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SARS-CoV-2-specific T cell response has been proven essential for viral clearance,

COVID-19 outcome and long-term memory. Impaired early T cell-driven

immunity leads to a severe form of the disease associated with lymphopenia,

hyperinflammation and imbalanced humoral response. Analyses of acute SARS-

CoV-2 infection have revealed that mild COVID-19 course is characterized by an

early induction of specific T cells within the first 7 days of symptoms, coordinately

followed by antibody production for an effective control of viral infection. In

contrast, patients who do not develop an early specific cellular response and

initiate a humoral immune response with subsequent production of high levels of

antibodies, develop severe symptoms. Yet, delayed and persistent bystander CD8+

T cell activation has been also reported in hospitalized patients and could be a

driver of lung pathology. Literature supports that long-term maintenance of T cell

response appears more stable than antibody titters. Up to date, virus-specific T cell

memory has been detected 22 months post-symptom onset, with a predominant

IL-2 memory response compared to IFN-g. Furthermore, T cell responses are

conserved against the emerging variants of concern (VoCs) while these variants are

mostly able to evade humoral responses. This could be partly explained by the high

HLA polymorphism whereby the viral epitope repertoire recognized could differ

among individuals, greatly decreasing the likelihood of immune escape. Current

COVID-19-vaccination has been shown to elicit Th1-driven spike-specific T cell

response, as does natural infection, which provides substantial protection against

severe COVID-19 and death. In addition, mucosal vaccination has been reported to

induce strong adaptive responses both locally and systemically and to protect

against VoCs in animal models. The optimization of vaccine formulations by

including a variety of viral regions, innovative adjuvants or diverse administration

routes could result in a desirable enhanced cellular response and memory, and

help to prevent breakthrough infections. In summary, the increasing evidence

highlights the relevance of monitoring SARS-CoV-2-specific cellular immune

response, and not only antibody levels, as a correlate for protection after

infection and/or vaccination. Moreover, it may help to better identify target

populations that could benefit most from booster doses and to personalize

vaccination strategies.

KEYWORDS

T cell, SARS-CoV-2, vaccination, adaptive immunity, hybrid immunity
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1107803/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1107803/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2023.1107803&domain=pdf&date_stamp=2023-01-27
mailto:patricia.almendro.imas12@h12o.es
https://doi.org/10.3389/fimmu.2023.1107803
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2023.1107803
https://www.frontiersin.org/journals/immunology


Almendro-Vázquez et al. 10.3389/fimmu.2023.1107803
Introduction

The pandemic caused by severe acute respiratory syndrome-

coronavirus-2 (SARS-CoV-2) has resulted in more than 634 million

cases of coronavirus disease-19 (COVID-19) and 6.5 million deaths

reported worldwide (1). Although the landscape of COVID-19 has

evolved substantially since the pandemic onset, understanding how

adaptive immune responses develop after infection and vaccination,

how this immunity translates into protection against infection and

severe forms of the disease, and how we can improve vaccination to

reduce transmission remains a major challenge.

Studies on the development of adaptive immunity during the acute

infection with other highly transmissible and pathogenic coronaviruses,

such as severe acute respiratory syndrome-coronavirus (SARS-CoV)

and Middle East respiratory syndrome-coronavirus (MERS-

CoV) showed similar dynamics to those reported during the current

COVID-19 pandemic (2), which will be discussed in depth later in this

review. During SARS-CoV infection, specific serum antibodies are

detected 4-7 days after symptom onset (3, 4), and most patients

seroconvert within 21 days of onset (5). Similarly, in MERS-CoV

infection, the seroconversion process is observed during 15–21 days

after infection (6), however, it has been reported that this antibody

response is not likely to be correlated with the viral clearance (7,

8). Regarding the T cell response, a dominant Th1 response has been

described during SARS-CoV infection (9), whereas in MERS-CoV

infection the early increase of CD8+ T cells correlates with disease

severity and a dominant Th1 response is observed in the early

convalescent stages (10). In addition, a rapid and significant CD4+

and CD8+ T lymphopenia was associated with adverse disease outcome

during SARS-CoV (9, 11) and MERS-CoV infection (12), as it has been

widely reported during the severe course of COVID-19 (13, 14).

Additionally, studies on the duration of immunity against these

coronaviruses report long-lasting SARS-CoV-specific memory T cells
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up to 17 years after the outbreak of SARS-CoV in 2003 (15) even

though antibodies and peripheral memory B cell responses are not

detected beyond 3 years after the onset of infection (16, 17). In the

same way, T cell responses to MERS-CoV have been detected in

patients with undetectable antibody responses up to 2 years after

infection (18).

Along these lines, this review summarizes data on the role of

SARS-CoV-2-specific T cells in the different phases of natural

infection, their relationship to disease outcome and their long-term

maintenance. In addition, the impact of vaccine-triggered cell-

mediated immunity and the effect of emerging new variants of

concern (VoCs) on the ability of T cells to protect from infection

and severe COVID-19 are discussed.
SARS-CoV-2-specific cellular response
during acute infection

A coordinated response between innate and adaptive immunity is

necessary to control and eliminate SARS-CoV-2 infection. A highly

impaired interferon (IFN) type I response, characterized by the

absence of IFN-b and low IFN-a production and activity, has been

described in severe and critical patients. This defect is associated with

persistent blood viral load and exacerbated inflammatory response

(19, 20) accompanied by a plasma cytokine signature of elevated

CXCL10, interleukin (IL)-6, and IL-8 (21–23). Bastard et al. identified

that at least 10% of patients with life threatening COVID-19

pneumonia have neutralizing autoantibodies against type I IFNs

(24), while Zhang et al. reported that inborn errors of TLR3- and

IRF7-dependent type I immunity underlie critical COVID-19 (25).

Regarding the adaptive immunity, in the context of acute SARS-

CoV-2 infection, virus-specific CD8+ T cells with cytolytic capacity

against infected cells can be detected as early as day 1 post symptom
GRAPHICAL ABSTRACT
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onset (PSO) (26). Their rapid induction normally occurred within the

first 7 days and peaked at 2 weeks PSO (27, 28). This virus-specific

CD8+ T cell dynamic has been associated with better COVID-19

outcomes (28–30), as has their capacity to produce high levels of

cytotoxic effector molecules, such as IFN-g, granzyme B and perforin

(26, 29, 31). A CD8+ T cell depletion study in non-human primates

resulted in a loss of protection in the upper respiratory tract against

rechallenge with SARS-CoV-2, which suggests that CD8+ T cells

contribute to virological control (32). In addition, Liao et al.

demonstrated that a larger proportion of CD8+ T cell effectors with

tissue-resident and highly expanded features were present in

bronchoalveolar lavage fluid (BALF) from patients with moderate

COVID-19 compared to patients with severe/critical infection (33).

However, at a local level, lymphocytes with the capacity to kill SARS-

CoV-2-infected cells have also been related to further tissue damage

and pathogenicity, even late after acute COVID-19. Increased

cytotoxic T cells in BALF have been linked to epithelial damage

and airway dysfunction (34), and a marked interstitial CD8+ T cell

infiltration has been observed in cryotransbronchial biopsies of

patients with persistent SARS-CoV-2 pneumonitis (35).

SARS-CoV-2-specific CD4+ T cells can also normally be detected

as early as day 2–4 PSO (29, 36) and are more prominent than CD8+

T cell responses (31, 37). Their rapid induction, magnitude and

breadth have been associated with accelerated viral clearance and

mild COVID-19 (36, 38), whilst their absence within the 22 days PSO

has been linked with severe or fatal COVID-19 (39). SARS-CoV-2

infection mainly supports the expansion of Th1 and T follicular

helper (Tfh) CD4+ T cells (39–41). Th1 cells have antiviral activity via

production of IFN-g and related cytokines and support cellular and

innate immunity against pathogens (42), while Tfh cells are

specialized in helping B cells to differentiate into plasmablasts and

produce class-switched antibodies within secondary lymphoid organs

(43). The majority of SARS-CoV-2-specific CD4+ T cells from

COVID-19 patients show a clear IFN-g, tumor necrosis factor

(TNF) and IL-2 protein signature characteristic of canonical Th1

cells (30, 31, 39). While, some studies have reported an incorrect Th

polarization with an underrepresentation of Th1 subset in severe

COVID-19 patients (44, 45), other authors have informed that a

prolonged Th1 cytokine profile was maintained in patients with

severe COVID-19 (46). Of note, more recent work has highlighted

the importance of Th1-polarized CD4+ T cells to switch towards an

IFN-g and IL-10 functional profile to limit the process of tissue

inflammation (47, 48). SARS-CoV-2-specific circulating Tfh (cTfh)

cells are generated during acute infection (41, 49) and their frequency

has been associated with reduced disease severity (29). A substantial

proportion of SARS-CoV-2-specific cTfh are CXCR3-CCR6+

(cTfh17), which has also been observed for the common cold

coronavirus, potentially indicative of mucosal airway homing (50).

The other two cTfh subtypes, CCR6-CXCR3+ (cTfh1) and CCR6-

CXCR3- (cTfh2) have been found to positively correlate with

neutralizing activity (50, 51).

The vast majority of SARS-CoV-2 infected individuals

seroconvert within 5–15 days PSO (52, 53). Neutralizing antibodies

also develop rapidly, on the same time frame as seroconversion (54),

reaching maximum levels within 3–5 weeks after infection (55).

However, a strong humoral response has been reported in severe

COVID-19 patients that is not associated with reduced disease
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severity (56–59), which had also been observed in MERS-CoV

infected patients (60).
SARS-CoV-2-specific cellular response
protects against severe COVID-19

Several studies have revealed that severe COVID-19 patients fail

to mount an early, robust T cell response against SARS-CoV-2 and

instead initiate a humoral immune response with subsequent

production of high antibodies levels unable to efficiently clear the

virus (36, 61, 62). Interestingly, results from our group showed that

severe patients who subsequently died had a complete lack of

specific cellular response while severe patients who survived had a

low but detectable number of specific T cells (61). Moreover, we

have demonstrated that the specific cellular response against the

domain 1 of spike (S1), measured at emergency room is a protective

factor against severity (OR per 100 IFN-g sfu/106 PBMC increment:

0.47, 95%CI 0.20–0.87, p<0.05), independently of age and sex (61).

These data suggest that for a total effective control of SARS-CoV-2

infection, an early induction of specific T cells within the first 7 days

which peaks at 2 weeks PSO, followed by coordinated antibody

production, is necessary (29, 36, 38, 61, 63). The disconnection

between humoral and cellular immunity observed in severe patients

(29, 36, 62) could be due to a delay in the innate immune response

that may lead to a failure in T cell priming (19, 20). Furthermore,

other remarkable studies have shown increased frequency of SARS-

CoV-2-specific T cells in highly exposed individuals who remain

seronegative and PCR negative for SARS-CoV-2 (31, 64–66),

suggesting that a rapid deployment of virus-specific cellular

immunity suppresses viral replication and successfully aborts

infection. In addition, Nelde et al. have shown that the diversity

of T cell responses to SARS-CoV-2, not just their magnitude, was

associated with mild COVID-19 symptoms, demonstrating that

immunity requires recognition of multiple epitopes to control the

disease severity (65).

Apart from the lack of early T cell response, severe COVID-19 is

also characterized by a marked lymphopenia (13, 14, 67), particularly

of CD8+ T cells (68, 69) which resolution correlates with recovery

(70). This lymphopenia could partly be due to the robust activated

CD8+ T cell recruitment into the lung and brain tissue in critically ill

patients (34, 71, 72). However, Szabo et al. have proposed that higher

T cell frequencies in the lung correlated positively with survival,

whereas higher lung infiltrative myeloid cells correlated with

mortality and older age in severe COVID-19 patients (73). Other

mechanisms underlying lymphopenia could be an increased T cell

apoptosis in patients with COVID-19 (27, 74) or an impaired

lymphocyte proliferation (75, 76). However, other studies have

described intense T cell proliferation concurring with the

lymphopenia (77, 78). Similarly, several studies have reported an

exhausted phenotype of CD8+ T cells in severe COVID-19, with an

increased expression of inhibitory receptors such as PD-1 and Tim-3

(78–80) and related to the overexpression of the natural killer group 2

member A (NKG2A) in CD8+ T cells (81, 82). On the contrary,

recent studies have reported that the expression of exhaustion

markers (CTLA-4, PD-1, TIGIT, and Tox) in some SARS-CoV-2-

specific CD8+ T cells was not associated with T cell dysfunction (83,
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84). An overaggressive CD8+ T cell response or a hyperactive state

have also been linked to severe COVID-19 (61, 85, 86).

Aging has also been associated with poor disease outcome, with

increased rates of severe and fatal COVID-19 among individuals older

than 65 years (29, 87, 88). Age-related remodelling of the immune

system, or immunosenescence, is considered the main cause of

increased susceptibility to infections, particularly respiratory

infections such as influenza, and reduced vaccine effectiveness

among the elderly (89, 90). In addition, studies in animal models

have reported a decrease in the number of professional antigen

presenting cells in the lungs with advanced age (91, 92), which

together with the age-associated weaker type I IFN responses may

lead to poorer T cell responses to viral infection (93, 94). SARS-CoV-2

capacity to early evade innate immunity (23, 95) may further limit T

cell priming in the elderly. Scarcity of naïve T cells in older individuals

has also been highlighted as a specific risk factor for severe COVID-19

(96, 97). Finally, the overall disruption of coordinated SARS-CoV-2-

specific adaptive responses in older individuals, with a loss of

coordination between CD4+ T cell and antibody responses, may

contribute to a failure of infection control (29).

In addition, SARS-CoV-2 T cell cross-reactivity, i.e., the existence

of memory T cells induced by previous pathogens, could play an

important role in the COVID-19 outcome (98). It has been reported

that recently seasonal coronavirus infected individuals develop less

severe COVID-19 (99). Similarly, pre-existing cross-reactive T cells

facilitated the expansion of SARS-CoV-2-specific CD8+ and CD4

+ T cell responses during infection (100, 101) and were associated

with control of viral replication and abortive infection (66, 102).

Although some studies have reported the presence of SARS-CoV-2

cross-reactive T cells in 20% to 80% of unexposed individuals (15, 37,

103, 104), in other series no cross-reactive T cells have been found

(30, 105). However, these disparities may be due to the different

technical approaches performed (106). T cell cross-reactivity has been

described to be more frequent among children and young adults (107,

108), and to be mainly directed against the domain 2 of the SARS-

CoV-2 spike protein due to its moderate amino acid conservation

(107, 109).

Duration of T cell immunity and its
potential role in protection
against re-infection

Numerous studies have assessed the duration and characteristics

of both cellular and humoral immunity following SARS-CoV-2

infection. To date, the presence of SARS-CoV-2-specific memory T

cells in blood has been demonstrated 10 (110), 12 (111) and up to 22

months (112) post-infection. Likewise, SARS-CoV-2-specific

antibodies have been detected 12 (113), 13 (114) or 15 months

(115) after the onset of infection. Nevertheless, the kinetics of both

branches of adaptive immunity exhibit different patterns, as cellular

response tends to remain stable (61, 116–118) while antibodies decay

rapidly in early convalescence (119–121).

It has been described that SARS-CoV-2 memory response is

skewed towards more CD4+ helper T cells than CD8+ cytotoxic T

cells (37, 116). More specifically, Cohen et al. have described that the
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median frequency of SARS-CoV-2-specific memory CD4+ T cells was

0.51% of the T cell repertoire, while the median frequency of SARS-

CoV-2-specific CD8+ T cells was 0.2% (122). Nevertheless, a wide

range in magnitude of specific T cells among the analysed patients has

been observed probably due to the differential kinetics of expansion

and contraction of the two cell populations in convalescent

individuals (123). Most of the virus-specific memory CD8+ T cells

are terminally differentiated effector memory cells (TEMRA) (116, 124),

antigen-experienced cells that re-express the naïve cell marker

CD45RA (125), and which in the context of influenza have been

associated with protection against severe disease (126). These SARS-

CoV-2-specific CD8+ memory T cells secrete mainly IFN-g, TNF-a,
and granzyme B (122). CD4+ T cell memory is predominantly T

central memory (TCM) with phenotypic features characteristic of Th1

polarization, lymph node homing, robust helper function and

longevity (116, 118, 124). The dominant cytokine response in

CD4+ T cell subsets is IL-2, indicating proliferative potential, which

may suggest a robust long-term immune memory (61, 118).

Apart from circulating memory T cells, tissue-resident SARS-

CoV-2-specific memory T cells have also been reported particularly

in the airway and associated lymph nodes, but also in oropharyngeal

tonsils, bone marrow and spleen, and their frequency correlated

with that of circulating specific T cells (127, 128). A study in

convalescent patients found tissue-resident SARS-CoV-2-specific

CD8+ T cells in nasal mucosa, which had overlapping T cell

receptors with circulating T cells within each patient, and

suggested that these local memory cells could rapidly attenuate re-

infection by SARS-CoV-2 (129).

In addition to the long-term maintenance of specific T cell

responses and their capacity to prevent severe disease (29, 36, 38,

61, 63), an increasing number of studies have demonstrated that

infection-induced SARS-CoV-2-specific T cells largely tolerate the

amino acid mutations of the different VoCs. The impact of the

different mutations in the early VoCs (Alpha, Beta, Gamma, and

Epsilon) is limited therefore the majority of CD4+ and CD8+ T cell

responses are preserved (130–132). Studies on the impact of newer

variants such as Omicron, which holds more than 50 mutations, 37 of

them in the spike protein (133), have reported that 70% to 90% of the

CD4+ and CD8+ T cell response to spike was maintained (134, 135).

The reduced likelihood of cellular immune escape of new SARS-CoV-

2 variants is probably partly related to the high polymorphism of the

HLA system. Therefore, the set of viral epitopes recognized by each

individual´s lymphocytes may be different, and overall, at the

population level, be broader (136–138). The progressive emergence

of VoCs that mainly accumulate mutations in the spike protein (139,

140) and thus have an increased ability to evade neutralizing

antibodies (141–144) has led new analyses to focus on determining

correlates of protection against severe disease rather than infection

(98). Epidemiological observations have reported that despite the

increasing infection rate related with the successive waves of VoCs

(145, 146), protection against hospitalization and death due to re-

infection have remained extremely high (147, 148). Given the waning

humoral immunity after infection (119, 121) and the VoCs ability to

evade neutralizing antibodies (141, 142, 144), it may be suggested that

T cells play an important role in this protection against severe

COVID-19, also in the context of VoC infection.
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T cell response after vaccination

Studies on the immunodominant regions of SARS-CoV-2 have

been particularly important for vaccine development. Griffoni et al.

have reported that T cells can recognize up to 10 different SARS-CoV-

2 proteins, with spike being the most immunodominant, followed by

nucleocapsid, membrane, and other non-structural proteins (149,

150). These data, together with the fact that the receptor binding

domain (RBD) of the SARS-CoV-2 spike protein is the main target of

neutralizing antibodies (53, 151), led to the development of different

spike-based vaccine candidates.

Up to date, ten COVID-19 vaccines have been approved by the

World Health Organization (WHO) for global use. Among them, four

different vaccination platforms can be distinguished: messenger RNA

(mRNA) vaccines (Moderna’s Spikevax mRNA-1273 and Pfizer-

BioNTech’s Comirnaty BNT162b2), adenovirus vector-based

vaccines (AstraZeneca’s Vaxzevria, Covishield ChAdOx1 and

Johnson & Johnson-Janssen’s Ad26.COV2.S), inactivated virus

vaccines (Sinopharm’s Covilo, Sinovac’s CoronaVac, and Bharat

Biotech’s Covaxin) and adjuvanted protein vaccines (Novavax’s

Nuvaxovid and Covovax NVX-CoV2373) (139, 152). All have

demonstrated high rates of efficacy in preventing COVID-19,

especially protecting against severe disease and death (153–158).

Since vaccination protocols started in December 2020 with

BNT162b2 vaccine, it has been estimated that global anti-SARS-

CoV-2 vaccination saved nearly 20 million lives in its first year of

application (159).

Several studies have shown that mRNA vaccines elicit an early

and potent humoral immune response (160, 161) that declines

sharply beyond 3 months post-vaccination (162–165). Neutralizing

antibody titers developed after mRNA SARS-CoV-2 vaccination

exhibit similar dynamics (112, 166, 167), with a half-life of

approximately 60 days (168). In contrast, it has been reported that

the Ad26.COV2.S vaccine induces lower initial levels of neutralizing

antibodies but these remain stable up to 8 months after vaccination

(166, 169).

It has also been proven that COVID-19 vaccination elicits a

robust T cell response. As expected, mRNA- and adenovirus vector-

based spike vaccines induce only spike-specific T cells (112, 161, 170–

172), whereas inactivated virus vaccines induce T cells capable of

recognizing several SARS-CoV-2 antigens (173, 174). As in natural

infection, the phenotypic profile of mRNA vaccine-induced T cells is

predominantly Th1 (61, 172, 175–177). In addition, induction of

follicular helper CD4+ T cells along with cytotoxic CD8+ T cells has

been described (132, 178, 179). Early induction of these specific CD8+

T cells may explain the vaccine-mediated protection against severe

disease that has been described as early as ten days after prime

vaccination (180), when neutralizing antibodies are barely detectable

(176, 181). Similarly, studies in non-human primates highlight the

potential of vaccine-induced CD8+ T cell responses to contribute to

viral load reduction and COVID-19 containment (182–184). In

addition, it has also been demonstrated that vaccine-induced T cells

are able to cross-recognize VoCs (185–189), while VoCs partially

evade neutralizing antibodies elicited by vaccination (190–192), as it

happens in natural infection. In particular, vaccine-induced T cells

show high cross-reactivity (over 80%) against Omicron (135, 193,
Frontiers in Immunology 05
194), even in the absence of high neutralizing antibodies titers (195,

196). Vaccine induced T cell memory has generally been described as

long-lasting as and more stable than humoral response even though it

usually shows some degree of contraction within the first 3 months

after vaccination (112, 139, 185, 197).

Comparisons of T cell immunogenicity and memory elicited by

the different COVID-19 vaccines platforms have been challenging

and limited, mainly due to the lack of standardized cellular assays,

unlike the standardization of binding and neutralizing antibodies

provided by WHO (198). Comparative studies on the development

and maintenance of immunity elicited by different vaccine platforms

highlight that mRNA vaccines induced the highest CD4+ T cell

responses (199, 200). In addition, both the CD4+ T cell peak and

memory responses developed by the BNT162b2 vaccine were lower

than those generated by the mRNA-1273 vaccine (200, 201). The

acute and memory responses of CD8+ T cells generated by BNT162b2

were comparable to those of mRNA-1273, but slightly lower in

frequency and multifunctionality (200). Timing and vaccine dosing

regimens, as mRNA-1273 contains 100 mg mRNA, while BNT162b2

contains 30 mg (200), may be behind these differences. CD8+ T cell

responses were particularly high after Ad26.COV2.S vaccination (166,

199) and low, but detectable, after NVX-CoV2373 immunization

(200). This variable immunogenicity among the COVID-19 vaccines

could explain the differences in the efficacy and effectiveness that have

been reported (157, 180, 202, 203). In all cases, vaccine efficacy against

hospitalization remains stable over time, unlike efficacy against

infection (204, 205). This suggests that, as in natural infection,

vaccine-induced T cells are contributing to the control of COVID-

19, preventing the development of severe disease, in a context of

waning humoral immunity, independently of the SARS-CoV-2

variant evolution.
Hybrid immunity against SARS-CoV-2

Despite protection against severe COVID-19 and death has been

achieved, an increase in infection rates has been observed (145, 146,

206), probably due to the combination of the successive emerging

VoCs and a decreasing immunity landscape. Seroprevalence surveys

suggest that more than half of the global population has been infected

with SARS-CoV-2 (148). This, together with the massive application

of vaccines, has triggered a great interest in the characterization of the

so-called hybrid immunity against SARS-CoV-2. The term hybrid

immunity applies to individuals with a previous SARS-CoV-2

infection who were subsequently vaccinated against SARS-CoV-2 or

vice versa, thus exhibiting a combination of infection- and vaccine-

induced immunity (96, 207). Numerous studies have revealed that

individuals with previous SARS-CoV-2 infection develop unusually

strong immune responses to COVID-19 vaccines (208, 209).

Specifically, the neutralizing antibody titers were dramatically

higher in previously infected individuals receiving at least one dose

of COVID-19 vaccine (161, 207, 210) and their memory B cells were

increased 5- to 10-fold compared with natural infection or

vaccination alone (161, 211). Similarly, multiple studies have

observed an overall increase in T cell response in hybrid immunity

compared to either infection or vaccination (112, 212, 213). It has
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been shown that COVID-19 vaccines can substantially boost spike-

specific CD4+ T cell responses, and have a modest effect boosting

spike-specific CD8+ T cells, in previously infected individuals after

immunization (98, 185, 211). Likewise, hybrid immunity resulting

from vaccination plus subsequent infection (breakthrough infection)

also results in equally robust adaptive immune responses (214, 215).

It should be noted that most COVID-19 vaccines in use consist of

a single antigen, the spike protein, whereas 29 different viral proteins

are present in SARS-CoV-2 (216). Therefore, the breadth of the

resulting immune response following COVID-19 vaccination is more

restricted than in natural infection (207, 217). One of the advantages

of hybrid immunity is that it consists of both spike and non-spike

memory, resulting in a broader repertoire of virus-specific antibodies

(218, 219), B cells (217, 220) and T cells (83, 217). Comparative

analyses have reported that hybrid immunity provides greater and

more durable protection against re-infection than immunity triggered

by two or three doses of COVID-19 vaccine in uninfected individuals

(221, 222) and this superior protection conferred by hybrid immunity

has been maintained even against VoCs, including Omicron (218,

219, 223, 224). However, even though additional antigen exposure

from natural infection substantially boosts the quantity and breadth

of immune response, recent studies have shown no differences

between T cell cross-reactivity against Omicron in vaccinated-

compared to hybrid immune-subjects (188, 225).

It has also been shown that infection following spike-based

vaccination does not prevent the development of a non-spike-

specific T cell response, but on the contrary, it gives rise to a broad

repertoire of T cells specific against other SARS-CoV-2 antigens (83,

112). This indicates that individuals with breakthrough infection do

not have a preferential bias toward spike responses, which is especially

important given the continued emergence of VoCs and the current

increase in the rate of breakthrough infection (131, 226).

One of the most recently discussed concerns has been the possible

deleterious effect of the repeated SARS-CoV-2 antigen exposure on

the protective capacity of memory T cells. Repeated flu vaccination

has been shown to result in a ‘vaccine exhaustion’ with significantly

reduced protection rate (227). However, and regarding cellular

immunity in particular, recent work by Minervina et al. has shown

that repeated antigen exposure did not result in SARS-CoV-2-specific

T cell dysfunction (83). Despite the expression of T cell exhaustion

markers (CTLA-4, PD-1, TIGIT and Tox), SARS-CoV-2-specific CD8

+ T cells retained their proliferative capacity. Based on these evidences

future immunization boosters with vaccine platforms including a

variety of SARS-CoV-2 antigens seems to be recommendable.

New COVID-19 vaccines are being developed to improve efficacy

and protection against breakthrough infections, especially relevant in

the current situation with periodic emergence of new VoCs. In this

regard, new mRNA vaccine platforms that contain equal amounts of

mRNAs encoding the ancestral SARS-CoV-2 and Beta or Omicron

variant spike proteins have been developed (228–230). These bivalent

boosters enhance the humoral immune response, eliciting superior

and more durable neutralizing antibody responses against VoCs

compared to monovalent vaccine formulations (229, 231–233).

However, the effect of bivalent vaccines on T cell immunity

remains less understood and further studies are still required. A

recent study by Tan et al. has shown that bivalent booster vaccination

leads to a robust recall of memory T cell responses within the
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first 7 days after boost, that exhibit cross-reactivity against

Omicron BA.1 and BA.5 variants regardless of the priming regime

administered (234).

Another interesting new strategy for the vaccination against

COVID-19 is the application of intranasal booster vaccination, as

mucosal immunity has been shown to protect against breakthrough

infections (128, 129). Currently approved intramuscular COVID-19

vaccines induce variable levels of mucosal humoral immunity (235–

237), and while a recent study reported the presence of high frequency

of spike-specific T cells in the airways of mRNA-vaccinated

individuals (238), others detected spike-specific T cells only in the

BALF of SARS-CoV-2 convalescent patients but not in the BALF of

vaccinated-only individuals (239, 240). On the contrary, mucosal

vaccination can elicit strong adaptive responses both locally and

systemically as reported in animal models. It has been shown in

mice that intranasal vaccination against SARS-CoV-2 led to the

induction of broadly neutralizing antibodies and polyfunctional

central memory T cells locally, in the draining lymphoid organs,

and systemically in the spleen (241). Mao et al. propose the use of

intranasal booster administration which can induce robust tissue-

resident memory B and T cell responses, as well as boost systemic

immunity (242). Importantly, an intranasal vaccine with non-spike

antigens in Cynomolgus macaques reduced the viral load two days

after being challenged by intranasal SARS-CoV-2. The viral control

was observed in the absence of neutralizing antibodies, and it was

linked to the induction of specific CD8+ T cell responses (183).

Finally, intranasal immunization has been shown to provide

protection against VoCs in animal models (243, 244). These data

highlight both the protective value of SARS-CoV-2-specific T cells

resident in the upper respiratory tract and the effective next-

generation COVID-19 intranasal vaccine approach to induce

mucosal immunity against current and future VoCs, which could

be a promising strategy to reduce breakthrough infections and curb

SARS-CoV-2 transmission.
Concluding remarks

Much information has been generated since the onset of the

COVID-19 pandemic about the role of T cell-mediated immunity in

SARS-CoV-2 infection and its association with disease control. It has

been shown that, although neutralizing antibodies play a dominant

role in the prevention of infection, an adequate disease control

depends on the synchronized function of the two branches of the

adaptive immunity, where the coordinated development of an early T

cell response followed by a controlled humoral response is essential.

Although the development and massive application of COVID-19

vaccines has led to a dramatic decrease in the frequency of severe

disease and death, it is still necessary to establish accurate correlates of

protection. Thus, increasing evidence supports that since antibody

titers are not a surrogate indicator of the magnitude of memory T

cells, the use of antibody serodiagnostic tests alone will not be a robust

indicator of protective immunity against SARS-CoV-2. In addition, it

has been shown that T cells remain largely stable over time while

antibodies and their neutralizing activity sharply decrease. This fact,

together with the robust evidence that the T cell response is preserved

against VoCs, as opposed to neutralization, further highlights the
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association between the cellular immunity and the decreased rates of

severe disease, regardless of SARS-CoV-2 variant evolution. Along

these lines, it would be essential to implement a cellular response

surveillance program to fully understand the extent of immunity

among the population and to be able to identify vulnerable groups.

In parallel, comparative studies between protection conferred by

natural infection, vaccination or hybrid immunity have highlighted

the value of developing a broad immune repertoire against SARS-

CoV-2. Therefore, the inclusion of viral antigens other than spike in

new vaccine designs could result in further benefit.
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