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eweb application has become a primary target for cyber criminals by injectingmalware especially JavaScript to performmalicious
activities for impersonation. 
us, it becomes an imperative to detect such malicious code in real time before any malicious
activity is performed. 
is study proposes an e�cient method of detecting previously unknown malicious java scripts using an
interceptor at the client side by classifying the key features of the malicious code. Feature subset was obtained by using wrapper
method for dimensionality reduction. Supervisedmachine learning classi�ers were used on the dataset for achieving high accuracy.
Experimental results show that our method can e�ciently classify malicious code from benign code with promising results.

1. Introduction

Due to the rapid advancement of modern computers and
network infrastructure and our dependence on the Internet
and its services which are increasing, web applications which
are accessed through web browsers have become a primary
target for cyber criminals. As per a report released by
Symantec in 2016 [1], about 430 million unique pieces of
malware were discovered showing a growth of 36% against
the year 2014. Cyber criminals use the malicious code and
malicious URLs to attack individuals and organizations. 
e
sole purpose of such attacks is for personal, �nancial, and
political gains through damaging or disrupting normal oper-
ation of computer and systems, performing phishing attacks,
displaying unwanted advertisements, and extorting money.

us detection of suchmalicious code attacks becomes a top-
most security challenge.

Open Web Application Security Project (OWASP) has
ranked cross-site scripting (XSS) as the 2nd most dangerous
vulnerability among top ten vulnerabilities. Currently, XSS
holds a share of 43% among all the reported vulnerabilities.
XSS is a type of injection attack in which malicious scripts
are injected around benign code in a legitimate webpage in
order to access cookie, session, and other secret information.

Web applications are used to transport malicious scripts to
perform the attack. 
e target of XSS attack is a client side
whereas SQL injections target server-side [2]. XSS attack is
a vulnerability at the application layer of network hierarchy,
which occurs by injecting malicious scripts to break security
mechanism. About 70% attacks are reported to occur at
application layer. Web browsers are the most susceptible
application layer so�ware for attacks. 
e purpose of the
web browser is to get the requested web resource from the
server and displayed in browser’s windows. 
e format of
the supplied resources is not restricted to HyperText Markup
Language (HTML) but can also be portable document format
(PDF), image, and so on. Attackers run malicious JavaScript
in a web browser to target users. Malicious and obfuscated
URLs also serve as a carrier for XSS attacks [3].

JavaScript is a programming/scripting language, used in
web programming for making web pages more interactive,
adds more features, and improves the end user experience.
JavaScript also helps in reducing the server-side load and
helps in shi�ing some computation to end user side. 
e
JavaScript is commonly used for client-side scripting to be
used in web browsers. When a user requests for a certain
web page through a web browser, the server responds to
the request and sends back web page which might have
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JavaScript embedded into it. 
en the JavaScript interpreter
inside the web browser at the user’s side starts executing it
directly and automatically unless explicitly disabled by the
user. Unfortunately, JavaScript’s code provides a strong base
for conducting attacks, especially drive-by-download attacks,
which unnoticeably attack clients amid the visit of a web
page. In contrast to di�erent sorts of network-based attacks,
malicious JavaScripts are di�cult to detect [4]. JavaScript
attacks are performed by looking into the vulnerability
and exploiting by using JavaScript obfuscation techniques
to evade the detection. 
us detecting of such malicious
JavaScript’s attacks at the real time becomes imperative.

Security solution providers who play a vital role in pro-
viding tools for defending attacks are fundamentally based
on two correlative approaches, signature-based and heuristic-
based detection approaches. 
e signature-based approach
is based upon the detection of unique string patterns in the
binary code. Signature-based attack detection approach fails
when a new type of attack occurs. In this approach, the
instance of new attack needs to be captured �rst in order
to create a signature from it and then subsequently update
the de�nitions of the detection tool on the client side. As
the time gap between the capturing of new attack instance
and the updating at the client side is high, it may make
millions of client-side machines vulnerable to attacks. Cyber
criminals take advantage of this time gap and vulnerability
and simultaneously launch the attack. Consequently, this
approach is unacceptable in an environment where new
attacks are expected to come. Another tradition approach for
attack detection is heuristic-based detection. Heuristic-based
detection is based upon the set of expert decision rules to
detect the attack.
e advantage of using this attack approach
is that it cannot only detect modi�ed or variant existing
malware but can also detect the previous unknown attack.

e downside of using this approach is that it takes a long
time in performing scanning and analysis, which drastically
slows down the security performance. Another problem of
the approach is that it introduces many false positives. False
positive occurs when a system wrongly identi�es code or a
�le as malicious when actually it is not. Some of the heuristic
approaches include �le emulation, �le analysis, and generic
signature detection.

Researchers recently have enlisted machine learning in
the detection of malware. 
e advantage of using machine
learning is that it can determine whether a code or a �le is
malicious or not in a very small time without the need of
isolating it in a sandbox to perform the analysis. Machine
Learning is able to detect previously unknown malware with
predictive capabilities and especially useful for the detection
of increasingly polymorphic nature of malware. To perform
the classi�cation of a benign and a malicious code, machine
learning classi�ers are used in detection through learning
from patterns.

Keeping in view the impact that an attack can cause on
the client side, detection of JavaScript at a real time thus
became necessary. Several approaches have been proposed
for classi�cation and detection of malicious JavaScript code
from the benign code of a website such as those of Rieck et al.
[5], Curtsinger et al. [6], and Fraiwan et al. [7], the problem

of these approaches is time overhead in detection. Other
approaches such as GATEKEEPER [8] and Google Caga [9]
use a method of executing random JavaScripts from the code
in a protected environment but can detect the limited type of
attacks.

Antivirus so�ware, whether online or o�ine, uses
signature-based techniques for detection of malware, thus
requiring a constant update for newmalware signatures from
vendors for detection. 
e time gap between the detection
of new malware and updating the virus signature at the
client side may take a long time. It thus leaves the systems
open for vulnerabilities until the virus de�nition has not
been released by the vendor and updated by the client. 
us
antiviruses are ine�ective in current scenario for defending
zero-day attacks where new malware variants are put in wild
every day. In this paper, we introduced an interceptor for
detection of malicious JavaScript attacks coming towards
the client side based on machine learning for detection of
malware especially previously unknown malware variants.

eproposed approach is light weight in naturewithminimal
runtime overheads.Detection is based on the static analysis of
a code for extracting features from given JavaScript to be fed
into classi�er for the classi�cation process. Experiments were
conducted by using a dataset of 1924 instances of JavaScript
with 409 as malicious and 1515 as benign. Machine language
classi�ers such as Naı̈ve Bayes, SVM, J48, and �-NN were
individually tested for their performance of the selected
features. 
e proposed approach is browser and platform
independent and is depicted in Figure 1. 
is study is a
continuation of our previous study [10]. 
e rest of the paper
is organized as follows: Section 2 discusses the architecture
of the proposed study. Section 3 explains the classi�cation
model. Section 4 provides details about experiments and
analyzes their results. Section 5 deals with the related work.
Section 6 provides conclusion and future work.

2. Architecture of Proposed Approach

Keeping in view the need for the real-time detection of
malicious JavaScript code, we proposed an approach for
detection of such attacks; the proposed approach consists of
an interceptor between browser and server for detection of
malicious JavaScript code. In this approach, all the tra�c
between server and client is exchanged through the inter-
ceptor to check for possible attacks in the source code to be
executed by the browser. 
ere are no direct communication
channels between browser and server. 
is interceptor is
proposed to protect the client side from being attacked or
delivered with the malicious mode. 
e interceptor uses a
static analysis for detection of malicious JavaScript attack.

e interceptor will be installed as a plugin on the browser.
Normally, when a client intends to visit awebsite by typing the
URL into the address bar, anHTTPGET request is sent to the
web server for lookup of the requested web page and if found
response is generated, and the cookie is set in the browser. In
this approach, the response from the server is passed via an
interceptor to �nd a malicious code. Features are extracted
from the source code of the web page which is fed into the
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Figure 2: Schematic diagram of interceptor.

machine learning classi�cation for decision. If any malicious
JavaScript found, the page is blocked before it is interpreted
by the browser.


e process of detection of malicious JavaScripts is
done in few steps as shown in Figure 2. At the �rst step,
the web browser sends a request to a web server for a
speci�c page using its URL; all the subsequent web pages
are cached by the loader into memory for the purpose to
make succeeding requests for the same web domain faster
while the background check of the whole domain has already
been done in the background by interceptor in advance.
Only the web pages up to level two will be loaded from the
seed URL into the memory on a visit. Once the user starts
browsing and diving deep into the website the progression
is further extended automatically to next two levels with
a maximum limit of 500 web pages per level, which sums
up 7MB of JavaScript code per level with the average of
JavaScript code found on each web page being 15 KB as per
[11].
e source code of the web page needs to be a breakdown
by performing lexical analysis to generate a sequence of the
tokens to be parsed. In this method, we used Yacc parser (yet
another compiler-compiler) which is an LALR (Look Ahead
le� Right) algorithm based parser to generate tokens from
JavaScripts [12, 13]. 
e parser reads and analyzes an input
stream of JavaScripts which breaks them into component
pieces. Each component piece obtained is a token which may

be a keyword, string, number, or punctuation, which cannot
be further broken. 
e tokens obtained a�er parsing are
arranged according to the input structure of JavaScript code
obtained from the web page and grammar rules of the parser.

e bene�t of using LALR type of parser is to generate a large
parsing table from the input stream of JavaScripts fromwhere
a larger set of tokens can be drawn.
e tokens obtained from
parsing are stored in a �le to be used in further processing. To
evade the detection attackers employ obfuscation technique
in an attempt to infuse malicious code. A wide range of
obfuscation approaches are used such as encoding, escaped
ASCII, string split, and hidden iFrame to avoid detection. As
the obfuscation is becoming more and more sophisticated,
any such obfuscated code will be detected with a high degree
of accuracy and precision during lexical analysis. Extraction
of features is a key step to perform the transformation of
unstructured and semistructured contents into a structured
form which is used for classi�cation. 
e �nal step is to
perform classi�cation, which will accurately predict to which
class a new script belongs, based upon the observations on the
training set whose class is already known. Once a malicious
script is detected the page will be blocked.

3. Building the Classification Model

3.1. Dataset. In order to perform classi�cation with high
accuracy, the quality of dataset is very important, whichmust
contain the instances of benign and malicious JavaScripts
so that the distribution of samples emulates distribution in
the web. Dataset used for conducting experiments consists
of total 1924 instances with 1515 instances of benign and 409
malicious instances.
e dataset has been obtained from [14].

3.2. Feature Selection. A number of features can be extracted
from JavaScripts, but not all of them will be helpful in
accurate detection of malicious JavaScripts. In the feature
selection process, a classi�cation algorithm is encountered
with a problem of selecting a relevant set of features as
a primary focus while ignoring others in order to achieve
high accuracy. To obtain high accuracy with a particular
classi�cation algorithm on a speci�c dataset, feature subset
selection plays a crucial role in deciding how a classi�cation
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Table 1: Feature subset obtained by applying wrapper method.

Classi�er Feature subset

Näıve Bayes 7, 9, 15, 17.25, 26, 36, 70

J48 3, 7, 17, 69, 70

SVM 9, 12, 16, 17, 20, 53, 70�-NN 7, 11, 69, 70

and the training set interact. Taking this into consideration,
we performed feature subset selection using wrapper method
in order to generate a feature subset which is likely to be
more predictive with a speci�c classi�cation algorithm. We
have extracted 70 features of JavaScripts as shown in the
Appendix. In wrapper method, the feature selection is done
by an induction algorithm as a black box where the algorithm
conducts a search for a good subset itself as a part of the
evaluation process as shown in Figure 3 [15]. 
e accuracy of
the induced classi�er is estimated using accuracy estimation
techniques [16]. In this study, we employed classi�er subset
evaluator along with the best �rst search engine to obtain an
optimal feature subset. Classi�er subset evaluator evaluates
attribute subsets on training data or performs a seperate
holdout test on the testing set and uses a classi�er to estimate
the “merit” of a set of attributes [17]. We obtained subsets
by using a classi�er subset evaluator along with the best �rst
search engine.
e subsets obtained for di�erent classi�ers are
given in Table 1.

3.3. Classi�ers. Researchers in the �eld of machine learning
have proposed many algorithms for classi�cation in the past.
Some of the popular known algorithms are SVM, Naı̈ve
Bayes, decision tree,�-Nearest Neighbour (�-NN), Random
Forests, and so on. 
e selection of algorithm depends on
the size of the training set and also on the basis of accuracy,
training time, linearity, the number of parameters, and the
number of features. If the training set is small in size, then
high variance low bias classi�ers are used and if the training
set is large for the low variance, high bias classi�ers are
used. Machine learning algorithms are divided into three
categories based on their learning style. 
ey are supervised,
unsupervised, and semisupervised algorithms.
e proposed
approach will use 4 supervised machine learning classi�ers,
and their results will suggest which classi�er to be used in the
interceptor for the real-time detection malicious code.

3.3.1. Naı̈ve Bayes Classi�er. Näıve Bayes [18] classi�er tech-
nique is based on Bayes theorem with independent assump-
tion between predictors. Näıve Bayes model is easy to build

when the dimensionality of the dataset is very large. In
the context of learning the process, the classi�er tokenizes
training data to some tokens �� (� = 1, . . . , �) and counts
the number of occurrences of �� in each class. Based on this
process the likelihood of each class is computed with some
test data and classi�es that test data for the class which has
the highest likelihood.

Despite its simplicity, Näıve Bayes classi�er is widely used
as it surpasses more sophisticated classi�cation methods.
Bayesian classi�er is based on Bayes theorem, which says

� (	� | 
) = � (
 | 	�) � (	�)� (
) , (1)

where �(	� | 
) is probability of instance 
 being in class 	�,�(
 | 	�) is probability of generating instance 
 given class	�, �(	�) is probability of occurrence of class 	�, and �(
) is
probability of instance 
 occurring.

In our study, there are only two classes malicious and
benign for classi�cation of the range of � is from 1 to 2 only.

3.3.2. Support Vector Machines. Support Vector Machines
(SVM) were developed by Boser et al. in 1992 [19]. However,
the original optimal hyperplane algorithm was introduced
by Vapnik and Lerner in 1963 [20]. SVM is considered as
one of the most e�ective models for binary classi�cation of
high-dimensional data. An SVM performs classi�cation by
constructing an -dimensional hyperplane that optimally
separates the data into two categories to maximize the
distance of the hyperplane. SVM can also be extended to the
data that is not linearly separable by applying kernel to map
the data into a higher-dimensional space and to separate the
data on the mapped dimension.

3.3.3. K-Nearest Neighbour. 
e�-Nearest Neighbour Algo-
rithm (KNN) [21] is the simplestmachine learning algorithm.
To determine the category of the test data, �-NN performs
a test to check the degree of similarity between documents
and � training data to store a certain amount of classi�ed
data. Since �-NN classi�es instances, in our research, it will be
malicious and benign code instances nearest to the training
space. 
e classi�cation of unknown instances is performed
by measuring the distance between the training instance and
unknown instance. Since instances are classi�ed based upon
the majority vote of neighbour, the most common neighbour
is measured by a distance function. If � = 1, then the
instance is assigned for the class of its nearest neighbour. In�-dimensional space distance between two points � and � is
achieved by using any distance function as follows:

Euclidean distance function:

√ �∑
�=1
(�� − ��)2, (2)

Manhattan distance function:

�∑
�=1

������ − ������ , (3)



Wireless Communications and Mobile Computing 5

Minkowski distance function:

( �∑
�=1
(������ − ������)�)

1/� . (4)

3.3.4. Decision Trees. Decision tree learners are a non-
parametric supervised method used for classi�cation and
regression. In a decision tree, classi�er is represented as a
tree whose internal nodes represent the condition of the
variable and �nal nodes or leaves are the �nal decision
of the algorithm. In the process of classi�cation, a well-
formed decision tree can e�ciently classify a document by
running a query from the root not until it reaches a certain
node. 
e main advantage of using decision tree is that it
is simple and easy to understand and interpret for naı̈ve
users. 
e risk associated with decision tree is over�tting
which occurs when a tree is fully grown, and it may lose
some generalization capabilities. Some common reasons of
over�tting are the presence of noise, lack of representation
instance, and multiple comparison procedures. Over�tting
can be avoided by severing approaches such as prepruning
and postpruning.

3.4. Performance Evaluation. Performance evaluation acts as
a multipurpose tool which is used to measure the actual val-
ues within the system against expected values. Our purpose
of evaluation is to study and measure the performance of a
classi�er in detectingmalicious code. In order to achieve high
results from the proposed approach, we are deeply concerned
with the accuracy which is de�ned as

Accuracy = No. of Classi�ed Benign Scripts

Total Benign Samples
× 100. (5)

A false positive scenario occurs when the attack detection
approach mistakenly treats a normal code as a malicious
code. In a given approach, a false negative occurs when a
malicious code is not detected despite its illegal behaviour.
Detection rate is measured by using confusion matrix or
error matrix for the assessment of false positives, and false
negatives false positive and false negative detection rate is
calculated by

FPR = FP = FP

FP + TN . (6)

And the false negative rate is calculated by

FNR = FN� = FN

FN + TP , (7)

where FPR is false positive rate, FNR is false negative rate, FN
is false negative, TN is true negative, and TP is true positive.

True negative shows a number of negative samples cor-
rectly identi�ed, false negative implies a number of malicious
samples identi�ed as negative, false positive indicates the
number of negative samples identi�ed as malicious, and
true positive shows a number of malicious samples correctly
identi�ed [22]. 
e performance of the proposed detection

approach will be the rate at which the malicious scripts are
processed. 
e performance will be calculated by latency
time which is taken in presence and absence of interceptor
to display a page and another by calculating the system
resource consumption in both scenarios. Achieving real-time
detection is not possible where the detection system is poor.
Receiver operating characteristic (ROC) had also been used
for the evaluation process. ROC is a graphical plot generated
by using a fraction TPR against the fraction of FPR for a
binary classi�er at various thresholds.

4. Experimental Results and Analysis

In our experiments, we used a dataset of total 1924 instances
with 1515 instances of benign and 409 malicious instances.

e aim of performance evaluation is to study and analyze
the performance of classi�ers in correctly classifying the
instance by using the evaluation metrics such as accuracy,
true positive rate, and false positive rate. In this study, we
have conducted three experiments. In Experiment I, we used
100% labels as training. In Experiment II, the entire sample
set is split into two parts: the training 80% and testing 20%.
In Experiment III, each classi�er was evaluated using 10-
fold cross-validation. �-fold cross-validation is a technique
to evaluate predictive models by partitioning the original
sample into a training set to train the model and a test set
to evaluate it, where � ranges from 1 to � − 1. In 10-fold
cross-validation the data is portioned into ten subsets for
each portioned subset the remaining nine subsets are used to
train the classi�er and the �nal subset is considered as a test
set. In all the three conducted experiments, four classi�ers
such as Näıve Bayes, J48, SVM, and �-NN were used. For
SVM, RBF kernel was used. In order to determine the
parameter regularization, we used grid-search to determine� and gamma using cross-validation. Various pairs of (�, �)
values were tested and the one with the best cross-validation
accuracy was picked; RBF kernel � = 250007 and � =0.01 were found optimal. For KNN, the Euclidean distance
function was used as given in (2). 
e best value for � was
chosen automatically by WEKA, which uses cross-validation
and � = 10 was found optimal. 
e features used for the
classi�cation process were chosen by using wrapper method.

e feature set obtained fromwrappermethodwith respect to
individual classi�ers is given in Table 1. 
e results obtained
from three experiments are listed in Tables 2, 3, and 4,
respectively.

As shown in Tables 2, 3, and 4, the overall performances
of all the four classi�ers are good, but certain classi�er
performs better in each of the experiments. SVM in all the
three experiments achieved low accuracy, as low as 94.55%
in Experiment II. KNN in Experiment I outperformed
with 100% accuracy rate. However, for KNN, a decrease
in performance was observed within Experiments II and
III, respectively. J48 achieved an accuracy of 97.09% in
Experiment I, and it increased in Experiment II to 99.22%.

eROCcurve obtained show thatKNNachievedROC= 1 in
Experiment I followed by the J48 classi�er in Experiment III
with ROC = 0.983. Comparing the results obtained in all the
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Table 2: Results obtained from four classi�ers by using 100% training.

Classi�er Accuracy TP rate FP rate Precision Recall �-measure ROC Class

Näıve Bayes 97.25%
0.875 0.001 0.994 0.875 0.931 0.943 Malicious

0.999 0.125 0.967 0.999 0.983 0.943 Nonmalicious

J48 97.09%
0.966 0.003 0.99 0.966 0.978 0.982 Malicious

0.997 0.034 0.991 0.997 0.994 0.982 Nonmalicious

SVM 96.51%
0.912 0.02 0.923 0.912 0.918 0.946 Malicious

0.98 0.088 0.976 0.98 0.978 0.946 Nonmalicious

KNN 100.00%
1 0 1 1 1 1 Malicious

1 0 1 1 1 1 Nonmalicious

Table 3: Results obtained from four classi�ers by performing 10-fold cross-validation.

Classi�er Accuracy TP rate FP rate Precision Recall �-measure ROC Class

Näıve Bayes 97.99%
0.868 0.001 0.994 0.868 0.927 0.963 Malicious

0.999 0.132 0.966 0.999 0.982 0.936 Nonmalicious

J48 98.64%
0.951 0.004 0.985 0.951 0.968 0.971 Malicious

0.996 0.049 0.987 0.996 0.991 0.971 Nonmalicious

SVM 95.42%
0.848 0.017 0.93 0.848 0.887 0.916 Malicious

0.983 0.152 0.96 0.983 0.971 0.916 Nonmalicious

KNN 96.41%
0.927 0.026 0.907 0.927 0.917 0.956 Malicious

0.974 0.073 0.98 0.974 0.977 0.956 Nonmalicious

Table 4: Results obtained from four classi�ers for 80% training and 20% testing.

Classi�er Accuracy TP rate FP rate Precision Recall �-measure ROC Class

Näıve Bayes 95.06%
0.795 0.007 0.971 0.795 0.874 0.964 Malicious

0.993 0.205 0.946 0.993 0.969 0.965 Nonmalicious

J48 99.22%
0.964 0 1 0.964 0.982 0.983 Malicious

1 0.036 0.99 1 0.995 0.983 Nonmalicious

SVM 94.55%
0.88 0.036 0.869 0.88 0.874 0.922 Malicious

0.964 0.12 0.967 0.964 0.965 0.922 Nonmalicious

KNN 97.14%
0.904 0.01 0.962 0.904 0.932 0.957 Malicious

0.99 0.096 0.974 0.99 0.982 0.957 Nonmalicious

three experiments, it can be concluded that KNN performed
very well and has achieved 100% accuracy with ROC = 1. All
the experiments were run on a PC with Quad core 3.6GHZ
processor with 16GB primary memory. In order to know the
computation costs, the same PC was used with the Internet
speed of 2.02Mbps as download speed and 3.90Mbps as
upload speed. 
e time between the �rst requests made by
the user till the display of �rst page was recorded with and
without interceptor. It was found that the average time to
display a web page without interceptor was 0.55 seconds,
whereas the average time for displaying a singlewebpage a�er
classi�cation was 0.97 seconds. WEKA was used to obtain
the classi�cation results. WEKA is a collection of machine
learning algorithms for data mining tasks developed by the
University of Waikato, New Zealand [23].

5. Related Work

Malicious JavaScript attacks have become an essential busi-
ness proposition due to the seriousness of their threat
and impact. Detection of malicious JavaScript attacks thus
became a vital �eld of research. Despite a number of tech-
niques for detection of JavaScript attack have been proposed,
JavaScript attacks still remain a threat to users. 
us an
e�cient approach to mitigate XSS is demanded. Researchers
took the services of machine learning to �nd the accurate
detection approach for detection of previously unknown
attacks. In 2005, Kam and
i [24] were the �rst to explore the
possibility of using machine learning for detection malicious
web page. 
eir work limited up to the detection of a
malicious web page based on URL by performing lexical
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Table 5: Complete feature list.

(1) Number Of Redirections

(2) Di�erence In Redirections

(3) Number Of Instantiated Objects

(4) Di�erence In Instantiated Objects

(5) Length Of Longest Single Evaluated Code

(6) Total Bytes Of Evaluated Code

(7) Total Bytes Allocated

(8) Number Of Executions

(9) Length Of Longest Unprintable String

(10) Number Of Unprintable Strings

(11) Ratio Of De�nitions To Uses

(12) Length Of Method Call Parameter

(13) Total Number Of Method Calls

(14) Memory Over�ow Occured

(15) Unprintable String Used For Instantiated Object Parameter

(16) Unprintable Strings AND/OR Redirects

(17) Method Cal

(18) open
(19) run
(20) Saveto�le
(21) Send
(22) Setattribute
(23) Write

(24) timespanformat

(25) shellexecute
(26) playerproperty
(27) uploadlogs
(28) hgs startnotify
(29) downloadandinstall
(30) getvariable
(31) linksbicons
(32) openurl
(33) getresponseheader
(34) keyframe

(35) setrequestheader
(36) Setslice
(37) buildpath
(38) getspecialfolder
(39) environment

(40) rawparse
(41) iestartnative
(42) setformatlikesample

(43) createobject
(44) specialfolders
(45) replace
(46) createnewfoldername

(47) addevent
(48) isversionsupported
(49) split
(50) new
(51) evaluate
(52) msdatasourceobject

Table 5: Continued.

(53) allowscriptaccess

(54) concat

(55) url

(56) mode

(57) type

(58) Import

(59) close

(60) allowcontextmenu

(61) cachefolder

(62) compressedpath

(63) console

(64) printsnapshot

(65) shownavigationbuttons

(66) snapshotpath

(67) wkspictureinterface

(68) zoom

(69) script Size

(70) intent

analysis. 
is study does not check the code on the web
page for any malicious code. In 2006, Kolter and Maloof [25]
used 4-gram sequence for feature extraction of features from
two 500 �-grams by using a measure of information gain.
Classi�ers such as Naı̈ve Bayes, SVM, and decision trees were
used for classi�cation. Results show that only J48 classi�er
could achieve an AUC of 0.996. In 2007 Garera et al. [26]
used regression analysis by using about 18 selected features
for detection of a phishing website. An accuracy of 97.3%
was achieved by using a small data set of about 2500 URLs.
In 2008, McGrath and Gupta [27] try to detect phishing
URLs by performing a comparative analysis of phishing and
nonphishing URLS. 
eir study does not use any classi�er.
In 2008, Polychronakis and Provos [28] carried out a study
for drive-by exploit of URLs by using machine learning
classi�ers pre�lters. 
e limitation to this approach is that it
is time-consuming as it employs a heavyweight classi�er for
classi�cation. Based on dynamic analysis approach Ahmed et
al. in 2009 [29] proposed an approach for malware detection
by extracting features in combined from spatial and temporal
information from API at runtime. In 2012, Abbasi et al. [30]
used a very small dataset for classi�cation of fake medical
websites. 
is study is restricted only up to the detection of
the fakemedical website and cannot detect other types of fake
or malicious websites. Huda et al. in 2016 [31] proposed an
approach for malware detection based on API call statistics
as a feature for the SVM classi�er. Soska et al. proposed
an approach for detection of malicious websites based on
features extracted from network tra�c statistics, �le system,
and contents on the web pages using C4.5 decision tree
based algorithm. Another study conducted by Alazab in 2015
[32] proposed an approach for detection of malware based
on API call sequence quite similar to [31], by using �-NN
classi�er. Al-Taharwa et al. in 2015 [33] proposed an approach
for detection of deobfuscation of JavaScripts for detection
of malicious JavaScripts. Our work is based on extracting
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features based on their quality, which is precisely analyzed to
be used during the classi�cation process.
ese features act as
pivotal in initiating a JavaScript attack.

6. Conclusion and Future Work

In this paper, we proposed an interceptor for detection of
malicious JavaScripts and conducted experiments. 
e pro-
posed approach achieved an accuracy of 100% in detection
for previously unknown malicious JavaScript’s attacks based
upon the learning. Experimental results show that ROC =
1 was achieved by KNN classi�er with no false positive.

e wrapper method played an important role in feature
selection, which leads to high accuracy compared to other
studied static approaches.

Appendix

See Table 5.
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