [26]. Nonetheless,

the features of power system state estimation model are not

fully formalized and characterized in the reinforcement learn-

ing model of existing research efforts.

To this end, we propose a deep reinforcement learning-

based scheme to detect data integrity attacks in AC power

grid. The key contributions of our paper are as follows:

• First, we review the model of nonlinear AC power sys-

tem and the data integrity attack model. Furthermore,

we formulate the defensive process against data integrity

attacks as a Markov Decision Process (MDP). In such a

process, we present the formulation of state space, action

space, reward function, and observation space, which

eliminates the effects of noise and improve the accuracy

and rapidity of detection strategy.

• Second, we propose a Deep-Q-Network Detection

(DQND) scheme to defend against data integrity attacks.

In our scheme, a main network and a target network are

set up to learn the defensive strategy. We also apply the

concept of slide window and quantify the observation

space to avoid the curse of dimension so that the learning

efficiency can be improved.

• Finally, we conduct an extensive performance evaluation

of our detection scheme, we define three evaluation met-

rics: delay-alarm error rates, false-alarm error rates, and

detect-failure rates. We design two attack models in our

evaluation: continuous attack model and discontinuous

attack model. We carry out extensive performance eval-

uation on IEEE 9, 14 and 30 bus systems, respectively.

In comparison with the SARSA detection strategy and

SARSAimp detection strategy, our DQND achieves the

best performance in terms of delay-alarm error, false-

alarm error, and detect-failure rates.

The remainder of this paper is organized as follows.

We first introduce the system model of nonlinear AC power

flow, the attack model, and then briefly review the concept

of deep reinforcement learning in Section II. In Section III,

we first introduce theMarkov Decision model of our strategy,

and then introduce the quantification of observation space and

slide window. After that, we present our DQND scheme in

detail. In Section IV, we show evaluation results to demon-

strate the effectiveness of DQND scheme in detecting data

integrity attacks. We discuss the future research directions

and ongoing works of this paper in Section V. We conclude

the paper in Section VI.

II. BACKGROUND

In this section, we first present the nonlinear AC power

system state estimation model. We then introduce the data

integrity attack model from the adversary’s perspective.

Finally, we briefly review the concept of deep reinforcement

learning.

A. SYSTEM MODEL

Denote that there are M smart meters under an N -bus AC

power system model. We denote the state of system at time

t as xt = [x1,t , . . . , xN ,t ], the state xi,t contains phase angles

and voltage magnitudes of bus i at time t . The measurement

vector is expressed as yt = [y1,t , y2,t , . . . , yM ,t ], where yj,t
is denoted as the measurement of smart meter j at time t .

It is worth mentioning that we have M > N that assures the

robustness of measurement system.

In AC power system, the measurement vector and the state

are related as:

y = h(x) + e, (1)

where h : RN → RM is denoted as a nonlinear function and

is determined by the power system model and e is a mea-

surement error vector. The error vector e follows a Gaussian

distribution, in which S denotes the covariance matrix. The

systemmodel of IEEE 30 bus system is illustrated in Figure 1.

In this paper, the weighted least squares mechanism is

used to estimate the system state. The basic principle of the
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FIGURE 1. IEEE-30 bus system.

weighted least squares mechanism is to learn the optimal

estimate value of the real state vector x byminimizing the sum

of error’s squares. Therefore, the optimal state estimation is

expressed as:

x̂=argmin
x

J (x)=argmin
x

(y−h(x))T S−1 (y−h(x)) , (2)

where J (x) denotes the objective function. The Gauss-

Newton method is then applied to obtain the optimal state

estimation. In each iteration, the state is updated as:

xi+1 = xi + 1x, (3)

1x =
(

HT S−1H
)−1

S−1HT S−1 (y− h(x)) , (4)

whereH = ∂h(x)
∂x

is the Jacobian matrix of the measurements,

which is updated during state estimation iterations.

To detect the bad data in the above process, the detection

threshold is defined as τ , if the estimation error is not greater

than τ , we believe that there is no bad data. Then, the detector

is defined as:

‖y− h(x)‖ ≤ τ. (5)

Note that when the above inequality is satisfied, we know that

the estimated state information is trustworthy and there is no

bad data.

B. ATTACK MODEL

Note that the objective of the attacker is to perform data

integrity attacks to disturb the normal operation of the power

grid and bypass the bad data detection mechanism. Most

of the existed research efforts assume that the attacker has

learned the full information of power system state, which

may not be practical in real world [26], [31], [37]. Therefore,

hf is defined to indicate the adversary’s information of the

power grid system and x̂f denotes the error between the state

estimation result obtained by the adversary and the true value

according to [55].

The attack vector injected by the adversary is denoted as a,

which is tempered into the measurement vector y, the mea-

surement vector after attack can be expressed as:

ya = y+ a. (6)

Moreover, the state estimator obtains the erroneous estima-

tion result by weighted least squares mechanism after receiv-

ing the tampered measurement vector. Then, the erroneous

estimation result is denoted as

x̂bad = x̂ + c. (7)

To bypass the bad data detection mechanism in Equation 5,

the attack vector should satisfy the following equations:
∥

∥ya − h
(

x̂bad
)∥

∥ =
∥

∥ya − h
(

x̂ + c
)∥

∥

=
∥

∥y+ a− h
(

x̂ + c
)

+ h
(

x̂
)

− h
(

x̂
)∥

∥ ,

≤
∥

∥y− h
(

x̂
)∥

∥ +
∥

∥a− h
(

x̂ + c
)

+ h
(

x̂
)∥

∥ ,

≤
∥

∥y− h
(

x̂
)∥

∥+
∥

∥a−hf
(

x̂f +c
)

+ hf
(

x̂f
)∥

∥

+
∥

∥hf
(

x̂f + c
)

− h
(

x̂ + c
)∥

∥

+
∥

∥h
(

x̂
)

− hf
(

x̂f
)∥

∥ ,

≤ τ.

We can find out that the attack is able to bypass the bad

data detection mechanisms when the inequality in the last

row is satisfied. In order to meet this requirement, we need

to minimize the following equation:

g(x) =
∥

∥a− hf
(

x̂f + c
)

+ hf
(

x̂f
)∥

∥

+
∥

∥hf
(

x̂f + c
)

− h
(

x̂ + c
)∥

∥

+
∥

∥h
(

x̂
)

− hf
(

x̂f
)∥

∥ (8)

From the perspective of the attacker, to minimize g(x),

the following equation should be satisfied:

a = hf
(

x̂f + c
)

+ hf
(

x̂f
)

. (9)

By satisfying the above equations (8)-(9), the attacker can

determine the measurements to be falsified and the opti-

mal attack vector a. Moreover, if the attacker has already

learned the full information of the accurate network topol-

ogy, the attacking vector can be established according to

Equation (9).

C. DEEP REINFORCEMENT LEARNING

As a typical machine learning approach, reinforcement learn-

ing is used to learn an optimal action strategy to achieve

the maximization of total rewards [29]. During the learn-

ing process, the agent interacts with environment to obtain

the environment knowledge and updates the action policy

over episodes. Nonetheless, the learning efficiency of con-

ventional reinforcement learning method is relatively low so

that it is not suitable for the problem with large state space.

To address this issue, deep learning [53] technology that is

also called deep neural network can be integrated to reinforce-

ment learning well to improve the efficiency, the integrated

field is called deep reinforcement learning [34].
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Combined with reinforcement learning and deep neural

networks, deep reinforcement learning scheme has mainly

the following three advantages: First, deep neural networks is

capable of approximating the value of state and action, which

are critical in the process of learning optimal policy. Second,

deep neural networks perform feature engineering and reduce

the dependence of the reinforcement learning process on

domain knowledge. In addition, the curse of dimensional-

ity is a difficult problem that reinforcement learning based

approach faces, especially when the state space and action

space are huge. In this regard, deep reinforcement learning

addresses the curse of dimensionality issuewell, since that the

output of neural networks can estimate the value of state and

action, meaning that there is no need for storing the values

of state and action and avoids the curse of dimension as a

result.

Note that deep reinforcement learning approaches have

been widely investigated in several areas. For instance,

Deepmind has proposed AlphaGo which can beat the best

human player in chess in 2016 [43], and then, Deep-

mind also proposed Alpha zero to strengthen the ability of

AlphaGo. In addition, Su et al. proposed an online Active

Reward Learning in Spoken Dialogue Systems in [44].

Ho et al. proposed a model-free imitation learning algorithm

in directly extracting a policy from data [25]. Likewise,

Narasimhan et al. employ deep-Q-network with a novel

reward function to improve information extraction [35].

TABLE 1. Notations.

III. DQND SCHEME

In this section, we first introduce two attack scenarios, and

then present the Markov Decision Process of our DQND

scheme, including the state space, action space, observation

space and reward function. After that, we present the DQND

scheme in detail. The critical notations are listed in Table 1.

A. ATTACK SCENARIOS

Before introducing the detail procedure of DQND scheme,

we first define two attacks that the adversary might launch:

continuous attack and discontinuous attack as follows:

• Continuous attack: The adversary launches a sequen-

tial attack over time until the attack is detected. Gener-

ally speaking, the damage caused by continuous attack

to state estimation is greater than the discontinuous

attack. However, the continuous attack is easy to be

detected due to the continuity over time.

• Discontinuous attack: The adversary launches inter-

mittent attack over time until the attack is detected.

Due to the fact that the adversary can choose different

intermittent time to launch attack, discontinuous attack

is difficult to be detected, but the damage that caused is

smaller than the continuous attack.

The continuous attack model and discontinuous attack

model is shown in Figure 2.

FIGURE 2. Attack model.

B. MARKOV DECISION PROCESS

In this paper, the power system operator is also called as the

agent, whose responsibility is to ensure the normal operation

of the power grid. The Markov decision process (MDP) [38]

of our scheme is defend as (S,A,P,R,O), in which S denotes

the state space, A denotes the action space, P is the transition

probability, R is the reward function, andO is the observation

space. We introduce these five elements of MDP in detail as

follows:

st ∈ S is the state of system, S is the set of possible states

the agent lies in. We define the state space in this paper as

[Sn, Sa], where Sn indicates the system operates well and Sa
denotes that the system is under attack. Obviously, the state is

unknown for the agent, meaning that the agent cannot make

sure that system is under normal operation state or under

attack, the agent can only estimate the state of system accord-

ing to the observation of current state.

at ∈ A is denoted as the agent’s action at time t , A indicates

the set of actions the agent might take. We define the action
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space as [Ac,As], where Ac denotes that the agent infers that

the system is in normal operation based on the observation

and the system should be kept running, and As denotes that

the agent infers that the system is under attack and should be

stopped.

pt : st × at → P(st+1) indicates the probability the

agent steps into st+1 when it takes the action at at state st .

This probability is unknown to the agent since we propose a

model-free deep reinforcement learning method.

rt means the reward that the agent obtains when taking

action at at state st . We define the reward function as follows:

rt =

{

0, st = sa, if as = as,

c1 ∗ |t − λ| ; if st = sa, as = ac.
(10)

rt =







0, st = sn, if as = ac,

c2 ∗ 1000 ∗

∥

∥y− h
(

x̂
)∥

∥

‖w‖
, if st = sn, as = as.

(11)

where λ is the time when the attack is launched, w is the

size of noise that is added into the system model. Also, c1
and c2 are the corresponding coefficients, which balance the

delay-alarm and false-alarm error. To make c1 and c2 satisfy

the same order of magnitude, we multiply the coefficient by

1000 in Equation (11). Delay-alarm denotes the time when

the agent detects the attack, which is later than the time

when the attack is launched. False-alarm denotes that the

agent considers that the system is under attack and stops the

operation of system but there exists no attack in fact. In this

paper, we aim to minimize the probability of these two types

of errors.

Moreover, ot is the observation that the agent learns from

the system, which is different from the system state, because

the system state is not observable to the agent. We define the

ot as follows:

ot =

∥

∥y− h
(

x̂
)∥

∥

‖w‖
. (12)

From the equation, we can see that when the system is in

normal operation, y is close to h(x̂) and ot is a small value.

On the other hand, when the system is under attack, the value

of h(x̂) differs greatly from the y and ot will be a large

value. Therefore, the size of ot accurately reflects whether

the system has been attacked. In addition, the definition of

observation eliminates the impact of noise. Specifically, when

the system is under normal operation and the size of noise

is large, the observation ot is small and the effect of noise

can be ignored. As a consequence, the situation that the agent

mistakenly detects that the system is being attacked can be

avoided.

C. QUANTIFICATION OF OBSERVATION

SPACE AND SLIDE WINDOWS

Recall that the curse of dimension is a common issue

in reinforcement learning. The existence of high dimen-

sional feature space makes that the reinforcement learn-

ing problem cannot be solved in limited time with limited

resources. To address this issue, in this paper we quantify

the observation space into limited discrete value. We set

up multiple non-overlapping intervals as: [a1, a2], [a2, a3],

[a3, a4], . . . , [am, am+1], when the observation value ot falls

into the interval [ai, ai+1], we quantify ot as li, which means

that:

ot → li, whenai ≤ ot < ai+1. (13)

In this way, the continuous observation space can be quan-

tified as the set of limited discrete values: [l1, l2, . . . , lm].

We denote lt as the discrete value of the observation value ot .

The process of quantification reduces the observation space

significantly to improve the learning efficiency.

It is worth noting that when the observed value suddenly

rises, meaning that the system is suffered from an attack at

this time. On the other hand, when the observations change

a little in a period of time, meaning that the system operates

smoothly without being attacked. Therefore, we utilize the

concept of slide window to expand the neighboring obser-

vations at one time slot [26]. The size of slide window is

denoted as N , meaning that there are N recent observation

values in one slide window and the window keeps sliding

and updating over time. For example, the slide window is

[lt−N+1, lt−N+2, . . . , lt ] at time t , and at time t + 1, the slide

window is [lt−N+2, lt−N+3, . . . , lt+1].

Considering that the size of slide window is N and the

size of discrete observation value is M , there are MN pos-

sible values of slide observation window. We utilize the slide

observation window as the input of our deep reinforcement

learning method.

D. DQND SCHEME

The DQND scheme proposed in this paper mainly includes

two stages: the training stage and testing stage. In training

stage, the neural networks are trained with the system data,

and in testing stage, we test DQND scheme with trained

networks. The detailed model of DQND scheme is shown

in Figure 3. We define that the number of episodes in training

stage as E , and each episode consists of three steps:

1) INTERACTING

The agent interacts with environment at this step. The agent

first observes the system and obtains the observation ot at

time t , which reflects the system operation state. Second,

the agent takes action at based on the policy that is learned

from the third step. Then, the agent updates the action during

each networking learning step of the episode. Third, after

the interaction, a reward will be received to the agent as the

reflection of his action, and then the agent steps into the next

state of the interacting and obtains the new observation ot+1.

2) REPROCESS

The observation ot , action at , reward rt and the next

time observation ot+1 constitute the transition space

[ot , at , rt , ot+1]. Regarding to the slide window, we denote

it as:

wt = [lt−N+1, lt−N+2, lt−N+3, . . . , lt ], (14)
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FIGURE 3. The model of DQND scheme.

where li is the discrete value of observation ot at time t .

Therefore, new transition can be denoted as [wt , at , rt ,wt+1].

Then, the transition is stored in replay buffer. At each time

of iteration, we randomly select a minibatch, whose size is K

from the replay buffer as the training data to update the neural

networks.

3) NETWORK LEARNING

In our scheme, two types of neural networks are utilized:

the main network and the target network. The main network

generates a value Q(ot , at , θt ) that evaluates the action of

agent, and θt is the parameter of the main network. The target

network also generates a value Q′(ot , at , θ
′
t ) that is utilized

to generate the loss function based on the next observation.

To compute the loss function, we first compute the target y at

time t as:

y = r + γ ∗ max
a′

Q′
(

o′, a′, θ ′
)

, (15)

in which, γ is the discount factor that denotes the proportion

of future reward on the state’s value and o′ is the next obser-

vation. The loss function is the square of difference between

the target y and value Q(ot , at , θt ):

L = (y− Q (ot , at , θt))
2. (16)

In each time, the main network is updated in the direction

of negative gradient of loss L. After everyC steps, the param-

eter of target network θ ′ is replaced by the parameter of main

network θ as the updating of target network.

We apply ǫ − greedy strategy to choose the optimal action

from action space. Particularly, the agent chooses action ran-

domly from the action space with probability 1 − ǫ, and

the agent takes action a = argmaxQ (st , at , θ) with prob-

ability ǫ. Different from the traditional ǫ − greedy strategy,

to balance exploration and exploitation, the value of ǫ is

increased in the process of learning until the ǫ increases to

a maximum ǫmax . The increasing ǫ strategy ensures that the

policy is able to explore more at the beginning of the learning

and the action policy converges at the end of the learning with

sufficient knowledge of environment.

In the testing stage, the effect of our approach is tested with

the trained networks. In each episode of test, we choose the

action that minimizes the value ofQ(ot , at , θt ). It is important

to mention that when taking action at , the training and testing

of the episode terminate because the system will stop and the

training and testing process will turn into the next episode.

The detailed procedure of training stage of DQND scheme

is presented in Algorithm 1. In which, the agent first learns

the detection strategy at training stage, the training stage

contains several training episodes, and the detection strategy

is developed in each episode by interacting between the agent

and the environment, data reprocessing and network learning.

The testing stage is presented in Algorithm 2. In which,

the detection strategy is tested through the trained network

to show the performance. During each episode of the test

stage, the agent chooses the action that maximize the network

output. Once the agent believes that the system is being

attacked, the operation of the system will be stopped.

IV. PERFORMANCE EVALUATION

We show the simulation results of DQND scheme in this

section. First, we present the methodology of the evaluation,

and then we introduce the results in detail.

A. EVALUATION METHODOLOGY

1) SIMULATION SETUP

The evaluation is performed on IEEE 9, 14 and 30 bus sys-

tems. The initial state vector (phase angles and voltagemagni-

tudes) is determined based onMATPOWER [47]. The system

matrix A is set as an identity matrix and the measurement

matrix is set according to IEEE-9, 14 and 30 bus respectively.

In DQND scheme, we set the size of slide window N

as 4, the discrete observation interval is set as [0, 0.01],

[0.01, 0.05], [0.05, 0.1], [0.1, 1]. The number of episodes in

training stage E is set as 1000 and the number of episodes

in testing stage E2 is set as 100. In addition, there are 100 tests

in one episodes. The time steps in one episode is set as 200.

The learning rate in reinforcement learning is set as 0.001,

the ǫ is set as 0.7 initially and the maximum of ǫ is set as

0.99. The time interval of updating the target network C is set

as 5. The size of replay buffer is set as 500 and the minibatch

size is set as 32. In the main network, we set 2 hidden layers

and a fully connected layer and there are 100 nodes in each

layer. The target network follows the same structure as the

main network.

In attack model, we apply the continuous attack model in

training stage, the continuous attack is launched since the
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Algorithm 1 The Training Stage of DQND

Input: The number of time steps T during one episode,
training episodes E .

Initialize RM , Q with random parameters θ .
Initialize Q′ with parameters θ ′.
Initialize ǫ, ǫincrease and ǫmax .
Output: The defending strategy.

1 for episode = 1 to E do
2 for step t = 1 to T do
3 Collect measurement vector yt ;
4 Estimate the state of system x̂t by Equation (3)

and Equation (4);
5 Compute the observation ot by Equation (12);
6 Compute the discrete observation value by

Equation (13);
7 ǫ = ǫ + ǫincrease;
8 if ǫ > ǫmax then
9 ǫ = ǫmax ;

10 end
11 Generating a random number ra from (0, 1).
12 if ra < ǫ then
13 at = a random action in action space.
14 else
15 at = argmaxQ(st , at , θ)
16 end
17 if st = sa then
18 if at = as then
19 rt = 0
20 else
21 rt = c1 ∗ |t − λ|
22 end
23 else
24 if at = as then

25 c2 ∗
‖yt−h(x̂t)‖

‖w‖

26 else
27 rt = 0
28 end
29 Takes action at and observe next observation

ot+1.
30 Compute the slide window wt and wt+1.
31 Store (wt , at , rt ,wt+1) in replay buffer.
32 Sample random minibatch (ot , at , rt , ot+1)

from replay buffer.
33 if t = T then
34 yj = rj;
35 else

36 yj = rj + γmaxQ′
(

sj, aj; θi
)

;
37 end
38 Compute loss function

L = (y− Q (ot , at , θt))
2;

39 Perform a gradient descent step on the loss
function L

40 Every C steps update parameters θ ′ as the
main network parameters θ .

41 if at = as then
42 Go to the next training episode.
43 end
44 end
45 end
46 end

Algorithm 2 The Testing Stage of DQND

Input: The trained neural network Q.

The number of time steps T in one episode, the number

of test episodes E2.

Output: The testing result.

1 for episode = 1 to E2 do

2 for step t = 1 to T do

3 Collect the measurement vector yt ;

4 Employ the Gauss-Newton iterative algorithm to

estimate the state of system x̂t by Equation (3)

and Equation (4);

5 Compute the observation ot by Equation (12);

6 Compute the discrete observation value by

Equation (13);

7 at = argmaxQ(st , at , θ)

8 if at = as then

9 Go to the next training episode.

10 end

11 end

12 end

time slot 100, and the attack vector a is a uniform variable

±U [−0.1, 0.1]. In testing stage, we apply both the continu-

ous attackmodel and the discontinuous attackmodel, the time

when continuous attack is launched is a uniform variable

U [40, 140] and the size of continuous attack is also a uniform

variable U [−0.1, 0.1]. The discontinuous attack is launched

at time 100, and the probability of an attack occurred at each

time step is 0.5, the size of discontinuous attack is the same

as that of continuous attack model.

2) EVALUATION METRICS

To demonstrate the performance of our scheme, we present

several evaluation metrics as follows:

• Delay-alarm error rate (DAE): We define the size of

delay-alarm error as t − λ, and the delay-alarm error rate

is defined as the sum of delay-alarm error in all episodes

divided by the number of tests. t is the time when the

agent detects the attack and λ is the time when the attack

is launched initially.

• False-alarm error rate (FAE): We define the size of

false-alarm error as λ − t , and the false-alarm error rate

is denoted as the sum of false-alarm error in all episodes

divided by the number of tests.

• Detect-failure rate (DF): The detect-failure rate is

defined as the sum of the times of detect-failure occurred

in all episodes divided by the number of tests.

3) BENCHMARKS

We compare the DQND scheme with the following bench-

marks to demonstrate the effectiveness:

• SARSA scheme is an online reinforcement learning

method and Kurt et al. employs it to detect data integrity

attack in power system [26]. A table is set up to store the

VOLUME 7, 2019 110841



D. An et al.: Defending Against Data Integrity Attacks in Smart Grid: A Deep Reinforcement Learning-Based Approach

value of actions in each state and the system operator can

learn the optimal defending strategy during the updating

of the table.

• SARSAimp scheme is an enhanced scheme based on

SARSA. First, the observation is defined as Equa-

tion (12), which eliminates the effects of noise. Second,

the reward function is denoted as Equation (10) and

Equation (11), which reflects the influence of delay-

alarm error and false-alarm error.

B. EVALUATION RESULTS

Wefirst compare DQND schemewith SARSA and SARSAimp
under continuous attack model. In Table 2, we compare three

schemes in terms of delay-alarm error rates on IEEE 9, 14 and

30 bus system. In Table 3, we compare three approaches with

detect-failure rates on the three bus systems.

TABLE 2. Delay-alarm error rates in continuous attack model among
SARSA, SARSAimp, and DQND scheme.

TABLE 3. Detect-failure rates in continuous attack model among SARSA,
SARSAimp and DQND schemes.

FromTable 2, we can observe that DQND scheme achieves

the lowest delay-alarm error rates in all three IEEE bus

systems when the system is under continuous attack, which

indicates that our scheme is able to detect the attack in the

shortest time compared with the baseline schemes. Further-

more, we can also conclude that SARSAimp performs better

than SARSA, since that the observation and reward function

are improved in SARSAimp.

Table 3 illustrates the accuracy of DQND scheme in detect-

ing continuous attack. From the table, we can observe that

there is no detect-failure in the test of DQND scheme in

all three IEEE bus systems, as well as SARSAimp scheme.

In contrast, several detect failures are existed in the test of

SARSA scheme. In summary, we can conclude that DQND

and SARSAimp perform better in terms of detection accuracy

when defend against continuous attack.

In Table 2 and Table 3, we compare the accuracy and detec-

tion speed of three detection schemes when the systems are

under continuous attack. In addition, we compare these three

schemes under discontinuous attack in Table 4 and Table 5.

TABLE 4. Delay-alarm error rates in discontinuous attack model among
SARSA, SARSAimp, and DQND scheme.

TABLE 5. Detect-failure rates in discontinuous attack model among
SARSA, SARSAimp, and DQND scheme.

FIGURE 4. Delay-alarm error rates with the change of the ratio of c1 : c2.

From Table 4, we observe that DQND scheme achieves the

lowest delay-alarm error rates in all three IEEE bus systems

when the system is under discontinuous attack, while SARSA

scheme spends the most time to detect existence of the attack.

The evaluation results in Table 5 are similar to the results

in Table 3, there is also no detect-failure in the results of

DQND and SARSAimp schemes when there exists discontinu-

ous attack in AC power system. However, there exists detect-

failure in the test of SARSA scheme in IEEE-9 and IEEE-14

bus systems.

In addition, we study the relationship between the perfor-

mance of our scheme and the ratio of c1 : c2. Since that the

false-alarm error rates and detect-failure rates are both very

small and close to 0, we consider to show the variation of

delay-alarm error rates. For simplicity, we take 9 bus system

as example, the evaluation result is shown in Figure 4. From

the figure, we observe that when the ratio of c1 : c2 is

110842 VOLUME 7, 2019



D. An et al.: Defending Against Data Integrity Attacks in Smart Grid: A Deep Reinforcement Learning-Based Approach

FIGURE 5. Time cost.

around 1 : 1, the delay-alarm error rates is the lowest. Note

that when the value of c1 : c2 is too large or too small,

the delay-alarm error rates is very high and the algorithm

cannot learn the optimal detection policy. The reason behind

this is that the algorithm cannot detect the attack fast when

c1 is small, and the algorithm cannot ensure the accuracy

of detection when c1 is too large. We can also observe that

the delay-alarm error rates under continuous attack is smaller

than that under discontinuous attack, meaning that continuous

attack is easier to detect than discontinuous attack.

Finally, we evaluate the time cost of our scheme in

Figure 5, the time cost of the DQND scheme in IEEE 9,

14 and 30 bus systems are 459 seconds, 655 seconds and

896 seconds, respectively. The results demonstrate that the

time consumption increases as the complexity of the system

increases. Nonetheless, by leveraging the advanced com-

puting technologies, i.e., distributed and parallel comput-

ing, the time consumption of the proposed approach can be

reduced significantly.

V. DISCUSSION

We now discuss some future directions of the work in this

paper, regarding to the application scenarios and advanced

reinforcement learning strategies.

• Application modules: In this paper, we propose a deep

Q-learning based approach to detect the cyber-attack in

AC power system state estimation in smart grid. As it is

reported that other critical modules, i.e., dynamic state

estimation, economic dispatch, load frequency control

are also suffered from the threatens from the cyber space.

Moreover, it is difficult to investigate a generical strat-

egy to detect the data integrity attacks in those mod-

ules. To this end, as a future direction, it is an urgent

need to investigate suitable deep reinforcement learning

approaches that fully integrates the cyber-physical char-

acteristics of those modules in the smart grid to assist

the system operator making optimal action strategy.

We shall also investigate the application of our designed

scheme in other CPS [40], [41].

• Advanced reinforcement learning strategy: In this

paper, a deep-Q-learning based detection scheme has

been proposed to defend against data integrity attacks

in the smart grid. Although our scheme achieves better

results than the baseline schemes in terms of detection

accuracy and rapidity, the time overhead of our scheme

is still relatively large. Especially, as the number of

nodes in the power system increases, the time consump-

tion grows exponentially, and the practicability of the

strategy will be affected. In view of this, improving

the convergence speed and designing a more stable

neural network to learn the optimal policy are consid-

ered as ongoing works in investigating deep reinforce-

ment learning-based detection to deal with data integrity

attacks.

VI. CONCLUSION

In this paper, we addressed the issue of defending against

data integrity attacks in AC power system state estimation.

We first formulated the model of AC power system and the

data integrity attack model. To detect data integrity attacks,

we proposed a DQND scheme to learn the optimal defending

strategy. Specifically, DQND scheme applies a main network

and a target network to learn the detection strategy during

the training stage with real data. To improve the learning

efficiency, we applied the quantification of observation space

and the concept of slide window, which could prevent the

curse of dimension. Finally, we evaluated our scheme based

on IEEE 9, 14 and 30 bus systems, respectively. We vali-

dated our scheme with two attack models in the evaluation:

continuous attack model and discontinuous attack model.

The evaluation results show that our scheme achieves higher

detection accuracy and speed compared with two baseline

schemes.

ACKNOWLEDGEMENT

Any opinions, findings, and conclusions or recommendations

expressed in this material are those of the authors and do not

necessarily reflect the views of the agencies.

REFERENCES

[1] S. Chen, S. Song, L. Li, and J. Shen, ‘‘Survey on smart grid technology,’’

Power Syst. Technol., vol. 33, no. 8, pp. 1–7, Apr. 2009.

[2] X. Fang, S. Misra, G. Xue, and D. Yang, ‘‘Smart grid—The new and

improved power grid: A survey,’’ IEEE Commun. Surveys Tuts., vol. 14,

no. 4, pp. 944–980, 4th Quart., 2012.

[3] V. C. Gungor, D. Sahin, T. Kocak, S. Ergut, C. Buccella, C. Cecati, and

G. P. Hancke, ‘‘Smart grid technologies: Communication technologies

and standards,’’ IEEE Trans. Ind. Informat., vol. 7, no. 4, pp. 529–539,

Nov. 2011.

[4] H. Khurana, M. Hadley, N. Lu, and D. A. Frincke, ‘‘Smart-grid security

issues,’’ IEEE Security Privacy, vol. 8, no. 1, pp. 81–85, Jan./Feb. 2010.

[5] P. McDaniel and S. McLaughlin, ‘‘Security and privacy challenges in the

smart grid,’’ IEEE Security Privacy, vol. 7, no. 3, pp. 75–77, Jun. 2009.

[6] R. Deng, G. Xiao, and R. Lu, ‘‘Defending against false data injection

attacks on power system state estimation,’’ IEEE Trans. Ind. Informat.,

vol. 13, no. 1, pp. 198–207, Feb. 2017.

VOLUME 7, 2019 110843



D. An et al.: Defending Against Data Integrity Attacks in Smart Grid: A Deep Reinforcement Learning-Based Approach

[7] Y. Mo, T. H.-J. Kim, K. Brancik, D. Dickinson, H. Lee, A. Perrig, and

B. Sinopoli, ‘‘Cyber–physical security of a smart grid infrastructure,’’

Proc. IEEE, vol. 100, no. 1, pp. 195–209, Jan. 2012.

[8] Q. Yang, D. Li, W. Yu, Y. Liu, D. An, X. Yang, and J. Lin, ‘‘Toward data

integrity attacks against optimal power flow in smart grid,’’ IEEE Internet

Things J., vol. 4, no. 5, pp. 1726–1738, Oct. 2017.

[9] Q. Yang, D. An, R. Min, W. Yu, X. Yang, and W. Zhao, ‘‘On optimal PMU

placement-based defense against data integrity attacks in smart grid,’’ IEEE

Trans. Inf. Forensics Security, vol. 12, no. 7, pp. 1735–1750, Jul. 2017.

[10] Q. Zhang, M. Lin, L. T. Yang, Z. Chen, and P. Li, ‘‘Energy-efficient

scheduling for real-time systems based on deep Q-learning model,’’ IEEE

Trans. Sustain. Comput., vol. 4, no. 1, pp. 132–141, Mar. 2019.

[11] Z. Cheng, Q. Zhao, F. Wang, Y. Jiang, L. Xia, and J. Ding, ‘‘Satisfaction

based Q-learning for integrated lighting and blind control,’’ Energy Build-

ings, vol. 127, pp. 43–55, Sep. 2016.

[12] D. Kundur, X. Feng, S. Liu, T. Zourntos, and K. L. Butler-Purry, ‘‘Towards

a framework for cyber attack impact analysis of the electric smart grid,’’ in

Proc. 1st IEEE Int. Conf. Smart Grid Commun., Oct. 2010, pp. 244–249.

[13] X. Li, X. Liang, R. Lu, H. Zhu, X. Lin, and X. Shen, ‘‘Securing smart grid:

Cyber attacks, countermeasures, and challenges,’’ IEEE Commun. Mag.,

vol. 50, no. 8, pp. 38–45, Aug. 2012.

[14] D. Wei, Y. Lu, M. Jafari, P. Skare, and K. Rohde, ‘‘An integrated security

system of protecting smart grid against cyber attacks,’’ in Proc. Innov.

Smart Grid Technol. (ISGT), Jan. 2010, pp. 1–7.

[15] A. Giani, E. Bitar, M. Garcia, M. McQueen, P. Khargonekar, and

K. Poolla, ‘‘Smart grid data integrity attacks: Characterizations and

countermeasuresπ ,’’ inProc. IEEE Int. Conf. Smart Grid Commun. (Smart-

GridComm), Oct. 2011, pp. 232–237.

[16] Q. Yang, L. Chang, and W. Yu, ‘‘On false data injection attacks against

Kalman filtering in power system dynamic state estimation,’’ Secur. Com-

mun. Netw., vol. 9, no. 9, pp. 833–849, 2016.

[17] A. Hahn and M. Govindarasu, ‘‘Cyber attack exposure evaluation frame-

work for the smart grid,’’ IEEE Trans. Smart Grid, vol. 2, no. 4,

pp. 835–843, Dec. 2011.

[18] S. Sridhar and G. Manimaran, ‘‘Data integrity attack and its impacts on

voltage control loop in power grid,’’ in Proc. IEEE Power Energy Soc. Gen.

Meeting, Jul. 2011, pp. 1–6.

[19] Y. Yan, Y. Qian, H. Sharif, and D. Tipper, ‘‘A survey on cyber security for

smart grid communications,’’ IEEE Commun. Surveys Tuts., vol. 14, no. 4,

pp. 998–1010, 4th Quart., 2012.

[20] X. Liu and Z. Li, ‘‘False data attacks against AC state estimation with

incomplete network information,’’ IEEE Trans. Smart Grid., vol. 8, no. 5,

pp. 2239–2248, Sep. 2017.

[21] A. Ashok, M. Govindarasu, and V. Ajjarapu, ‘‘Online detection of stealthy

false data injection attacks in power system state estimation,’’ IEEE Trans.

Smart Grid, vol. 9, no. 3, pp. 1636–1646, May 2018.

[22] S. Bi andY. Zhang, ‘‘False-data injection attack to control real-time price in

electricity market,’’ in Proc. IEEE Global Commun. Conf. (GLOBECOM),

Dec. 2013, pp. 772–777.

[23] Y. Chen, S. Huang, F. Liu, Z. Wang, and X. Sun, ‘‘Evaluation of reinforce-

ment learning-based false data injection attack to automatic voltage con-

trol,’’ IEEE Trans. Smart Grid, vol. 10, no. 2, pp. 2158–2169, Mar. 2018.

[24] M. Esmalifalak, L. Liu, N. Nguyen, R. Zheng, and Z. Han, ‘‘Detecting

stealthy false data injection using machine learning in smart grid,’’ IEEE

Syst. J., vol. 11, no. 3, pp. 1644–1652, Sep. 2017.

[25] J. Ho and S. Ermon, ‘‘Generative adversarial imitation learning,’’ in Proc.

Adv. Neural Inf. Process. Syst., 2016, pp. 4565–4573.

[26] M. Kurt, O. Ogundijo, C. Li, and X. Wang, ‘‘Online cyber-attack detection

in smart grid: A reinforcement learning approach,’’ IEEE Trans. Smart

Grid, to be published.

[27] J. Peng and R.Williams, ‘‘Incremental multi-step Q-learning,’’ inMachine

Learning. Amsterdam, The Netherlands: Elsevier, 1994, pp. 226–232.

[28] P. Glorennec and L. Jouffe, ‘‘Fuzzy Q-learning,’’ in Proc. 6th Int. Fuzzy

Syst. Conf., vol. 2, Jul. 1997, pp. 659–662.

[29] H. V. Hasselt, ‘‘Double Q-learning,’’ in Proc. Adv. Neural Inf. Process.

Syst., 2010, pp. 2613–2621.

[30] G. Lee, Y. Kim, and J. Kang, ‘‘An adaptive dos attack mitigation measure

for field networks in smart grids,’’ in Advances on Broad-Band Wireless

Computing, Communication and Applications, L. Barolli, F. Xhafa, and

K. Yim, Eds. Cham, Switzerland: Springer, 2017, pp. 419–428.

[31] X. Liu and Z. Li, ‘‘False data attacks against ac state estimation with

incomplete network information,’’ IEEE Trans. Smart Grid, vol. 8, no. 5,

pp. 2239–2248, Sep. 2016.

[32] Y. Liu, P. Ning, andM. K. Reiter, ‘‘False data injection attacks against state

estimation in electric power grids,’’ ACM Trans. Inf. Syst. Secur., vol. 14,

no. 1, p. 13, 2011.

[33] H. Sandberg, A. Teixeira, and K. Johansson, ‘‘On security indices for state

estimators in power networks,’’ in Proc. 1st Workshop Secure Control Syst.

(SCS), Stockholm, Sweden, 2010, pp. 1–6.

[34] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, and

M. G. Bellemare, ‘‘Human-level control through deep reinforcement

learning,’’ Nature, vol. 518, no. 7540, p. 529, 2015.

[35] K. Narasimhan, A. Yala, and R. Barzilay, ‘‘Improving information extrac-

tion by acquiring external evidence with reinforcement learning,’’ 2016,

arXiv:1603.07954. [Online]. Available: https://arxiv.org/abs/1603.07954

[36] S. Pal, B. Sikdar, and J. H. Chow, ‘‘Classification and detection of

PMU data manipulation attacks using transmission line parameters,’’ IEEE

Trans. Smart Grid, vol. 9, no. 5, pp. 5057–5066, Sep. 2018.

[37] Z.-H. Pang, G.-P. Liu, D. Zhou, F. Hou, and D. Sun, ‘‘Two-channel

false data injection attacks against output tracking control of networked

systems,’’ IEEE Trans. Ind. Electron., vol. 63, no. 5, pp. 3242–3251,

May 2016.

[38] C. H. Papadimitriou and J. N. Tsitsiklis, ‘‘The complexity of Markov

decision processes,’’ Math. Oper. Res., vol. 12, no. 3, pp. 441–450, 1987.

[39] X. Yang, X. Zhang, J. Lin,W. Yu, and P. Zhao, ‘‘AGaussian-mixture model

based detection scheme against data integrity attacks in the smart grid,’’

in Proc. 25th Int. Conf. Comput. Commun. Netw. (ICCCN), Aug. 2016,

pp. 1–9.

[40] J. Lin,W. Yu, N. Zhang, X. Yang, and L. Ge, ‘‘Data integrity attacks against

dynamic route guidance in transportation-based cyber-physical systems:

Modeling, analysis, and defense,’’ IEEETrans. Veh. Technol., vol. 67, no. 9,

pp. 8738–8753, Sep. 2018.

[41] H. Xu, W. Yu, D. Griffith, and N. Golmie, ‘‘A survey on industrial Internet

of Things: A cyber-physical systems perspective,’’ IEEE Access, vol. 6,

pp. 78238–78259, 2018.

[42] M. A. Rahman, E. Al-Shaer, and R. Kavasseri, ‘‘Impact analysis of

topology poisoning attacks on economic operation of the smart power

grid,’’ in Proc. IEEE 34th Int. Conf. Distrib. Comput. Syst., Jun./Jul. 2014,

pp. 649–659.

[43] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre,

G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,

M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,

I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel,

and D. Hassabis, ‘‘Mastering the game of go with deep neural networks

and tree search,’’ Nature, vol. 529, no. 7587, p. 484, Jan. 2016.

[44] P. Su, M. Gasic, N. Mrksic, L. Rojas-Barahona, S. Ultes, D. Vandyke,

T.-H. Wen, and S. Young, ‘‘On-line active reward learning for policy opti-

misation in spoken dialogue systems,’’ 2016, arXiv:1605.07669. [Online].

Available: https://arxiv.org/abs/1605.07669

[45] D. Wang, X. Guan, T. Liu, Y. Gu, C. Shen, and Z. Xu, ‘‘Extended dis-

tributed state estimation: A detection method against tolerable false data

injection attacks in smart grids,’’ Energies, vol. 7, no. 3, pp. 1517–1538,

2014.

[46] J. Zhang, Z. Chu, L. Sankar, and O. Kosut, ‘‘False data injection attacks on

power system state estimation with limited information,’’ in Proc. IEEE

Power Energy Soc. Gen. Meeting (PESGM), Jul. 2016, pp. 1–5.

[47] R. Zimmerman and C. E. Murillo-Sanchez, and R. J. Thomas, ‘‘MAT-

POWER: Steady-state operations, planning, and analysis tools for power

systems research and education,’’ IEEE Trans. Power Syst., vol. 26, no. 1,

pp. 12–19, Feb. 2010.

[48] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao,

‘‘A survey on Internet of things: Architecture, enabling technologies, secu-

rity and privacy, and applications,’’ IEEE Internet Things J., vol. 4, no. 5,

pp. 1125–1142, Oct. 2017.

[49] Q. Yang, J. Yang, W. Yu, D. An, N. Zhang, and W. Zhao, ‘‘On false

data-injection attacks against power system state estimation: Modeling

and countermeasures,’’ IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 3,

pp. 717–729, Mar. 2014.

[50] J. Lin,W.Yu, X. Yang, G. Xu, andW. Zhao, ‘‘On false data injection attacks

against distributed energy routing in smart grid,’’ in Proc. IEEE/ACM

3rd Int. Conf. Cyber-Phys. Syst., Washington, DC, USA, Apr. 2012,

pp. 183–192.

[51] W. Yu, D. Griffith, L. Ge, S. Bhattarai, and N. Golmie, ‘‘An integrated

detection system against false data injection attacks in the smart grid,’’

Secur. Commun. Netw., vol. 8, no. 2, pp. 91–109, 2015.

110844 VOLUME 7, 2019



D. An et al.: Defending Against Data Integrity Attacks in Smart Grid: A Deep Reinforcement Learning-Based Approach

[52] J. Lin, W. Yu, and X. Yang, ‘‘Towards multistep electricity prices in smart

grid electricity markets,’’ IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 1,

pp. 286–302, Jan. 2016.

[53] W. G. Hatcher and W. Yu, ‘‘A survey of deep learning: Platforms,

applications and emerging research trends,’’ IEEE Access, vol. 6,

pp. 24411–24432, 2018.

[54] X. Liu, C. Qian, W. G. Hatcher, H. Xu, W. Liao, and W. Yu, ‘‘Secure Inter-

net of things (IoT)-based smart-world critical infrastructures: Survey, case

study and research opportunities,’’ IEEE Access, vol. 7, pp. 79523–79544,

2019.

[55] J. Zhao, L. Mili, and M. Wang, ‘‘A generalized false data injection attacks

against power system nonlinear state estimator and countermeasures,’’

IEEE Trans. Power Syst., vol. 33, no. 5, pp. 4868–4877, Sep. 2018.

DOU AN received the B.S. degree in mathematics

and applied mathematics fromNorthwestern Poly-

technical University, Xi’an, China, in 2011, and

the Ph.D. degree with the Department of Automa-

tion Science and Technology from Xi’an Jiaotong

University, Xi’an, in 2017, where he is currently

a Lecturer with the Department of Automation

Science and Technology, School of Electronics

and Information Engineering. His research inter-

ests include cyber-physical systems, smart grid

security and privacy, and incentive mechanisms design for smart grid.

QINGYU YANG received the B.S. and M.S.

degrees in mechatronics engineering and the Ph.D.

degree in control science and engineering from

Xi’an Jiaotong University, China, in 1996, 1999,

and 2003, respectively, where he is currently a

Professor with the School of Electronics and Infor-

mation Engineering and also with the State Key

Laboratory for Manufacturing System Engineer-

ing. His current research interests include cyber-

physical systems, power grid security, control

and diagnosis of mechatronic system, and intelligent control of industrial

process.

WENMAO LIU received the Ph.D. degree in

information security from the Harbin Institute of

Technology, in 2013. He served as a Researcher

with NSFOCUS Inc. During the first two years in

NSFOCUS, he was also with Tsinghua University

as a Postdoctoral. He is currently the Director of

the Innovation Center, NSFOCUS. He has pub-

lished a book Software-Defined Security, in the

next generation inspired by SDN/NFV technologyİ

and participate cloud security related national and

industrial standards. His research interests include network security, cloud

security, the IoT security, threat intelligence, and advanced security ana-

lytics. Now he has been promoting the adoption of container security, and

DevSecOps.

YANG ZHANG received the B.S. degree in

automation science and technology from Xi’an

Jiaotong University, Xi’an, China, in 2018, where

he is currently pursuing the Ph.D. degree with

the Department of Automation Science and Tech-

nology, School of Electronics and Information

Engineering. His research interests include cyber-

physical systems, incentivemechanisms design for

the IoT/smart grid, and reinforcement learning.

VOLUME 7, 2019 110845


	INTRODUCTION
	BACKGROUND
	SYSTEM MODEL
	ATTACK MODEL
	DEEP REINFORCEMENT LEARNING

	DQND SCHEME
	ATTACK SCENARIOS
	MARKOV DECISION PROCESS
	QUANTIFICATION OF OBSERVATION SPACE AND SLIDE WINDOWS
	DQND SCHEME
	INTERACTING
	REPROCESS
	NETWORK LEARNING


	PERFORMANCE EVALUATION
	EVALUATION METHODOLOGY
	SIMULATION SETUP
	EVALUATION METRICS
	BENCHMARKS

	EVALUATION RESULTS

	DISCUSSION
	CONCLUSION
	REFERENCES
	Biographies
	DOU AN
	QINGYU YANG
	WENMAO LIU
	YANG ZHANG


