
Defending against Hitlist Worms using Network Address
Space Randomization

S. Antonatos, P. Akritidis, E. P. Markatos
Institute of Computer Science

Foundation for Research and Technology, Hellas
PO Box 1385, Heraklion, Crete, Greece

{antonat,akritid,markatos}@ics.forth.gr

K. G. Anagnostakis
Internet Security Lab

Institute for Infocomm Research
21 Heng Mui Keng Terrace, Singapore

kostas@i2r.a-star.edu.sg

ABSTRACT
Worms are self-replicating malicious programs that repre-
sent a major security threat for the Internet, as they can
infect and damage a large number of vulnerable hosts at
timescales where human responses are unlikely to be effec-
tive. Sophisticated worms that use precomputed hitlists of
vulnerable targets are especially hard to contain, since they
are harder to detect, and spread at rates where even auto-
mated defenses may not be able to react in a timely fashion.

This paper examines a new proactive defense mechanism
called Network Address Space Randomization (NASR) whose
objective is to harden networks specifically against hitlist
worms. The idea behind NASR is that hitlist information
could be rendered stale if nodes are forced to frequently
change their IP addresses. NASR limits or slows down hitlist
worms and forces them to exhibit features that make them
easier to contain at the perimeter. We explore the design
space for NASR and present a prototype implementation as
well as preliminary experiments examining the effectiveness
and limitations of the approach.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—In-

vasive software

General Terms
Security

Keywords
Internet Worms, Network Security, Traffic Analysis, Ran-
domization

1. INTRODUCTION
Worms are widely regarded to be a major security threat

facing the Internet today. Incidents such as Code Red[2, 31]

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WORM’05,November 11, 2005, Fairfax, Virginia, USA.
Copyright 2005 ACM 1-59593-229-1/05/0011 ...$5.00.

and Slammer[30] have clearly demonstrated that worms can
infect tens of thousands of hosts in less than half an hour, a
timescale where human intervention is unlikely to be feasi-
ble. More recent research studies have estimated that worms
can infect one million hosts in less than two seconds [41, 42,
46]. Unlike most of the currently known worms that spread
by targeting random hosts, these extremely fast worms rely
on predetermined lists of vulnerable targets, called hitlists,
in order to spread efficiently.

The threat of worms and the speed at which they can
spread have motivated research in automated worm defense
mechanisms. For instance, several recent studies have fo-
cused on detecting scanning worms [49, 22, 48, 34, 40, 47].
These techniques detect scanning activity and either block
or throttle further connection attempts. These techniques
are unlikely to be effective against hitlist worms, given that
hitlist worms do not exhibit the failed-connection feature
that scan detection techniques are looking for. To improve
the effectiveness of worm detection, several distributed early-
warning systems have been proposed [52, 32, 53, 10]. The
goal of these systems is to aggregate and analyze informa-
tion on scanning or other indications of worm activity from
different sites. The accuracy of these systems is improved
as they have a more “global” picture of suspicious activity.
However, these systems are usually slower than local detec-
tors, as they require data collection and correlation among
different sites. Thus, both reactive mechanisms and coop-
erative detection techniques are unlikely to be able to react
to an extremely fast hitlist worm in a timely fashion.

Observing this gap in the worm defense space, we consider
the question of whether it is possible to develop defenses
specifically against hitlist worms. We start by looking at
likely strategies for building hitlists and examine how effec-
tive these strategies can be. We observe that hitlists tend
to decay naturally for various reasons, as hosts disconnect
and applications are abnormally terminated. A rapidly de-
caying hitlist is likely to decrease the spread rate of a worm.
It may also increase the number of unsuccessful connections
it initiates and may thus increase the exposure of the worm
to scan-detection methods.

Starting with this observation, we ask whether it is pos-
sible to intentionally accelerate hitlist decay, and propose
a specific technique for this purpose called network address

space randomization (NASR). This technique is primarily
inspired by similar efforts for security at the host-level [50,
16, 51, 15, 36, 26, 14]. It is also similar in principle to
the “IP hopping” mechanism in the APOD architecture[12],

Figure 1: Propagation speed of different types of
worm attacks

BBN’s DYNAT[27] and Sandia’s DYNAT[29] systems, all
three designed to confuse targeted attacks by dynamically
changing network addresses. In this paper, we examine the
same basic idea in the context of defending against hitlist
worms. In its simplest form, NASR can be implemented by
adapting dynamic network address allocation services such
as DHCP[19]1 to force more frequent address changes. This
simple approach may be able to protect enabled networks
against hitlist worms, and, if deployed at a large enough
scale, may be able to significantly hamper their spread.

We must emphasize that, like most (if not all) other worm
containment proposals, NASR is only a partial solution to
the worm containment problem. Where applicable, our ap-
proach succeeds in limiting the extent or slowing down the
rate of a worm infection. However, the mechanism is specific
to IP-hitlist worms, and may be less effective against DNS
hitlists (we discuss such issues in Section 5). Furthermore,
it cannot always completely squash hitlist-based worm epi-
demics, and it cannot be used universally. Nevertheless, be-
ing able to slow down the fastest known propagation mech-
anism is likely to be valuable, as it may allow more time
for other reactive defenses to kick in. Furthermore, we note
that our analysis does not invalidate the worst-case esti-
mates provided in previous work, nor is our goal to play
down the threat posed by such worms. The purpose of this
paper is to help examine whether NASR is worth considering
as part of a broader worm defense portfolio.

In the rest of this paper, we present NASR in more detail
and examine issues of applicability, effectiveness and imple-
mentation cost.

2. NETWORK ADDRESS SPACE
RANDOMIZATION

The goal of network address space randomization (NASR)
is to force hosts to change their IP addresses frequently
enough so that the information gathered in hitlists is ren-
dered stale by the time the worm is unleashed.

2.1 Abstract model of NASR
To illustrate the basic idea more formally, consider an ab-

stract system model, with an address space R = {1, 2, ..., n},
a set of hosts H = {h1, ..., hm} where m < n, and a function
A that maps all hosts hk to addresses A(hk) = r ∈ R. As-
sume that at time ta, the attacker can (instantly) generate
a hitlist X ⊂ R containing the addresses of hosts that are
live and vulnerable at that time. If the attack is started at
time tx and all hosts in X are still live and vulnerable and
have the same address as at time ta, then the worm can very
quickly infect |X| hosts.

1Another known address allocation service is bootp[18], but
it allocates addresses semi-permanently, without any mech-
anism for renewing the allocation and is thus not usable for
our purposes.

In a system implementing NASR, consider that at time tb,
where ta < tb < tx, all hosts are assigned a new address from
R. Thus, at the time of the attack tx the probability that
a hitlist entry xk still corresponds to a live host is p = m/n
and thus the attacker will be able to infect (m/n)|X| hosts.
Besides reducing the number of successfully infected nodes
in the hitlist, the attack will also result in a fraction 1−m/n
of all attempts failing (which may be detectable using ex-
isting techniques). In this simple model, the density m/n
of the address space seems to be a crucial factor in deter-
mining the effectiveness of NASR. So far we have assumed
a homogeneous set of nodes, all with the same vulnerability
and probability of getting infected. If only a subset of the
host population is vulnerable to a certain type of attack,
then the effectiveness of NASR in reducing the fraction of
infected hitlist nodes and the number of failed attempts is
proportionally higher.

2.2 Practical constraints
The model we presented illustrates the basic intuition of

how NASR can affect a hitlist worm. Mapping the idea
to the reality of existing networks requires us to look into
several practical issues.

2.2.1 Scope
Random assignment of an address from a global IP ad-

dress space pool is not practical for several reasons: (i) it
would explode the size of routing tables, the number of rout-
ing updates and the frequency of recomputing routes, (ii) it
would result in tremendous administrative overhead for re-
configuring mechanisms that make address-based decisions,
such as those based on access lists and (iii) it would require
global coordination for being implemented. The difficulty
of implementing NASR decreases as we restrict its scope
to more local regions. Each AS could implement AS- or
prefix-level NASR, but this would still create administrative
difficulties with interior routing and access lists. It seems
that a reasonable strategy would be to provide NASR at
the subnet-level, although this does not completely remove
the problems outlined above. For instance, access lists would
need to be reconfigured to operate on DNS names and DNS
would need to be dynamically updated when hosts change
addresses. It is also obvious that it is pointless to imple-
ment NASR behind NATs, as the internal addresses have
no global significance. It is sufficient to change the address
of the NAT endpoint (e.g., DSL/home router) to protect the
internal hosts.

2.2.2 Static addressing
Some nodes cannot change addresses and those that can

may not be able to do so as frequently as we would want.
The reason for this is that addresses have first-class transport-
and application-level semantics. For instance, DNS server
addresses are usually hardcoded in system configurations.
Even for DHCP-configured hosts, changing the address of a
DNS server would require synchronizing the lease durations
so that the DNS server can change its address at exactly the
same time when all hosts refresh their DHCP leases. While
technically feasible, this seems too complex to implement
and such complexity should be avoided. Similar constraints
hold for routers.

2.2.3 DNS updates
For services referenced through the DNS name, such as

email, FTP and Web servers, implementing NASR requires
the DNS name to accurately reflect the current IP address
of the host. This means that the DNS time-to-live timers
need to be set low enough so that remote clients and name
servers do not cache stale data when an address is changed.
The NASR mechanism also needs to interact with the DNS
server to keep the address records up to date. It is rea-
sonable to ask whether this could increase the load on the
DNS system, given that lower TTLs will negatively affect
DNS caching performance. Fortunately, a recent study of
DNS performance suggests that reducing the TTLs of ad-
dress records to values as low as a few hundred seconds does
not significantly affect DNS cache hit rates [23].

2.2.4 Tolerance to address changes
Generally, all active TCP connections on a host that chan-

ges its address would be killed, unless connection migration
techniques such as [21, 39, 13] are used. Such techniques are
not widely deployed yet and it is unrealistic to expect that
they will be deployed in time to be usable for the purposes
of NASR. Many applications are not designed to tolerate
connection failures. For instance, NFS clients often hang
when the server is lost, and do not transparently re-resolve
the NFS server address from DNS before reconnecting.

Fortunately, many applications are designed to deal with
occasional connectivity loss by automatically reconnecting
and recovering from failure, and more recent research pro-
totypes even explicitly deal with such failures[24]. For such
applications, we can assume that infrequent address changes
can be tolerated. Examples of these applications are many
P2P clients, like Kazaa and DirectConnect as well as Win-
dows/SAMBA sharing (when names are used), messengers,
FTP clients, chat tools, etc. However, tolerance does not al-
ways come for free: frequent address changes may result in
churn in DHT-based applications and would generally have
the side-effect of increasing stale state in other distributed
applications, including P2P indexing and Gnutella-like host
caches.

There exist ways to make systems more robust to address
changes. In a LAN environment, a solution using a “reverse
NAT” may be applicable in some cases, with the client host
being oblivious to address changes and the NAT box making
sure that address changes do not affect applications. In this
setup, the internal address used for communication between
the host and the NAT would remain the same. The external
address would change, but the change would only apply to
new connections. Old connections would continue to oper-
ate over the old address until they are terminated. Until all
old connections are terminated, a host would require two ad-
dresses to be allocated. While we do not have any measure-
ments determining how much this approach costs in terms
of address waste, we expect the number to be reasonable.
However, we must admit that the overall approach seems to
require an infrastructure overhaul that we would prefer to
avoid.

Another option, which appears more attractive, is to make
the NASR mechanism aware of the active connections on
each host, so that address changes can be timed to coincide
with the host being inactive. We will discuss one possible
approach to address this problem in the next section.

2.3 Implementation
The practical constraints presented in the previous sec-

tions suggest that NASR should be implemented very care-
fully. A plausible scenario would involve NASR at the sub-
net level and particularly for client hosts in DHCP-managed
address pools. How such concessions affect NASR, as well as
the rate at which address changes should be made for NASR
to be effective will be explored in more detail in Sections 4
and 5.

A basic form of NASR can be implemented by config-
uring the DHCP server to expire DHCP leases at inter-
vals suitable for effective randomization. The DHCP server
would normally allow a host to renew the lease if the host
issues a request before the lease expires. Thus, forcing ad-
dresses changes even when a host requests to renew the lease
before it expires requires some minor modifications to the
DHCP server. Fortunately, it does not require any mod-
ifications to the protocol or the client. We have imple-
mented an advanced NASR-enabled DHCP server, called
Wuke-DHCP, based on the ISC open-source DHCP imple-
mentation[20]. To minimize the “collateral damage” caused
by address changes we introduce two modules in our DHCP
implementation: an activity monitoring module, and a ser-

vice fingerprinting module.
The activity monitoring module keeps track of open con-

nections for each host with the goal of avoiding address
changes for hosts whose services could be disrupted. In
our prototype, we only consider long-lived TCP connections
(that could be, for example, FTP downloads). More compli-
cated policies can be implemented but are outside the scope
of our proof-of-concept implementation. Wuke-DHCP com-
municates with a flow monitor that records all active ses-
sions of all hosts in the subnet. The flow monitor responds
with the number of active connections that are sensitive to
address changes.

Service fingerprinting examines traffic on the network and
attempts to identify what services are running on each host.
The purpose of service fingerprinting is two-fold. First, we
want to supplement activity monitoring with some context
to make address change decisions by indicating whether a
connection failure is tolerable by the end-system. Second, we
want to avoid assigning an address to a host that has signif-
icant overlap in services (and potential vulnerabilities) with
hosts that recently used the same address. For instance, ran-
domization between hosts with different operating systems,
e.g., between a Windows and a Linux platform appears as a
reasonable strategy. Our implementation of service finger-
printing is rudimentary: we only use port number informa-
tion obtained through passive monitoring to identify OS and
application characteristics. For instance, a TCP connection
to port 80 suggests that the host is running a Web server,
and port 445 is an indication that a host might be a Win-
dows platform. In an operational setting, more elaborate
techniques would be necessary, such as the passive tech-
niques described in [25, 35] and active probing techniques
implemented as part of open-source tools[9, 7, 6, 5].

In our implementation, we use three timers on the DHCP
server for controlling host addresses. The refresh timer de-
termines the duration of the lease communicated to the
client. The client is forced to query the server when the
timer expires. The server may or may not decide to renew
the lease using the same address. The soft-change timer is
used internally by the server to specify the interval between

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

fr
ac

tio
n

of
 n

od
es

time (days)

ICMP ping scan hitlist decay

(a)

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

 0 1 2 3 4 5 6 7 8 9 10 11 12

fr
ac

tio
n

of
 n

od
es

 r
es

po
nd

in
g

time (days)

Gnutella hitlist decay

(b)

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

 0 1 2 3 4 5 6 7 8 9 10 11 12

fr
ac

tio
n

of
 n

od
es

 r
es

po
nd

in
g

time (days)

Search-engine hitlist decay

(c)

Figure 2: Decay of addresses harvested using different methods: (a) using random scanning, (b) by monitoring
peer-to-peer traffic router through a Gnutella peer, and (c) by querying a popular web search engine

address changes, assuming that the flow monitor does not
report any activity for the host. A third, hard-change timer
is used to specify the maximum time that a host is allowed
to keep the same address. If this timer expires, the host
is forced to change address, despite the damage that may
be caused. We explore the configuration of these timers in
Section 3.3.

3. MEASUREMENTS
To explore the design space of network address space ran-

domization we first need to consider some basic hitlist char-
acteristics, such as the speed at which a hitlist can be con-
structed, the rate at which addresses already change (with-
out any form of randomization), and how address space is
allocated and utilized. We perform measurements on the
Internet to obtain a more clear picture of these characteris-
tics.

3.1 Hitlist generation strategies
There are two key issues that need to be examined to

determine how hitlist generation strategies relate to the ef-
fectiveness of NASR. First, we need to have a rough estimate
of the speed at which an attacker can generate a hitlist. Sec-
ond, we need to determine whether these strategies produce
reasonably accurate hitlists, given that hitlists may decay
naturally.

Unfortunately, we cannot accurately measure hitlist gen-
eration speeds. The speed that can be achieved will depend
heavily on the defense mechanisms deployed, for which we
do not have any robust operational data, as well as the gen-
eration strategies used, which we could not exhaustively an-
alyze to produce a safe estimate.

We must note that although it seems reasonable to assume
that IP-level stealth scans can take days or weeks to do
properly, a skilled attacker may be able to use a botnet to
speed up data collection. Systems such as DShield[1] and
DOMINO[52] should be able to detect this activity, but the
exact thresholds under which the attacker would have to
operate to evade detection are unclear at this point.

We must also note that application-level probing appears
as a bigger threat, as some distributed applications provide
protocol functionality for crawling that can be exploited by
an attacker to rapidly build hitlists. For example, by crawl-
ing through selected Gnutella superpeers, we were able to
collect 520,000 unique IPs within 5 minutes. Normal crawl-

ing through regular peers was significantly slower, as we will
discuss briefly in Section 3.1.2. Of course, additional prob-
ing would be needed to determine client software and version
information, assuming that the worm can only infect specific
software versions.

Given the complexity and intricacies of this question, we
defer the answer to future work. For the purposes of this
paper, it seems reasonable to expect that if such discov-
ery functionality is determined to be dangerous, it may be
disabled or at least carefully monitored. Recent experience
with the Santy worm[8], that used Google to search for vic-
tims, seems to support this assumption, as Google quickly
responded by blocking requests originating from the worm.

Next, we briefly present three different hitlist generation
strategies and focus on their effectiveness in terms of natural
decay rates.

3.1.1 Random scanning
We determine the effectiveness of random scanning for

building hitlists. We first generate a list of all /16 prefixes
that have a valid entry with the whois service, in order to
increase scan success rates and avoid reserved address space.
We then probe random targets within those prefixes using
ICMP ECHO messages. Using this approach, we generated
a hitlist of 20,000 addresses. Given this hitlist, we probe
each target in the hitlist once every hour for a period of two
weeks. Every probe consists of four ICMP ECHO messages
spaced out over the one-hour run in order to reduce the prob-
ability of accidentally declaring an entry stale (e.g., because
of short-term congestion or connectivity problems). Note
that these measurements do not give us exactly the prob-
ability of the worm successfully infecting the target host,
but only a rough estimate. Although we were tempted to
perform more insightful reconnaissance probes on the nodes
in the hitlist, this would result in a much higher cost in
terms of traffic and a high risk of causing (false) alarms at
the target networks. More accurate results could be ob-
tained using full port scans, application-level fingerprinting
and more frequent probes needed for ipid-based detection
of host changes[17, 28].

The results of the ICMP ECHO experiment are shown in
Figure 2(a). We observe that the hitlist decays rapidly dur-
ing the first day and continues to decay, albeit very slowly,
over the rest of the two-week run. The number of reachable
nodes tends to vary during the time of day, apparently peak-
ing on business hours in the US with minor peaks that may

coincide with working hours elsewhere in the world. Over-
all, the decay of the hitlist slows down over time, reaching
an almost stable level of 75% of hitlist nodes reachable.

3.1.2 Passive P2P snooping
In the Gnutella P2P network, node addresses are carried

in QueryHit and Pong messages. By snooping on these mes-
sages, a Gnutella client can harvest thousands of addresses
without performing any atypical operations. In our experi-
ments, a 24-hour period sufficed for gathering 200K unique
IP addresses, as shown in Figure 3. Intensive searches and
the use of other, more popular P2P networks will probably
result in a higher yield.

Most P2P nodes are short-lived, and therefore addresses
harvested through P2P networks become unavailable very
quickly. Figure 2(b) shows the decay of the hitlist as a func-
tion of elapsed time. Note that in this experiment we only
check whether the nodes respond to ICMP ECHO probes,
not whether the Gnutella client is still up and running.
Thus, it is possible that the IP address is not used by the
same host recorded in the hitlist. This may or may not
be important for the attacker, depending on how much the
attack depends on software versions and whether version
information has been used in constructing the hitlist.

3.1.3 Search-engine harvesting
Querying a popular search engine for the or similar key-

words returns hundreds of millions of results. Retrieving a
thousand results gave 612 unique alive hosts and 30 dead
hosts. Most search engines restrict the number of results
that can be retrieved, but the attacker can use multiple key-
words either randomly generated or taken from a dictionary.

The hosts that immediately appear as dead are a result of
the frequency of the indexing by the search engine. It plays
a role in the speed of harvesting the addresses and must be
considered for the decay if the addresses are not checked.

Figure 2(c) shows the decay of the hitlist created using
the search engine results. We observe that, compared to the
other address sources, the search engine results are very sta-
ble. This was expected, since web servers have to be online
and use stable addresses. It does not mean, however, that
addresses retrieved through search engines are better suited
for attackers. Depending on the vulnerability at hand, un-
protected, client PCs, such as those returned by crawling
peer-to-peer networks may be preferred.

3.2 Subnet address space utilization
The feasibility and effectiveness of NASR depend on the

fraction of unused addresses in NASR-enabled subnets. Per-
forming randomization on a sparse subnet will result in more
connection failures for the hitlist worm compared to a dense
subnet. Such failures could expose the worm as they could
be picked up by scan-detection mechanisms. In a dense sub-
net with homogeneous systems (e.g., running the same ser-
vices) the worm is more likely to succeed in infecting a host,
even if the original host recorded in the hitlist has actually
changed its address. Finally, in the extreme (and probably
rare) case of a subnet that is always fully utilized, there will
never be a free address slot to facilitate address changes.

We attempt to get an estimate of typical subnet utiliza-
tion levels. Because of the high scanning activity, we cannot
perform this experiment globally without tripping a large
number of alerts. We therefore opted for scanning five /16

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 3 6 9 12 15 18 21

U
ni

qu
e

H
ar

ve
st

ed
 A

dd
re

ss
es

Time (Hours)

1 node
2 nodes
3 nodes
4 nodes

Figure 3: Number of distinct addresses harvested
by monitoring Gnutella traffic as a function of time
and number of monitoring nodes.

prefixes that belong to FORTH, the University of Crete and
a large ISP, after first obtaining permission by the admin-
istrators of the networks. We performed hourly scans on
all prefixes using ICMP ECHO messages over a period of one
month.

A summary of the results is shown in Figure 4. For sim-
plicity, we assume that all prefixes are subnetted in /24’s.
We see that many subnets were completely dark with no
hosts at all (not even a router). Nearly 30% of the sub-
nets in two ISP prefixes were totally empty, while for the
FORTH and UoC the percentage reaches 70%. This means
that swapping subnets would likely be an effective NASR
policy, but unfortunately it is not practical, as discussed in
Section 2.2.1. We also see that 95% of these subnets have
less than 50% utilization and the number of maximum live
hosts observed does not exceed 100. If subnet utilization at
the global level is similar to what we see in our limited ex-
periment, then NASR at the level of /24 subnets is likely to
be quite effective, as there is sufficient room to move hosts
around, reducing the effectiveness of the worm and causing
it to make failed connections.

3.3 The cost of NASR: address change
frequency vs. application failures

We attempt to estimate the “collateral damage” caused
by NASR. The damage depends on how frequently the ad-
dress changes occur, whether hosts have active connections
that are terminated and whether the applications can re-
cover from the transient connectivity problems caused by
an address change.

We first consider a scenario where host addresses are only
changed when a node is rebooted. In this case, we know
that the failure rate is zero, and try to determine what ad-
dress change frequency this would permit. We measured the
maximum uptime for hosts on the three networks presented
previously.

The measured distribution is shown in Figure 5. The live-
ness of the hosts was monitored for a full week by sending
ping messages every hour. Almost 60% of the hosts in-
side FORTH were always up, which seems reasonable for
an environment consisting mostly of workstations. In more

 0

 20

 40

 60

 80

 100

 24 48 72 96 120 144 168

P
er

ce
nt

ag
e

of
 h

os
ts

Max. host uptime (hours)

FORTH
UoC

ISP prefix 1
ISP prefix 2
ISP prefix 3

Figure 5: Distribution of host upti-
mes in 5 different networks

hard limit (hours)
0 4 8 12 16 20 24

%
 o

f c
on

ne
ct

io
ns

 a
bo

rt
ed

.001

.01

.1

1

10

UCNET BELL WEBICS LEIP

Figure 6: Percentage of aborted con-
nections as a function of the hard
change limit

soft limit (hours)
0 0.5 1 1.5 2 2.5 3 3.5 4

%
 o

f c
on

ne
ct

io
ns

 a
bo

rt
ed

0

0.2

0.4

0.6

0.8

1

1.2
UCNET BELL WEBICS LEIP

Figure 7: Percentage of aborted con-
nections as a function of the soft
change limit

 0

 20

 40

 60

 80

 100

 0 32 64 96 128 160

P
er

ce
nt

ag
e

of
 to

ta
l s

ub
ne

ts

Hosts per subnet

FORTH
UoC

ISP prefix 1
ISP prefix 2
ISP prefix 3

Figure 4: Subnet address space utilization

dynamic environments, like the ISP and the University of
Crete networks only 20-30% of the hosts were continuously
up and running, while nearly 40% of the hosts had a max-
imum uptime of 10 hours. These results lead to two ob-
servations. First, although it may be possible to perform
NASR once every 1-4 days for hosts only when they reboot,
thus not causing any disruption, a significant fraction of
hosts has a longer uptime. Considering that we may want
to change addresses more aggressively, this trivial form of
randomization is unlikely to be sufficient. Second, although
such dynamic environments perform some form of natural
randomization on their address space, mostly due to DHCP,
most of the DHCP servers are configured to maintain leases
for machines connecting to the network. The usual scenario
is that a DHCP server is giving the same IP to a specific host
(by caching its Ethernet address). Typically, a lease expires
in 15 days, so hosts that do not refresh the lease before it
expires (e.g., because they are not connected) would obtain
a new address. Although we do not have measurements on
how often this happens, it appears that this minor, slow
form of randomization is unlikely to be effective by itself.

Given the above, we try to estimate the aborted connec-
tions caused by more aggressive randomization, by simulat-
ing NASR with different parameters on four different traces:
a one-week contiguous IP header trace collected at Bell Labs

research[3], a 5-day trace from the University of Leipzig[4],
a 1-day trace from the University of Crete, and a 20-day
trace from a link serving a single Web server at FORTH-
ICS. For the first experiment, we use a refresh timer of 1
minute, a soft-change timer of 2 hours and vary the hard-
change timer. The results are shown in Figure 6. As ex-
pected, there is a clear downward trend as the timer in-
creases, consistent among different traces. An observation
that initially surprised us was that the means of our samples
did not converge towards a smooth, monotonically decreas-
ing function, despite hundreds of simulations for each value
of the hard-timer and the initial “last-lease” times for each
host randomized. The samples we obtained indicated a be-
havior that was almost deterministic. Indeed, a closer look
revealed that the address change process for the same value
of the hard-change timer is synchronized for each host across
different simulations. The first synchronization point is the
first successful soft-change event, which depends only on the
timings of the flows in the trace and the soft-change timer,
which both remain constant across different experiments.
Thus, we consider this to be an artifact of our experiment.

We also examine how the failure rate is affected when we
keep the hard-change timer constant, at 4 hours and vary the
soft-change timer. The results are shown in Figure 7. We see
very little change as we vary the soft-change timer. There
is a small improvement as soft-change decreases, because we
can hit a small number of additional connection-free hosts.

A closer examination of the raw data reveals that more
than 90% of the failures come from a few highly active hosts.
These hosts almost always have some active connections
which will always be aborted, regardless of how much we
relax the timer. Thus, it might make sense for the DHCP
server to also make exceptions and not strictly enforce the
hard-change limit for such hosts that are highly active, as-
suming they represent only a small fraction of hosts on the
network. We also note that our analysis overestimates the
failure rates because we do not filter out those applications
that are resilient to aborted connections.

Overall, we observe that the failure rates are reasonable
when compared to typical connection failure measurements
on network links[11] and typical false positive rates of attack
detection heuristics [43, 45, 38, 33].

4. IMPACT OF NASR ON WORM
INFECTION

It is infeasible to run experiments on the scale of the global
Internet. To evaluate the effectiveness of our design, we
simulated a small-scale (compared to the Internet) network
of 1,000,000 hosts, each of which could be a potential target
of worms.

Because of the variety of operating systems used and ser-
vices provided, we assume that a fraction of hosts v is vul-
nerable to the worm. For simplicity, we ignore the details of
the network topology, including the effect of end-to-end de-
lays and traffic generated by the worm outbreak. We simply
consider a flat topology of routers, each serving a subnet of
end-hosts.

A fraction of addresses is allocated in each subnet, which
affects the probability of successful scan attempts within the
subnet. This probability is an important parameter in the
case where a host in the hitlist has changed its address, be-
cause it determines if another live host would be available at
the same address. A separate parameter is used for random
scanning, reflecting the fraction of the overall address space
that is completely unused.

The hitlist is generated at configurable rates, and we as-
sume that the worm starts spreading immediately after fin-
ishing with generating the hitlist. Because the early hitlist
entries are more likely to have become stale between their
discovery and the start of the attack, the worm starts attack-
ing the freshest addresses in the hitlist first. For simplicity,
we ignore the details of how the hitlist is distributed and
encoded in the payload of the worm: we assume that ev-
ery worm instance can obtain the next available entry at
zero cost. After finishing with the hitlist, we assume that
the worm may continue trying to infect hosts using random
scanning.

4.1 Impact of NASR
In the first experiment, we simulate worm outbreaks with

different parameters, and measure the worm spread time,
expressed in terms of the time required for the worm to in-
fect 90% of the vulnerable hosts. We compare the impact
of network address space randomization, varying how fast
the hitlist is generated and how fast the host addresses are
changed. The fraction of vulnerable hosts is 20%, the in-
ternal scan success probability is 0.3 (based on the subnet
utilization measurements of Section 3.2) and the random
scanning success probability is 0.05 (based on the measure-
ments presented in Section 3.1.1).

The results are shown in Figure 8. We observe that NASR
achieves the goal of slowing down the worm outbreak, in
terms of the time to reach 90% infection,from 5 minutes
when no NASR is used to between 24 and 32 minutes when
hosts change their addresses very frequently. As expected,
defending against hitlists that are generated very fast re-
quires more frequent address changes. It appears that the
mean time between address changes needs to be 3-5 times
less than the time needed to generate the hitlist for the ap-
proach to reach around 80% of its maximum effectiveness,
while more frequent address changes give diminishing re-
turns. Considering the observations of Section 4, it appears
that daily address changes could significantly slow down a
worm whose hitlist is generated by passive snooping on a
P2P network.

Note that when using NASR, the hitlist worm is not com-

pletely reduced to a random-scanning worm: knowledge of
subnets that have even one host available already gives the
worm some advantage over a purely random-scanning worm.
In this particular experiment, it would take roughly 30 min-
utes for the hitlist worm to infect the whole network (under
NASR), and 2 hours for a purely scanning worm. This is
the result of performing subnet-level instead of global-level
NASR; global-level NASR would indeed reduce the hitlist
worm to random-scanning. We must also note that although
the spread times reported depend on scanning frequency, the
relative improvement when using NASR appears to be con-
stant.

The above experiment assumed that the hitlist worm will
fall back to random scanning after exhausting the hitlist.
For a pure hitlist worm, the fraction of nodes that are suc-
cessfully infected is equal to the fraction of valid hitlist en-
tries. The fraction of valid hitlist entries for different address
change and hitlist generation times is shown in Figure 11.
Again we observe that NASR is quite effective, even for short
hitlist generation times.

We also simulated NASR with different fractions of vul-
nerable hosts, and average subnet utilization. The impact
of NASR is greater in terms of slowing down the infection
for smaller vulnerable populations. This is expected, as in
such cases the failure rate for stale entries is higher com-
pared to a network where every available host is vulnerable.
The results for the impact of NASR as a function of subnet
utilization are similar: higher subnet utilization results in
a higher success rate when hitting stale entries. However,
NASR remains effective even for 90% subnet utilization.

4.2 Partial deployment scenario
We have so far assumed that NASR is deployed globally

throughout the network. In reality, it is more likely that only
a fraction of subnets will employ the mechanism, such as
dynamic address pools. As we are not aware of any studies
estimating the fraction of DHCP pools in the Internet, we
measure the effectiveness of NASR for different values for the
fraction of NASR-enabled subnets. The results are shown in
Figure 9. We observe that NASR continues to be effective
in slowing down the worm, even when deployed in 20% or
40% of the network. The worm still infects the non-NASR
subnets quite rapidly, with a slowdown in the order of 50%
caused by the worm failing to infect NASR subnets. In
other words, NASR has a milder but still notable impact on
non-NASR hosts. However, the worm will have to resort to
random scanning after exhausting the hitlist, and it will take
significantly more time to infect NASR compared to non-
NASR subnets. This observation suggests that there is a
clear incentive for network administrators to deploy NASR,
as it may provide them the critical amount of time needed
to react to a worm outbreak.

4.3 Interaction with scan-blocking
Hitlist worms are generally immune to scan-blocking mech-

anisms such as [47]. Even for the natural decay rates mea-
sured in Section 4, such worms would still be under the
detection threshold most of the time. Randomization, how-
ever, will cause many infection attempts to fail, as hosts
change addresses and their previous addresses are either
unused or used by a different host that may or may not
run the same service, and thus may or may not be vul-
nerable. To determine the interaction between NASR and

 0

 5

 10

 15

 20

 25

 30

 35

1 week1 day6h3h1h30m15m

tim
e

to
 9

0%
 in

fe
ct

io
n

(m
in

ut
es

)

mean time between address changes (log-scale)

time to build hitlist
1 hour

10 hours
100 hours

Figure 8: Worm spread time (time to
90% infection) vs. time between host
address changes for different hitlist
generation rates

 0

 5

 10

 15

 20

 25

 30

1 week1 day6h3h1h30m15m

tim
e

to
 9

0%
 in

fe
ct

io
n

(m
in

ut
es

)

mean time between address change (log-scale)

iprand nodes
100%

80%
40%
20%

0%

Figure 9: Effect of network address
space randomization on worm spread
time when partially deployed

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

1 week1 day6h3h1h30m15m

fr
ac

tio
n

of
 n

od
es

 in
fe

ct
ed

mean time between address change (log-scale)

time to build hitlist
1 hour

10 hours
100 hours

Figure 10: Maximum fraction of in-
fected hosts vs. time between host
address changes for different hitlist
rates assuming scan-blocking mecha-
nisms

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 week1 day6h3h1h30m15m

fr
ac

tio
n

of
 v

al
id

 h
itl

is
t e

nt
rie

s

mean time between address changes (log-scale)

time to build hitlist
1 hour

10 hours
100 hours

Figure 11: Effect of NASR on hitlist
decay

 0

 5

 10

 15

 20

 25

 30

 35

1 week1 day6h3h1h30min

tim
e

to
 9

0%
 in

fe
ct

io
n

(m
in

ut
es

)

mean time between address change (log-scale)

subnet util
90%
80%
30%
10%

Figure 12: Effect of NASR vs. sub-
net usage density

 0

 5

 10

 15

 20

 25

 30

1 week1 day6h3h1h30m15m

tim
e

to
 9

0%
 in

fe
ct

io
n

(m
in

ut
es

)

mean time between address change (log-scale)

vuln. hosts
100%

80%
40%
20%

Figure 13: Effect of NASR for differ-
ent vulnerable host populations

scan-blocking mechanism we simulate worm outbreaks in a
network where both NASR and scan-blocking are deployed.
As scan-blocking contains the outbreak, in this experiment
we measure the maximum fraction of hosts that are infected
in the presence of NASR together with scan-blocking. The
results are shown in Figure 10. We observe that if NASR is
performed according to the rule-of-thumb observation made
previously (e.g., with address changes at a rate that is 3-5x
faster than hitlist generation), the infection can be contained
to under 15% of the vulnerable population.

5. DISCUSSION
The experiments presented in Sections 4 and 5 suggest

that network address space randomization is likely to be
useful. However, these results should only be treated as pre-
liminary, as there are several issues that need to be examined
more closely before reaching any definite conclusions.

First, the interaction between NASR and other defense
mechanisms needs to be studied in more depth. Our simu-
lation results show that NASR enables scan-blocking mecha-
nisms to contain the worm to under 15% infection. However,
scan-blocking is not entirely foolproof, at least in its current
form. For example, a list of known repliers can be used
to defeat the failed-connection test used by these mecha-
nisms, by padding infection attempts with successful probes
to the known repliers. Whether it is possible to design better
mechanisms for detecting and containing scanning worms
is thus still an open question. Therefore, we should also
consider other possibilities, including reactive defenses and

distributed detection mechanisms. As NASR is likely to at
least slow down worms, it may provide the critical amount of
time needed for distributed detectors such as DOMINO[52]
to kick in, and for reactive approaches to deploy patches[37]
or short-term filters[44]. Determining whether this is indeed
a possibility requires further experimentation and analysis.

Second, we have so far focused entirely on IP-level ad-
dress randomization, as IP hitlist worms seem to have the
most efficient propagation properties. On the one hand, we
have only considered IPv4 as deployed today. In an IPv6
Internet, the address space is so much bigger that random-
ization could be even more effective. On the other hand, we
need to also consider worms that use higher-level address-
ing schemes, such as DNS or DHT identifiers. DNS hitlist
worms will defeat NASR, assuming that hosts also update
their DNS records. This would be true for Web servers, but
when the DNS name is only a descriptor (such as a string
containing the IP address), which is typical for DHCP and
broadband address pools, a DNS-based hitlist worm would
not be successful. DNS hitlist worms would also suffer the
additional lookup latency, a slightly larger payload2 and the

2We measured the length of the fully qualified domain name
(FQDN) for several thousand entries obtained from a search
engine. The average length was 16 bytes. Servers that hold
web content tend to have shorter, more memorable names,
so we expect that this is a conservative estimate. We mea-
sured a 46% compression ratio for these strings, and there-
fore on average each entry will take up 7.5 bytes in the hitlist.
IP addresses take up 4 bytes, so storing DNS names causes

added risk of being detected. While we are not aware of
any such detection mechanism in place today, it could be
deployed, for example, on DNS servers.

Third, we have not considered how worm creators would
react to the widespread deployment of NASR. One option
would be for the attacker to perform a second round of
(stealthy) probing, and retain only entries that seem to be
stable over time. If NASR is partially deployed, then the
worm could infect the non-NASR part of the Internet, with-
out being throttled by stale entries or generating too many
failed connections. Interestingly, in this scenario all net-
works that employ NASR will be worm-free, unless the worm
switches to random scanning after finishing with the hitlist.
Even if this happens, NASR-enabled networks will still get
infected much later than the nodes in the hitlist. Although
we are not aware of any other possible reactions to the de-
ployment of NASR, we cannot safely dismiss the possibility
that worm creators could come up with other measures to
counter this defense. Thus, this question deserves further
debate and analysis.

6. RELATED WORK
Our work on network address space randomization was

inspired by similar techniques for randomization performed
at the OS level [50, 16, 51, 15, 36, 26, 14]. The general
principle in randomization schemes is that attacks can be
disrupted by reducing the knowledge that the attacker has
about the system. For instance, instruction set randomiza-
tion[26] changes the instruction set opcodes used on each
host, so that an attacker cannot inject compiled code using
the standard instruction set opcodes. Similarly, address ob-
fuscation[15] changes the locations of functions in a host’s
address space so that buffer-overflow exploits cannot predict
the addresses of the functions they would like to utilize for
hijacking control of the system. Our work at the network
level is similar, as it reduces the ability of the attacker to
build accurate hitlists of vulnerable hosts.

The use of IP address changes as a mechanism to de-
fend against attacks was proposed independently in [12],
[27] and [29]. Although these mechanisms are similar to
ours, there are several important differences in the threat
model as well as the way they are implemented. The main
difference is that they focus on targeted attacks, performing
address changes to confuse attackers during reconnaissance
and planning. Neither project discusses or analyzes the use
of such a mechanism for defending against worm attacks.

More specifically, the BBN DYNAT system[27] was de-
veloped as part of the DARPA Information Assurance Pro-
gram exploring the area of dynamic network defense, with
the hypothesis that dynamic network reconfiguration would
inhibit an adversary’s ability to gather intelligence, and thus
degrade the ability to successfully launch an attack. BBN’s
DYNAT operates by obfuscating host identity information
in TCP/IP headers when packets enter public parts of the
network. The obfuscation algorithm depends on a pre-esta-
blished keying parameter that varies with time. The eval-
uation shows that the adversary was a) severely time lim-
ited by the dynamic nature of the network, and b) forced
into more vulnerable and detectable behavior. We raise the
same arguments for defending typical LANs against hitlist
worm attacks, the main difference being that in our case

almost a doubling of the hitlist size.

the clients are loosely coupled to the servers and therefore
pre-established keying parameters were undesirable. In par-
ticular, the BBN approach requires a “shim” module to be
installed on the client to coordinate address changes with
the (modified) server, while in our approach we consider a
DHCP-based implementation that is easier to deploy as it
does not require any changes to the client. However, client-
side modifications make it easier for DYNAT to manage
address changes without affecting applications, unlike the
DHCP-based approach that requires additional care to min-
imize application disruption. The reason behind this differ-
ence in the two designs is that DYNAT assumes an adversary
that can passively listen to client-server communication. In
contrast, our work focuses on attackers performing scans and
other active harvesting activities to build a worm hitlist.

The APOD (Applications That Participate in Their Own
Defense) project [12] set out to develop technologies that
increase an application’s resilience against attacks. One of
the mechanisms they describe, called Port and Address Hop-
ping, is relevant to our work as it is designed to evade attacks
against a service by constantly changing its IP address and
TCP port using random numbers. The intention is both
to hide the service’s real identity and confuse the attacker
during reconnaissance. Packets intercepted by attackers will
reveal random addresses and ports, which are valid only for
a small period of time, e.g., 1 minute. For an attack to be
successful, the attacker must discover the current addresses
and ports and execute the attack all within one refresh cy-
cle. A stated additional benefit is the increased likelihood
of an attacker being detected. This mechanism too relies on
synchronization of random number generators and time syn-
chronization between the two components. Port hopping, as
opposed to address hopping, was not an option in our design
due to the loose coupling between clients and servers. APOD
also provides hopping functionality on protocol layers above
TCP, such as distributed CORBA calls, which requires ad-
ditional modification of TCP/IP data in the IIOP protocol.
This feature would be a reasonable addition to our proposal.

Sandia’s Dynamic Network Address Translation for net-
work protection is a similar proposal [29]. The authors dis-
cuss several types of dynamic address translation and point
out that the use of this approach is dependent on many dif-
ferent factors which can influence overall effectiveness. With
this in mind, they provide a detailed decision tree which al-
lows the designer to determine which type of address trans-
lation is suitable for a particular environment.

7. SUMMARY
We have explored the design and effectiveness of network

address space randomization (NASR), a technique that hard-
ens networks against IP hitlist worms. NASR forces hosts
to frequently change their network address, with the goal
of making hitlists stale. The approach is appealing in sev-
eral ways. First, it is effective in limiting the infection for
pure IP hitlist worms, or slowing down the infection for hy-
brid hitlist-scanning worms. Second, it forces both types
of worms to exhibit scan-like behavior that exposes them
to scan detection mechanisms. Third, it is relatively easy
to implement. Unlike network-level detection mechanisms,
NASR does not add any additional packet-level processing
on network elements. Unlike host-based detection or other
proactive mechanisms, it does not require any changes to
the end-points.

We have discussed various constraints that limit the ap-
plicability of NASR, such as the administrative overhead
for managing address changes, services that require static
addresses, and applications that do not tolerate address
changes. Our experiments indicate that the connection fail-
ure rates due to NASR are comparable to typical connection
failure rates on modern networks and typical false positive
rates of attack detection heuristics.

Our analysis also suggests that network segments that al-

ready perform dynamic address allocation, such as DHCP
pools for broadband, wireless networks, etc., are a suit-
able environment for deploying NASR without significantly
impairing functionality or adding administrative overhead.
Assuming that broadband users are less likely to be vigi-
lant and keep their systems secure, NASR appears promis-
ing. However, given that most worms so far have targeted
servers, and until better defenses are put in place, we believe
that the administrative overhead for implementing NASR
may be worth it even for servers, as NASR effectively allows
administrators to “opt-out” from IP hitlists.

Acknowledgments
This work was supported in part by the IST project LOB-
STER funded by the European Union under Contract No.
004336, and the GSRT project EAR (USA-022) funded by
the Greek Secretariat for Research and Technology. S. An-
tonatos, P. Akritidis and E. P. Markatos are also with the
University of Crete. We are indebted to Elias Athanasopou-
los for his gnutella crawler as well as the network admin-
istrators at FORTH-ICS, UoC and the anonymous ISP for
tolerating our intensive network scans. We also thank Sotiris
Ioannidis, the members of the I2R Security Department, the
members of the DCS group at FORTH-ICS, and the anony-
mous reviewers for providing valuable feedback on earlier
versions of this paper.

8. REFERENCES
[1] DShield: Distributed Intrusion Detection System.

http://www.dshield.org.
[2] CERT Advisory CA-2001-19: ‘Code Red’ Worm Exploiting

Buffer Overflow in IIS Indexing Service DLL.
http://www.cert.org/advisories/CA-2001-19.html, July
2001.

[3] NLANR-PMA Traffic Archive: Bell Labs-I trace.
http://pma.nlanr.net/Traces/Traces/long/bell/1, 2002.

[4] NLANR-PMA Traffic Archive: Leipzig-I trace.
http://pma.nlanr.net/Traces/Traces/long/leip/1, 2002.

[5] DISCO: The Passive IP Discovery Tool.
http://www.altmode.com/disco/, 2004.

[6] Fingerprinting: The complete documentation.
http://www.l0t3k.org/security/docs/fingerprinting/, 2004.

[7] Fingerprinting: The complete toolsbox.
http://www.l0t3k.org/security/tools/fingerprinting/, 2004.

[8] Net Worm Uses Google to Spread.
http://it.slashdot.org/it/04/12/21/2135235.shtml, Dec.
2004.

[9] THC-Amap. http://thc.org/releases.php, 2004.
[10] K. G. Anagnostakis, M. B. Greenwald, S. Ioannidis, A. D.

Keromytis, and D. Li. A Cooperative Immunization System
for an Untrusting Internet. In Proceedings of the 11th IEEE
International Conference on Networking (ICON), pages
403–408, Sept./Oct. 2003.

[11] M. Arlitt and C. Williamson. An Analysis of TCP Reset
Behaviour on the Internet. ACM SIGCOMM Computer
Communication Review, 35(1):37–44, 2005.

[12] M. Atighetchi, P. Pal, F. Webber, R. Schantz, and
C. Jones. Adaptive use of network-centric mechanisms in
cyber-defense. In Proceedings of the 6th IEEE

International Symposium on Object-oriented Real-time
Distributed Computing, May 2003.

[13] R. A. Baratto, S. Potter, G. Su, and J. Nieh. Mobidesk:
mobile virtual desktop computing. In Proceedings of the
10th Annual International Conference on Mobile
Computing and Networking (MOBICOM), pages 1–15.
ACM Press, 2004.

[14] E. G. Barrantes, D. H. Ackley, T. S. Palmer, D. Stefanovic,
and D. D. Zovi. Randomized instruction set emulation to
disrupt binary code injection attacks. In Proceedings of the
10th ACM Conference on Computer and Communications
Security, Oct. 2003.

[15] S. Bhatkar, D. DuVarney, and R. Sekar. Address
obfuscation: An efficient approach to combat a broad range
of memory error exploits. In In Proceedings of the 12th
USENIX Security Symposium, pages 105–120, Aug. 2003.

[16] J. S. Chase, H. M. Levy, M. J. Feeley, and E. D. Lazowska.
Sharing and protection in a single-address-space operating
system. ACM Transactions on Computer Systems,
12(4):271–307, 1994.

[17] W. Chen, Y. Huang, B. F. Ribeiro, K. Suh, H. Zhang,
E. de Souza e Silva, J. Kurose, and D. Towsley. Exploiting
the IPID field to infer network path and end-system
characteristics. In Proceedings of the 6th Passive and
Active Measurement Workshop (PAM 2005), Mar. 2005.

[18] B. Croft and J. Gilmore. Bootstrap Protocol (BOOTP).
RFC 951, http://www.rfc-editor.org/, Sept. 1985.

[19] R. Droms. Dynamic Host Configuration Protocol. RFC
2131, http://www.rfc-editor.org/, Mar. 1997.

[20] Internet Systems Consortium Inc. Dynamic host
configuration protocol (DHCP) reference implementation.
http://www.isc.org/sw/dhcp/.

[21] J. Ioannidis and G. Q. Maguire Jr. The design and
implementation of a mobile internetworking architecture. In
USENIX Winter, pages 489–502, 1993.

[22] J. Jung, V. Paxson, A. W. Berger, and H. Balakrishnan.
Fast Portscan Detection Using Sequential Hypothesis
Testing. In Proceedings of the IEEE Symposium on
Security and Privacy, May 2004.

[23] J. Jung, E. Sit, H. Balakrishnan, and R. Morris. DNS
performance and the effectiveness of caching. In
Proceedings of the 1st ACM SIGCOMM Internet
Measurement Workshop (IMW), Nov. 2001.

[24] M. Kaminsky, E. Peterson, D. B. Giffin, K. Fu, D. Mazires,
and M. F. Kaashoek. REX: Secure, extensible remote
execution. In In Proceedings of the 2004 USENIX
Technical Conference, pages 199–212, June-July 2004.

[25] T. Karagiannis, A. Broido, M. Faloutsos, and K. claffy.
Transport layer identification of P2P traffic. In IMC ’04:
Proceedings of the 4th ACM SIGCOMM conference on
Internet measurement, pages 121–134, New York, NY,
USA, 2004. ACM Press.

[26] G. S. Kc, A. D. Keromytis, and V. Prevelakis. Countering
Code-Injection Attacks With Instruction-Set
Randomization . In Proceedings of the ACM Computer and
Communications Security Conference (CCS), pages
272–280, Oct. 2003.

[27] D. Kewley, J. Lowry, R. Fink, and M. Dean. Dynamic
approaches to thwart adversary intelligence gathering. In
Proceedings of the DARPA Information Survivability
Conference and Exposition (DISCEX), 2001.

[28] T. Kohno, A. Broido, and kc Claffy. Remote physical device
fingerprinting. In IEEE Symposium on Security and
Privacy, May 2005.

[29] J. Michalski, C. Price, E. Stanton, E. L. Chua, K. Seah,
W. Y. Heng, and T. C. Pheng. Final Report for the
Network Security Mechanisms Utilizing Network Address
Translation LDRD Project. Technical Report
SAND2002-3613, Sandia National Laboratories, November
2002.

[30] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford,

and N. Weaver. Inside the slammer worm. IEEE Security &
Privacy, pages 33–39, July/Aug. 2003.

[31] D. Moore, C. Shannon, and J. Brown. Code-Red: a case
study on the spread and victims of an Internet worm. In
Proceedings of the 2nd Internet Measurement Workshop
(IMW), pages 273–284, Nov. 2002.

[32] D. Nojiri, J. Rowe, and K. Levitt. Cooperative response
strategies for large scale attack mitigation. In Proceedings
of the 3rd DARPA Information Survivability Conference
and Exposition (DISCEX), Apr. 2003.

[33] A. Pasupulati, J. Coit, K. Levitt, S. F. Wu, S. H. Li, J. C.
Kuo, and K. P. Fan. Buttercup: On Network-based
Detection of Polymorphic Buffer Overflow Vulnerabilities.
In Proceedings of the Network Operations and Management
Symposium (NOMS), pages 235–248, vol. 1, Apr. 2004.

[34] S. E. Schechter, J. Jung, and A. W. Berger. Fast Detection
of Scanning Worm Infections. In Proceedings of the 7th

International Symposium on Recent Advances in Intrusion
Detection (RAID), pages 59–81, Oct. 2004.

[35] S. Sen, O. Spatscheck, and D. Wang. Accurate, scalable
in-network identification of P2P traffic using application
signatures. In WWW ’04: Proceedings of the 13th
international conference on World Wide Web, pages
512–521, New York, NY, USA, 2004. ACM Press.

[36] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu,
and D. Boneh. On the effectiveness of address-space
randomization. In CCS ’04: Proceedings of the 11th ACM
Conference on Computer and Communications Security,
pages 298–307, New York, NY, USA, 2004. ACM Press.

[37] S. Sidiroglou and A. D. Keromytis. A network worm
vaccine architecture. In Proceedings of the IEEE
International Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises (WETICE),
Workshop on Enterprise Security, June 2003.

[38] S. Singh, C. Estan, G. Varghese, and S. Savage. Automated
worm fingerprinting. In Proceedings of the 6th Symposium
on Operating Systems Design & Implementation (OSDI),
Dec. 2004.

[39] A. C. Snoeren and H. Balakrishnan. An end-to-end
approach to host mobility. In MobiCom ’00: Proceedings of
the 6th annual international conference on Mobile
computing and networking, pages 155–166, New York, NY,
USA, 2000. ACM Press.

[40] S. Staniford. Containment of Scanning Worms in Enterprise
Networks. Journal of Computer Security, 2004.

[41] S. Staniford, D. Moore, V. Paxson, and N. Weaver. The top
speed of flash worms. In Proc. ACM CCS WORM, Oct.
2004

.
[42] S. Staniford, V. Paxson, and N. Weaver. How to Own the

Internet in Your Spare Time. In Proceedings of the 11th
USENIX Security Symposium, pages 149–167, Aug. 2002.

[43] T. Toth and C. Krügel. Accurate buffer overflow detection
via abstract payload execution. In Proceedings of the 5th
International Symposium on Recent Advances in Intrusion
Detection (RAID), Oct. 2002.

[44] H. J. Wang, C. Guo, D. R. Simon, and A. Zugenmaier.
Shield: vulnerability-driven network filters for preventing
known vulnerability exploits. In Proceedings of ACM
SIGCOMM’04, pages 193–204, 2004.

[45] K. Wang and S. J. Stolfo. Anomalous Payload-based
Network Intrusion Detection. In Proceedings of the 7th

International Symposium on Recent Advanced in Intrusion
Detection (RAID), pages 201–222, Sept. 2004.

[46] N. Weaver and V. Paxson. A worst-case worm. In Proc.
Third Annual Workshop on Economics and Information
Security (WEIS’04), May 2004.

[47] N. Weaver, S. Staniford, and V. Paxson. Very Fast
Containment of Scanning Worms. In Proceedings of the
13th USENIX Security Symposium, pages 29–44, Aug.
2004.

[48] M. Williamson. Throttling Viruses: Restricting
Propagation to Defeat Malicious Mobile Code. Technical
Report HPL-2002-172, HP Laboratories Bristol, 2002.

[49] J. Wu, S. Vangala, L. Gao, and K. Kwiat. An Effective
Architecture and Algorithm for Detecting Worms with
Various Scan Techniques. In Proceedings of the Network
and Distributed System Security Symposium (NDSS),
pages 143–156, Feb. 2004.

[50] J. Xu, Z. Kalbarczyk, and R. Iyer. Transparent runtime
randomization for security. In A. Fantechi, editor, Proc.
22nd Symp. on Reliable Distributed Systems –SRDS 2003,
pages 260–269, Oct. 2003.

[51] C. Yarvin, R. Bukowski, and T. Anderson. Anonymous
RPC: Low-latency protection in a 64-bit address space. In
In Proc. USENIX Summer 1993 Technical Conference,
pages 175–186, June 1993.

[52] V. Yegneswaran, P. Barford, and S. Jha. Global Intrusion
Detection in the DOMINO Overlay System. In Proceedings
of the Network and Distributed System Security
Symposium (NDSS), Feb. 2004.

[53] C. C. Zou, L. Gao, W. Gong, and D. Towsley. Monitoring
and Early Warning for Internet Worms. In Proceedings of
the 10th ACM International Conference on Computer and
Communications Security (CCS), pages 190–199, Oct.
2003.

