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Abstract

We study robust distributed learning that involves

minimizing a non-convex loss function with sad-

dle points. We consider the Byzantine setting

where some worker machines have abnormal or

even arbitrary and adversarial behavior, and in

this setting, the Byzantine machines may create

fake local minima near a saddle point that is far

away from any true local minimum, even when

robust gradient estimators are used. We develop

ByzantinePGD, a robust first-order algorithm that

can provably escape saddle points and fake local

minima, and converge to an approximate true lo-

cal minimizer with low iteration complexity. As a

by-product, we give a simpler algorithm and anal-

ysis for escaping saddle points in the usual non-

Byzantine setting. We further discuss three robust

gradient estimators that can be used in Byzan-

tinePGD, including median, trimmed mean, and

iterative filtering. We characterize their perfor-

mance in concrete statistical settings, and argue

for their near-optimality in low and high dimen-

sional regimes.

1. Introduction

Distributed computing becomes increasingly important in

modern data-intensive applications. In many applications,

large-scale datasets are distributed over multiple machines

for parallel processing in order to speed up computation. In

other settings, the data sources are naturally distributed, and

for privacy and efficiency considerations, the data are not

transmitted to a central machine. An example is the recently

proposed Federated Learning paradigm (McMahan & Ram-

age, 2017; Konečnỳ et al., 2016; 2015), in which the data
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are stored and processed locally in end users’ cellphones

and personal computers.

In a standard worker-server distributed computing frame-

work, a single master machine is in charge of maintaining

and updating the parameter of interest, and a set of worker

machines store the data, perform local computation and

communicate with the master. In this setting, messages

received from worker machines are prone to errors due to

data corruption, hardware/software malfunction, and com-

munication delay and failure. These problems are only

exacerbated in a decentralized distributed architecture such

as Federated Learning, where some machines may be sub-

jected to malicious and coordinated attack and manipulation.

A well-established framework for studying such scenarios is

the Byzantine setting (Lamport et al., 1982), where a subset

of machines behave completely arbitrarily—even in a way

that depends on the algorithm used and the data on the other

machines—thereby capturing the unpredictable nature of

the errors. Developing distributed algorithms that are robust

in the Byzantine setting has become increasingly critical.

In this paper we focus on robust distributed optimization

for statistical learning problems. Here the data points are

generated from some unknown distribution D and stored lo-

cally in m worker machines, each storing n data points; the

goal is to minimize a population loss function F :W → R

defined as an expectation over D, where W ⊆ R
d is the

parameter space. We assume that α ∈ (0, 1/2) fraction of

the worker machines are Byzantine; that is, their behavior is

arbitrary. This Byzantine-robust distributed learning prob-

lem has attracted attention in a recent line of work (Alistarh

et al., 2018; Blanchard et al., 2017; Chen et al., 2017; Feng

et al., 2014; Su & Vaidya, 2016a;b; Yin et al., 2018a). This

body of work develops robust algorithms that are guaranteed

to output an approximate minimizer of F when it is convex,

or an approximate stationary point in the non-convex case.

However, fitting complicated machine learning models often

requires finding a local minimum of non-convex functions,

as exemplified by training deep neural networks and other

high-capacity learning architectures (Soudry & Carmon,

2016; Ge et al., 2016; 2017). It is well-known that many

of the stationary points of these problems are in fact saddle

points and far away from any local minimum (Kawaguchi,
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2016; Ge et al., 2017). These tasks hence require algorithms

capable of efficiently escaping saddle points and converging

approximately to a local minimizer. In the centralized set-

ting without Byzantine adversaries, this problem has been

studied actively and recently (Ge et al., 2015; Jin et al.,

2017a; Carmon et al., 2016; Jin et al., 2017b).

A main observation of this work is that the interplay between

non-convexity and Byzantine errors makes escaping saddle

points much more challenging. In particular, by orchestrat-

ing their messages sent to the master machine, the Byzantine

machines can create fake local minima near a saddle point

of F that is far away from any true local minimizer. Such a

strategy, which may be referred to as saddle point attack,

foils existing algorithms as we elaborate below:

• Challenges due to non-convexity: When F is convex,

gradient descent (GD) equipped with a robust gradient

estimator is guaranteed to find an approximate global

minimizer (with accuracy depending on the fraction of

Byzantine machines) (Chen et al., 2017; Yin et al., 2018a;

Alistarh et al., 2018). However, when F is non-convex,

such algorithms may be trapped in the neighborhood of a

saddle point; see Example 1 in Appendix B.

• Challenges due to Byzantine machines: Without

Byzantine machines, vanilla GD (Lee et al., 2016), as

well as its more efficient variants such as perturbed gra-

dient descent (PGD) (Jin et al., 2017a), are known to

converge to a local minimizer with high probability. How-

ever, Byzantine machines can manipulate PGD and GD

(even robustified) into fake local minimum near a saddle

point; see Example 2 in Appendix B.

We discuss and compare with existing work in more details

in Section 5. The observations above show that existing

robust and saddle-escaping algorithms, as well as their naive

combination, are insufficient against saddle point attack.

Addressing these challenges requires the development of

new robust distributed optimization algorithms.

1.1. Our Contributions

In this paper, we develop ByzantinePGD, a computation-

and communication-efficient first-order algorithm that is

able to escape saddle points and the fake local minima cre-

ated by Byzantine machines, and converge to an approxi-

mate local minimizer of a non-convex loss. To the best of

our knowledge, our algorithm is the first to achieve such

guarantees under adversarial noise.

Specifically, ByzantinePGD aggregates the empirical gra-

dients received from the normal and Byzantine machines,

and computes a robust estimate ĝ(w) of the true gradient

∇F (w) of the population loss F . Crucial to our algorithm

is the injection of random perturbation to the iterates w,

which serves the dual purpose of escaping saddling point

and fake local minima. Our use of perturbation thus plays

a more signified role than in existing algorithms such as

PGD (Jin et al., 2017a), as it also serves to combat the effect

of Byzantine errors. To achieve this goal, we incorporate

two crucial innovations: (i) we use multiple rounds of larger,

yet carefully calibrated, amount of perturbation that is nec-

essary to survive saddle point attack, (ii) we use the moving

distance in the parameter space as the criterion for success-

ful escape, eliminating the need of (robustly) evaluating

function values. Consequently, our analysis is significantly

different, and arguably simpler, than that of PGD.

We develop our algorithmic and theoretical results in a flexi-

ble, two-part framework, decomposing the optimization and

statistical components of the problem.

The optimization part: We consider a general problem of

optimizing a population loss function F given an inexact

gradient oracle. For each query point w, the ∆-inexact

gradient oracle returns a vector ĝ(w) (possibly chosen ad-

versarially) that satisfies ‖ĝ(w)−∇F (w)‖2 ≤ ∆, where

∆ is non-zero but bounded. Given access to such an inexact

oracle, we show that ByzantinePGD outputs an approximate

local minimizer; moreover, no other algorithm can achieve

significantly better performance in this setting in terms of

the dependence on ∆:

Theorem 1 (Informal; see Sec. 3.2). Within Õ( 1
∆2 )

iterations, ByzantinePGD outputs an approximate lo-

cal minimizer w̃ that satisfies ‖∇F (w̃)‖2 . ∆ and

λmin

(
∇2F (w̃)

)
& −∆2/5, where λmin is the minimum

eigenvalue. In addition, given only access to ∆-inexact gra-

dient oracle, no algorithm is guaranteed to find a point w̃

with ‖∇F (w̃)‖2 < ∆/2 or λmin

(
∇2F (w̃)

)
> −∆1/2/2.

Our algorithm is communication-efficient: it only sends gra-

dients, and the number of parallel iterations in our algorithm

matches the well-known iteration complexity of GD for non-

convex problems in non-Byzantine setting (Nesterov, 1998)

(up to log factors). In the exact gradient setting, a variant of

the above result in fact matches the guarantees for PGD (Jin

et al., 2017a)—as mentioned, our proof is simpler.

Additionally, beyond Byzantine distributed learning, our

results apply to any non-convex optimization problems (dis-

tributed or not) with inexact information for the gradients,

including those with noisy but non-adversarial gradients.

Thus, we believe our results are of independent interest in

broader settings.

The statistical part: The optimization guarantee above can

be applied whenever one has a robust aggregation procedure

that serves as an inexact gradient oracle with a bounded

error ∆. We consider three concrete examples of such

robust procedures: median, trimmed mean, and iterative

filtering (Diakonikolas et al., 2016; 2017). Under statistical

settings for the data, we provide explicit bounds on their
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errors ∆ as a function of the number of worker machines

m, the number of data points on each worker machine n,

the fraction of Byzantine machines α, and the dimension

of the parameter space d. Combining these bounds with

the optimization result above, we obtain concrete statistical

guarantees on the output w̃. Furthermore, we argue that

our first-order guarantees on ‖∇F (w̃)‖2 are often nearly

optimal when compared against a universal statistical lower

bound. This is summarized below:

Theorem 2 (Informal; see Sec. 4). When combined with

each of following three robust aggregation procedures,

ByzantinePGD achieves the statistical guarantees:

(i) median; ‖∇F (w̃)‖2 . α
√
d√
n

+ d√
nm

+
√
d

n ;

(ii) trimmed mean: ‖∇F (w̃)‖2 . αd√
n
+ d√

nm
;

(iii) iterative filtering: ‖∇F (w̃)‖2 .
√
α√
n
+

√
d√

nm
.

Moreover, no algorithm can achieve ‖∇F (w̃)‖2 = o
(

α√
n
+

√
d√

nm

)
.

We emphasize that the above results are established under a

very strong adversary model: the Byzantine machines are

allowed to send messages that depend arbitrarily on each

other and on the data on the normal machines; they may

even behave adaptively during the iterations of our algo-

rithm. Consequently, this setting requires robust functional

estimation (of the gradient function), which is a much more

challenging problem than the robust mean estimation setting

considered by existing work on median, trimmed mean and

iterative filtering. To overcome this difficulty, we make use

of careful covering net arguments to establish certain error

bounds that hold uniformly over the parameter space, regard-

less of the behavior of the Byzantine machines. Importantly,

our inexact oracle framework allows such arguments to be

implemented in a transparent and modular manner.

Notation For an integer N > 0, define the set [N ] :=
{1, 2, . . . , N}. For matrices, denote the operator norm by

‖·‖2; for symmetric matrices, denote the largest and smallest

eigenvalues by λmax(·) and λmin(·), respectively. The d-

dimensional ℓ2 ball centered at w with radius r is denoted

by B
(d)
w (r), or Bw(r) when it is clear from the context.

2. Problem Setup

We consider empirical risk minimization for a statisti-

cal learning problem where each data point z is sampled

from an unknown distribution D over the sample space

Z . Let f(w; z) be the loss function of a parameter vec-

tor w ∈ W ⊆ R
d, whereW is the parameter space. The

population loss function is therefore given by F (w) :=
Ez∼D[f(w; z)].

We consider a distributed computing system with one mas-

ter machine and m worker machines, αm of which are

Byzantine machines and the other (1 − α)m are normal.

Each worker machine has n data points sampled i.i.d. from

D. Denote by zi,j the j-th data point on the i-th worker

machine, and let Fi(w) := 1
n

∑n
j=1 f(w; zi,j) be the em-

pirical loss function on the i-th machine. The master ma-

chine and worker machines can send and receive messages

via the following communication protocol: In each parallel

iteration, the master machine sends a parameter vector w

to all the worker machines, and then each normal worker

machine computes the gradient of its empirical loss Fi(·)
at w and sends the gradient to the master machine. The

Byzantine machines may be jointly controlled by an adver-

sary and send arbitrary or even malicious messages. We

denote the unknown set of Byzantine machines by B, where

|B| = αm. With this notation, the gradient sent by the i-th
worker machine is

ĝi(w) =

{
∇Fi(w) i ∈ [m] \ B,
∗ i ∈ B,

(1)

where the symbol ∗ denotes an arbitrary vector. As men-

tioned, the adversary is assumed to have complete knowl-

edge of the algorithm used and the data stored on all ma-

chines, and the Byzantine machines may collude (Lynch,

1996) and adapt to the output of the master and normal

worker machines. We only make the mild assumption that

the adversary cannot predict the random numbers generated

by the master machine.

We consider the scenario where F (w) is non-convex, and

our goal to find an approximate local minimizer of F (w).
Note that a first-order stationary point (i.e., one with a small

gradient) is not necessarily close to a local minimizer, since

the point may be a saddle point whose Hessian matrix has

a large negative eigenvalue. Accordingly, we seek to find a

second-order stationary point w̃, namely, one with a small

gradient and a nearly positive semidefinite Hessian:

Definition 1 (Second-order stationarity). We say that w̃

is an (ǫg, ǫH)-second-order stationary point of a twice

differentiable function F (·) if ‖∇F (w̃)‖2 ≤ ǫg and

λmin

(
∇2F (w̃)

)
≥ −ǫH .

In the sequel, we make use of several standard concepts

from continuous optimization.

Definition 2 (Smooth and Hessian-Lipschitz

functions). A function h is called L-smooth if

sup
w 6=w

′

‖∇h(w)−∇h(w′)‖2

‖w−w
′‖2

≤ L, and ρ-Hessian Lip-

schitz if sup
w 6=w

′

‖∇2h(w)−∇2h(w′)‖2

‖w−w
′‖2

≤ ρ.

Throughout this paper, the above properties are imposed on

the population loss function F (·).

Assumption 1. F is LF -smooth, and ρF -Hessian Lipschitz

onW .
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3. Byzantine Perturbed Gradient Descent

In this section, we describe our algorithm, Byzantine Per-

turbed Gradient Descent (ByzantinePGD), which provably

finds a second-order stationary point of the population loss

F (·) in the distributed setting with Byzantine machines. As

mentioned, ByzantinePGD robustly aggregates gradients

from the worker machines, and performs multiple rounds

of carefully calibrated perturbation to combat the effect of

Byzantine machines. We now elaborate.

It is well-known that naively aggregating the workers’ mes-

sages using standard averaging can be arbitrarily skewed in

the presence of just a single Byzantine machine. In view

of this, we introduce the subroutine GradAGG{ĝi(w)}mi=1,

which robustly aggregates the gradients {ĝi(w)}mi=1 col-

lected from the m workers. We stipulate that GradAGG

provides an estimate of the true population gradient ∇F (·)
with accuracy ∆, uniformly acrossW . This property is for-

malized using the terminology of inexact gradient oracle.

Definition 3 (Inexact gradient oracle). We say that

GradAGG provides a ∆-inexact gradient oracle for the

population loss F (·) if, for every w ∈ W , we have

‖GradAGG{ĝi(w)}mi=1 −∇F (w)‖2 ≤ ∆.

Without loss of generality, we assume that ∆ ≤ 1 through-

out the paper. In this section, we treat GradAGG as a

given black box; in Section 4, we discuss several robust

aggregation algorithms and characterize their inexactness

∆. We emphasize that in the Byzantine setting, the out-

put of GradAGG can take values adversarially within the

error bounds; that is, GradAGG{ĝi(w)}mi=1 may output an

arbitrary vector in the ball B∇F (w)(∆), and this vector can

depend on the data in all the machines and all previous

iterations of the algorithm.

The use of robust aggregation with bounded inexactness,

however, is not yet sufficient to guarantee convergence to an

approximate local minimizer. As mentioned, the Byzantine

machines may create fake local minima that traps a vanilla

gradient descent iteration. Our ByzantinePGD algorithm is

designed to escape such fake minima as well as any existing

saddle points of F .

3.1. Algorithm

We now describe the details of our algorithm, given in the

left panel of Algorithm 1. We focus on unconstrained op-

timization, i.e., W = R
d. In Section 4, we show that the

iterates w during the algorithm actually stay in a bounded

ℓ2 ball centered at the initial iterate w0, and we will discuss

the statistical error rates within the bounded space.

In each parallel iteration, the master machine sends the cur-

rent iterate w to all the worker machines, and the worker

machines send back {ĝi(w)}. The master machine aggre-

gates the workers’ gradients using GradAGG and computes

a robust estimate ĝ(w) of the population gradient∇F (w).
The master machine then performs a gradient descent step

using ĝ(w). This procedure is repeated until it reaches a

point w̃ with ‖ĝ(w)‖2 ≤ ǫ for a pre-specified threshold ǫ.

At this point, w̃ may lie near a saddle point whose Hes-

sian has a large negative eigenvalue. To escape this poten-

tial saddle point, the algorithm invokes the Escape routine

(right panel of Algorithm 1), which performs Q rounds of

perturbation-and-descent operations. In each round, the

master machine perturbs w̃ randomly and independently

within the ball B
w̃
(r). Let w′

0 be the perturbed vector. Start-

ing from the w′
0, the algorithm conducts at most Tth parallel

iterations of ∆-inexact gradient descent (using GradAGG as

before):

w′
t = w′

t−1 − ηĝ(w′
t−1), t ≤ Tth. (2)

During this process, once we observe that ‖w′
t −w′

0‖2 ≥ R
for some pre-specified threshold R (this means the iter-

ate moves by a sufficiently large distance in the parameter

space), we claim that w̃ is a saddle point and the algorithm

has escaped it; we then resume ∆-inexact gradient descent

starting from w′
t. If after Q rounds no sufficient move in

the parameter space is ever observed, we claim that w̃ is a

second-order stationary point of F (w) and output w̃.

3.2. Convergence Guarantees

In this section, we provide the theoretical result guaranteeing

that Algorithm 1 converges to a second-order stationary

point. In Theorem 3, we let F ∗ := min
w∈Rd F (w), w0 be

the initial iterate, and F0 := F (w0).

Theorem 3 (ByzantinePGD). Suppose that Assumptions 1

holds, and assume that GradAGG provides a ∆-inexact gra-

dient oracle for F (·) with ∆ ≤ 1. Given any δ ∈ (0, 1),
choose the parameters for Algorithm 1 as follows: step-

size η = 1
LF

, ǫ = 3∆, r = 4∆3/5d3/10ρ
−1/2
F , R =

∆2/5d1/5ρ
−1/2
F ,

Q = 2 log

(
ρF (F0 − F ∗)

48LF δ(∆6/5d3/5 +∆7/5d7/10)

)
, and

Tth =
LF

384(ρ
1/2
F + LF )(∆2/5d1/5 +∆3/5d3/10)

.

Then, with probability at least 1 − δ, the output of Algo-

rithm 1, denoted by w̃, satisfies the bounds

‖∇F (w̃)‖2 ≤ 4∆,

λmin

(
∇2F (w̃)

)
≥ −1900

(
ρ
1/2
F + LF

)
∆2/5d1/5 log

(10
∆

)
,

(3)

and the algorithm terminates within
2(F0−F∗)LF

3∆2 Q parallel

iterations.

We prove Theorem 3 in Appendix C.1 Below let us parse

1We make no attempt in optimizing the multiplicative constants
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ByzantinePGD(w0, η, ǫ, r,Q,R, Tth)

w← w0

while true do

Master: send w to worker machines.

for i ∈ [m] in parallel do

Worker i: compute ĝi(w)
send to master machine.

end for

Master:

ĝ(w)← GradAGG{ĝi(w)}mi=1.

if ‖ĝ(w)‖2 ≤ ǫ then

Master: w̃← w,

(esc,w, ĝ(w))← Escape (w̃, η, r, Q, R, Tth).

if esc = false then

return w̃.

end if

end if

Master: w← w − ηĝ(w).
end while

Escape(w̃, η, r,Q,R, Tth)

for k = 1, 2, . . . , Q do

Master: sample pk ∼ Unif(B0(r)),
w′ ← w̃ + pk, w′

0 ← w′.
for t = 0, 1, . . . , Tth do

Master: send w′ to worker machines.

for i ∈ [m] in parallel do

Worker i: compute ĝi(w
′)

send to master machine.

end for

Master: ĝ(w′)← GradAGG{ĝi(w
′)}mi=1.

if ‖w′ −w′
0‖2 ≥ R then

return (true,w′, ĝ(w′)).
else

w′ ← w′ − ηĝ(w′)
end if

end for

end for

return (false,w′, ĝ(w′)).

Algorithm 1. Byzantine Perturbed Gradient Descent (ByzantinePGD)

the above theorem and discuss its implications.

Focusing on the scaling with ∆, we may read off from

Theorem 3 the following result:

Observation 1. Under the above setting, within

Õ( 1
∆2 ) parallel iterations, ByzantinePGD outputs

an (O(∆), Õ(∆2/5))-second-order stationary point w̃ of

F (·);2 that is,

‖∇F (w̃)‖2 ≤ 4∆ and λmin(∇2F (w̃)) ≥ −Õ(∆2/5).

In terms of the iteration complexity, it is well-known that

for a smooth non-convex F (·), gradient descent requires at

least 1
∆2 iterations to achieve ‖∇F (w̃)‖2 ≤ O(∆) (Nes-

terov, 1998); up to logarithmic factors, our result matches

this complexity bound. In addition, our O(∆) first-order

guarantee is clearly order-wise optimal, as the gradient or-

acle is ∆-inexact. It is currently unclear to us whether our

Õ(∆2/5) second-order guarantee is optimal. We provide a

converse result showing that one cannot hope to achieve a

second-order guarantee better than O(∆1/2).

Proposition 1. There exists a class of real-valued 1-smooth

and 1-Hessian Lipschitz differentiable functionsF such that,

for any algorithm that only uses a ∆-inexact gradient oracle,

there exists f ∈ F such that the output of the algorithm

w̃ must satisfy ‖∇F (w̃)‖2 > ∆/2 and λmin(∇2F (w̃)) <
−∆1/2/2.

We prove Proposition 1 in Appendix E. Again, we empha-

size that our results above are in fact not restricted to the

in Theorem 3.
2Here, by using the symbol Õ, we ignore logarithmic factors

and only consider the dependence on ∆.

Byzantine distributed learning setting. They apply to any

non-convex optimization problems (distributed or not) with

inexact information for the gradients, including those with

noisy but non-adversarial gradients; see Section 5 for com-

parison with related work in such settings.

As a byproduct, we can show that with a different choice of

parameters, ByzantinePGD can be used in the standard (non-

distribued) setting with access to the exact gradient∇F (w),

and the algorithm converges to an (ǫ, Õ(√ǫ))-second-order

stationary point within O( 1
ǫ2 ) iterations:

Theorem 4 (Exact gradient oracle). Suppose that Assump-

tions 1 holds, and assume that for any query point w we

can obtain exact gradient, i.e., ĝ(w) ≡ ∇F (w). For any

ǫ ∈ (0,min{ 1
ρF

, 4
L2

F ρF
}) and δ ∈ (0, 1), we choose the

parameters in Algorithm 1 as follows: step-size η = 1/LF ,

Q = 1, r = ǫ, and R =
√
ǫ/ρF , Tth = L

12ρF (R+r) . Then,

with probability at least 1 − δ, Algorithm 1 outputs a w̃

satisfying the bounds

‖∇F (w̃)‖2 ≤ǫ,

λmin(∇2F (w̃)) ≥− 60
√
ρF ǫ log

(8ρF
√
d(F0 − F ∗)

δǫ2

)
,

and the algorithm terminates within
2LF (F0−F∗)

ǫ2 iterations.

We prove Theorem 4 in Appendix D. The convergence guar-

antee above matches that of the original PGD algorithm (Jin

et al., 2017a) up to logarithmic factors. Moreover, our proof

is considerably simpler, and our algorithm only requires

gradient information, whereas the original PGD algorithm

also needs function values.
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4. Robust Estimation of Gradients

The results in the previous section can be applied as long

as one has a robust aggregation subroutine GradAGG that

provides a ∆-inexact gradient oracle of the population loss

F . In this section, we discuss three concrete examples of

GradAGG: median, trimmed mean, and a high-dimension ro-

bust estimator based on the iterative filtering algorithm (Di-

akonikolas et al., 2016; 2017; Steinhardt et al., 2017). We

characterize their inexactness ∆ under the statistical setting

in Section 2, where the data points are sampled indepen-

dently according to an unknown distribution D.

To describe our statistical results, we need the standard

notions of sub-Gaussian/exponential random vectors.

Definition 4 (sub-Gaussianity and sub-exponentiality). A

random vector x with mean µ is said to be ζ-sub-Gaussian

if E[exp(λ〈x − µ,u〉)] ≤ e
1

2
ζ2λ2‖u‖2

2 , ∀ λ,u. It is

said to be ξ-sub-exponential if E[exp(λ〈x − µ,u〉)] ≤
e

1

2
ξ2λ2‖u‖2

2 , ∀ |λ| < 1
ξ ,u.

We also need the following result (proved in Appendix F),

which shows that the iterates of ByzantinePGD in fact stay

in a bounded set around the initial iterate w0.

Proposition 2. Under the choice of algorithm parameters

in Theorem 3, all the iterates w in ByzantinePGD stay in

the ℓ2 ball Bw0
(D/2) with D := C F0−F∗

∆ , where C > 0 is

a number that only depends on LF and ρF .

Consequently, for the convergence guarantees of Byzan-

tinePGD to hold, we only need GradAGG to satisfy the

inexact oracle property (Definition 3) within the bounded

set W = Bw0
(D/2), with D given in Proposition 2. As

shown below, the three aggregation procedures indeed sat-

isfy this property, with their inexactness ∆ depends mildly

(logarithmically) on the radius D.

4.1. Iterative Filtering Algorithm

We start with a recently developed high-dimension ro-

bust estimation technique called the iterative filtering al-

gorithm (Diakonikolas et al., 2016; 2017; Steinhardt et al.,

2017) and use it to build the subroutine GradAGG. As can be

seen below, iterative filtering can tolerate a constant fraction

of Byzantine machines even when the dimension grows—

an advantage over simpler algorithms such as median and

trimmed mean.

We relegate the details of the iterative filtering algorithm

to Appendix G.1. Again, we emphasize that the original

iterative filtering algorithm is proposed to robustly estimate

a single parameter vector, whereas in our setting, since the

Byzantine machines may produce unspecified probabilistic

dependency across the iterations, we need to prove an error

bound for robust gradient estimation uniformly across the

parameter spaceW . We prove such a bound for iterative fil-

tering under the following two assumptions on the gradients

and the smoothness of each loss function f(·; z).
Assumption 2. For each w ∈ W , ∇f(w; z) is ζ-sub-

Gaussian.

Assumption 3. For each z ∈ Z , f(·; z) is L-smooth.

Let Σ(w) be the covariance matrix of∇f(w; z), and define

σ := sup
w∈W ‖Σ(w)‖1/22 . We have the following bounds

on the inexactness parameter of iterative filtering.

Theorem 5 (Iterative Filtering). Suppose that Assump-

tions 2 and 3 hold. Use the iterative filtering algorithm

described in Appendix G.1 for GradAGG, and assume that

α ≤ 1
4 . With probability 1 − o(1), GradAGG provides a

∆ftr-inexact gradient oracle with

∆ftr ≤ c

(
(σ + ζ)

√
α

n
+ ζ

√
d

nm

)
√

log(nmDL),

where c is an absolute constant.

The proof of Theorem 5 is given in Appendix G.2. Assum-

ing bounded σ and ζ , we see that iterative filtering provides

an Õ
(√

α
n +

√
d

nm

)
-inexact gradient oracle.

4.2. Median and Trimmed Mean

The median and trimmed mean operations are two widely

used robust estimation methods. While the dependence of

their performance on d is not optimal, they are conceptu-

ally simple and computationally fast, and still have good

performance in low dimensional settings. We apply these

operations in a coordinate-wise fashion to build GradAGG.

Formally, for a set of vectors xi ∈ R
d, i ∈ [m], their

coordinate-wise median u := med{xi}mi=1 is a vector with

its k-th coordinate being uk = med{xi
k}mi=1 for each k ∈

[d], where med is the usual (one-dimensional) median. The

coordinate-wise β-trimmed mean u := trmeanβ{xi}mi=1

is a vector with uk = 1
(1−2β)m

∑
x∈Uk

x for each k ∈ [d],

where Uk is a subset of {x1
k, . . . , x

m
k } obtained by removing

the largest and smallest β fraction of its elements.

For robust estimation of the gradient in the Byzantine set-

ting, the error bounds of median and trimmed mean have

been studied by Yin et al. (2018a). For completeness, we

record their results below as an informal theorem; details

are relegated to Appendix G.4.

Theorem 6 (Informal). (Yin et al., 2018a) Under appropri-

ate smoothness and probabilistic assumptions,3 with high

probability, the median operation provides a ∆med-inexact

gradient oracle with ∆med . α
√
d√
n

+ d√
nm

+
√
d

n , and the

trimmed mean operation provides a ∆tm-inexact gradient

oracle with ∆tm . αd√
n
+ d√

nm
.

3Specifically, for median we assume that gradients have
bounded skewness, and for trimmed mean we assume that the
gradients are sub-exponentially distributed.
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4.3. Comparison and Optimality

In Table 1, we compare the above three algorithms in terms

of the dependence of their gradient inexactness ∆ on the

problem parameters α, n, m, and d . We see that when

d = O(1), the median and trimmed mean algorithms have

better inexactness due to a better scaling with α. When d is

large, iterative filtering becomes preferable.

Gradient inexactness ∆

median Õ
(
α
√
d√
n

+ d√
nm

+
√
d

n

)

trimmed mean Õ
(
αd√
n
+ d√

nm

)

iterative filtering Õ
(√α√

n
+

√
d√

nm

)

Table 1. Statistical bounds on gradient inexactness ∆.

Recall that according to Observation 1, with ∆-inexact

gradients the ByzantinePGD algorithm converges to an

(O(∆), Õ(∆2/5))-second-order stationary point. Combin-

ing this general result with the bounds in Table 1, we ob-

tain explicit statistical guarantees on the output of Byzan-

tinePGD. To understand the statistical optimality of these

guarantees, we provide a converse result below.

Observation 2. There exists a statistical learning problem

in the Byzantine setting such that the output w̃ of any al-

gorithm must satisfy ‖∇F (w̃)‖2 = Ω
(

α√
n
+

√
d√

nm

)
with a

constant probability.

We prove Observation 2 in Appendix G.3. In view of this

observation, we see that in terms of the first-order guarantee

(i.e., on ‖∇F (w̃)‖2) and up to logarithmic factors, trimmed

mean is optimal if d = O(1), the median is optimal if

d = O(1) and n & m, and iterative filtering is optimal if

α = Θ(1). The statistical optimality of their second-order

guarantees (i.e., on λmin(∇2F (w̃))) is currently unclear to

us, and we believe this is an interesting problem for future

investigation.

5. Related Work

Efficient first-order algorithms for escaping saddle

points Our algorithm is related to a recent line of work

which develops efficient first-order algorithms for escaping

saddle points. Although vanilla GD converges to local min-

imizers almost surely (Lee et al., 2016; 2017), achieving

convergence in polynomial time requires more a careful

algorithmic design (Du et al., 2017). Such convergence

guarantees are enjoyed by several GD-based algorithms;

examples include PGD (Jin et al., 2017a), Neon+GD (Xu

& Yang, 2017), and Neon2+GD (Allen-Zhu & Li, 2017).

The general idea of these algorithms is to run GD and add

perturbation to the iterate when the gradient is small. While

our algorithm also uses this idea, the design and analysis

techniques of our algorithm are significantly different from

the work above in the following aspects (also summarized

in Table 2).

• In our algorithm, besides helping with escaping saddle

points, the random perturbation has the additional role of

defending against adversarial errors.
• The perturbation used in our algorithm needs to be larger,

yet carefully calibrated, in order to account for the influ-

ence of the inexactness of gradients across the iterations,

especially iterations for escaping saddle points.
• We run inexact GD after the random perturbation, while

Neon+GD and Neon2+GD use negative curvature (NC)

search. It is not immediately clear whether NC search can

be robustified against Byzantine failures. Compared to

PGD, our analysis is arguably simpler and more straight-

forward.
• Our algorithm does not use the value of the loss func-

tion (hence no need for robust function value estimation);

PGD and Neon+GD assume access to the (exact) function

values.
• We employed multiple rounds of perturbation to boost the

probability of escaping saddle points; this technique is

not used in PGD, Neon+GD, or Neon2+GD.

Inexact oracles Optimization with an inexact oracle (e.g.

noisy gradients) has been studied in various settings such

as general convex optimization (Bertsekas & Tsitsiklis,

2000; Devolder et al., 2014), robust estimation (Prasad

et al., 2018), and structured non-convex problems (Bal-

akrishnan et al., 2014; Chen & Wainwright, 2015; Can-

des et al., 2015; Zhang et al., 2016). Particularly relevant

to us is the recent work by Jin et al. (2018), who con-

sider the problem of minimizing F when only given access

to the gradients of another smooth function F̂ satisfying

‖∇F̂ (w)−∇F (w)‖∞ ≤ ∆/
√
d, ∀w. Their algorithm

uses Gaussian smoothing on F̂ . We emphasize that the

inexact gradient setting considered by them is much more

benign than our Byzantine setting, since (i) their inexactness

is defined in terms of ℓ∞ norm whereas the inexactness in

our problem is in ℓ2 norm, and (ii) we assume that the inex-

act gradient can be any vector within ∆ error, and thus the

smoothing technique is not applicable in our problem. More-

over, the iteration complexity obtained by Jin et al. (2018)

may be a high-degree polynomial of the problem parameters

and thus not suitable for distributed implementation.

Byzantine-robust distributed learning Solving large

scale learning problems in distributed systems has received

much attention in recent years, where communication ef-

ficiency and Byzantine robustness are two important top-

ics (Shamir et al., 2014; Lee et al., 2015; Yin et al., 2018b;

Blanchard et al., 2017; Chen et al., 2018a; Damaskinos

et al., 2018; Lian et al., 2017; Jiang et al., 2017). Here, we

compare with existing Byzantine-robust distributed learning

algorithms that are most relevant to our work, and sum-

marize the comparison in Table 3. A general idea of de-

signing Byzantine-robust algorithms is to combine opti-

mization algorithms with a robust aggregation (or outlier
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Algorithm PGD Neon+GD Neon2+GD ByzantinePGD

Byzantine-robust? no no no yes

Purpose of perturbation escape SP escape SP escape SP escape SP + Byzantine robustness

Escaping method GD NC search NC search inexact GD

Termination criterion decrease in F decrease in F distance inW distance inW
Multiple rounds? no no no yes

Table 2. Comparison with PGD, Neon+GD, and Neon2+GD. SP = saddle point.

Robust Aggregation Method Non-convex Guarantee

Feng et al. (2014) geometric median no

Chen et al. (2017) geometric median no

Blanchard et al. (2017) Krum first-order

Yin et al. (2018a) median, trimmed mean first-order

Xie et al. (2018) mean-around-median, marginal median first-order

Alistarh et al. (2018) martingale-based no

Su & Xu (2018) iterative filtering no

This work median, trimmed mean, iterative filtering second-order

Table 3. Comparison with other Byzantine-robust distributed learning algorithms.

removal) subroutine. For convex losses, the aggregation

subroutines analyzed in the literature include geometric me-

dian (Feng et al., 2014; Chen et al., 2017), median and

trimmed mean (Yin et al., 2018a), iterative filtering for the

high dimensional setting (Su & Xu, 2018), and martingale-

based methods for the SGD setting (Alistarh et al., 2018).

For non-convex losses, to the best of our knowledge, exist-

ing works only provide first-order convergence guarantee

(i.e., small gradients), by using aggregation subroutines such

as the Krum function (Blanchard et al., 2017), median and

trimmed mean (Yin et al., 2018a), mean-around-median and

marginal median (Xie et al., 2018). In this paper, we make

use of subroutines based on median, trimmed mean, and it-

erative filtering. Our analysis of median and trimmed mean

follows Yin et al. (2018a). Our results based on the iterative

filtering subroutine, on the other hand, are new:

• The problem that we tackle is harder than what is consid-

ered in the original iterative filtering papers (Diakonikolas

et al., 2016; 2017). There they only consider robust esti-

mation of a single mean parameter, where as we guarantee

robust gradient estimation over the parameter space.

• Recent work by Su & Xu (2018) also makes use of the it-

erative filtering subroutine for the Byzantine setting. They

only study strongly convex loss functions, and assume that

the gradients are sub-exponential and d ≤ O(√mn). Our

results apply to the non-convex case and do not require

the aforementioned condition on d (which may therefore

scale, for example, linearly with the sample size mn),

but we impose the stronger assumption of sub-Gaussian

gradients.

Other non-convex optimization algorithms Besides

first-order GD-based algorithms, many other non-convex

optimization methods that can provably converge to approx-

imate local minimum have received much attention in recent

years. For specific problems such as phase retrieval (Can-

des et al., 2015), low-rank estimation (Chen & Wainwright,

2015; Zhao et al., 2015), and dictionary learning (Agarwal

et al., 2014; Sun et al., 2015), many algorithms are devel-

oped by leveraging the particular structure of the problems,

and the either use a smart initialization (Candes et al., 2015;

Tu et al., 2015) or initialize randomly (Chen et al., 2018b;

Chatterji & Bartlett, 2017). Other algorithms are developed

for general non-convex optimization, and they can be clas-

sified into gradient-based (Ge et al., 2015; Levy, 2016; Xu

& Yang, 2017; Allen-Zhu, 2017; Allen-Zhu & Li, 2017;

Jin et al., 2017b), Hessian-vector-product-based (Carmon

et al., 2016; Agarwal et al., 2016; Royer & Wright, 2018;

Royer et al., 2018), and Hessian-based (Nesterov & Polyak,

2006; Curtis et al., 2017) methods. While algorithms using

Hessian information can usually achieve better convergence

rates—for example, O( 1
ǫ3/2

) by Curtis et al. (2017), and

O( 1
ǫ7/4

) by Carmon et al. (2016)— gradient-based meth-

ods are easier to implement in practice, especially in the

distributed setting we are interested in.

We discuss additional related work on robust statistics in

Appendix A.
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