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Abstract

Bacterial meningitis is among the top ten causes of infectious disease-related deaths worldwide,

with up to half of the survivors left with permanent neurological sequelae. The blood–brain barrier

(BBB), composed mainly of specialized brain microvascular endothelial cells, maintains

biochemical homeostasis in the CNS by regulating the passage of nutrients, molecules and cells

from the blood to the brain. Despite its highly restrictive nature, certain bacterial pathogens are

able to gain entry into the CNS resulting in serious disease. In recent years, important advances

have been made in understanding the molecular and cellular events that are involved in the

development of bacterial meningitis. In this review, we summarize the progress made in

elucidating the molecular mechanisms of bacterial BBB-crossing, highlighting common themes of

host–pathogen interaction, and the potential role of the BBB in innate defense during infection.
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Dynamic epidemiology of bacterial meningitis

Despite our enormous progress in the treatment and prevention of infectious diseases, there

are still 1.2 million cases of bacterial meningitis per year, 170,000 of which are fatal [201].

In addition, permanent neurological sequelae occur in up to 50% of survivors [1,2].

Although many bacteria can cause disease in humans, only a limited number of pathogens

are isolated from the CNS of patients. The most prevalent cause of meningitis varies

depending on geographic location, socioeconomic status, age, vaccination availability and

overall health status of the individual.

Globally, Streptococcus pneumoniae, Neisseria meningitidis (meningococcus) and

Haemophilus influenzae type B (HiB) are the most common causes of meningitis in infants
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and adults. In industrialized countries, both the incidence and epidemiology of meningitis

have been dramatically affected by the introduction of vaccines against these organisms.

Before the introduction of the conjugate HiB vaccine in the 1980s, HiB alone accounted for

approximately half of the cases of meningitis in infants, compared with a 78% reduction in

disease incidence following routine vaccination [3,4]. Globally, however, HiB is estimated

to still cause 173,000 cases of meningitis each year [5] as HiB vaccination programs are not

yet available in developing countries [4]. Strategies are in place to introduce the HiB vaccine

in resource-poor countries over the next several years [202]. Currently, S. pneumoniae is the

worldwide leading cause of bacterial invasive disease in children younger than 5 years of

age [6] and of bacterial meningitis in all age groups except young infants [7]. In addition, in

sub-Saharan Africa, also called the ‘meningitis belt’, N. meningitidis is a leading cause of

large epidemics of meningococcal meningitis. Vaccination strategies against S. pneumonia

and N. meningitidis have been limited to several serotypes and are overall hampered by

concurrent increases in nonvaccine serotypes [8-10]. Therefore, a complete elimination or

prevention of pneumococcal and meningococcal meningitis will only be possible when

vaccines either include all serotypes, or a conserved antigen present in all disease isolates.

Although not classically thought of as a meningeal pathogen, non-typhoidal Salmonella

(NTS) species are a frequent cause of meningitis in certain parts of Africa [11-13]. In

northern Uganda, it has even been reported as the second most common cause of pediatric

meningitis after the introduction of the HiB vaccine in 2002 [14]. The incidence of NTS

meningitis is likely to increase given that NTS has become the most common cause of

bacteremia in tropical Africa [15]. NTS meningitis has a high case fatality rate (up to 60%)

and a high incidence of postinfectious sequelae in survivors as treatment is often

complicated by multidrug resistance [11-13,15,16].

A different pathogen spectrum is associated with meningitis in the newborn. In many

industrialized countries, Streptococcus agalactiae, also known as group B Streptococcus

(GBS), Listeria monocytogenes and Escherichia coli K1 are the most common causes of

meningitis in the neonatal period [7,17-19]. By contrast, in developing countries, additional

pathogens such as Klebsiella, Staphylococcus aureus, and NTS species, are frequently

isolated from neonates, and GBS is usually less common compared with many industrialized

countries [20,21]. No vaccination strategies are currently in place to prevent these types of

infections but they are anticipated to reduce the number of meningitis cases [7]. Fortunately,

increased screening and intrapartum antibiotic prophylaxis has resulted in a decline in early-

onset GBS invasive disease in the USA [22,23]. However, this treatment has not eliminated

the incidence of GBS meningitis and concern has been raised about coinciding increases in

non-GBS early-onset invasive disease, especially in preterm infants as a result of increased

antibiotic use [24,25].

Besides these frequent causes of meningitis in different age groups, additional pathogens are

known to cause meningitis in vulnerable groups, such as immunocompromised patients,

which includes infants and the elderly adults (>65 years of age), or specific population

groups. Meningitis due to Mycobacterium tuberculosis and NTS species occurs relatively

frequently in HIV-infected and other immunocompromised patients [26-28], whereas

Streptococcus suis is the most common cause of acute bacterial meningitis in southeast Asia,

but is rare in other countries [29,30]. Although still considered a rare complication,

increasing numbers of S. aureus meningitis cases are observed in the hospital setting [31],

usually as a result of postoperative complications or hematogenous spread due to underlying

diseases such as HIV, immune deficiencies, diabetes or cardiovascular disease [31,32]. The

mortality rate seems especially high when disease was contracted in the community [31-34].

Finally, Bacillus anthracis, an exotic cause of infection and meningitis overall, has gained

research interest as a result of its use in bioterrorism attacks in 2001 [35]. In addition to its
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potential use as a bioweapon, B. anthracis is still a relevant natural cause of infection to

people living in endemic regions in agricultural settings or exposure due to occupation [36].

Just recently, an outbreak of systemic anthrax occurred in Scotland among intravenous drug

users due to injection of contaminated heroin [37]. Anthrax meningitis is the main

neurological complication of systemic infection, approaching 100% mortality despite

intensive antibiotic therapy [38].

The pathogenesis & pathophysiology of bacterial meningitis

Many of the meningeal pathogens, including HiB, N. meningitidis, S. pneumoniae, GBS and

S. aureus, are able to colonize the skin, upper respiratory, nasopharyngeal, GI or vaginal

tract of healthy individuals. Carriage can be stable, transient or intermittent [39] and often

remains asymptomatic. However, in certain cases, bacteria penetrate host cellular barriers to

initiate a local infection that can result in systemic spread. An association between high-

level bacteremia and development of meningitis has been suggested for E. coli, S.

pneumoniae, GBS and HiB from experimental models of hematogeneous meningitis

[40-45]. This implies that bloodstream survival is an important virulence trait of meningeal

pathogens to avoid immune clearance by complement- and antibody-mediated phagocytic

killing by host immune cells. Indeed, once bacteria reach the bloodstream, their

transcriptional profile changes dramatically and includes survival strategies such as an

altered cell membrane or cell wall composition [46,47] and increased expression of

complement regulatory proteins [48,49] or iron-uptake systems [48]. Another strategy to

prevent bloodstream clearance is adopted by E. coli K1 through expression of OmpA. This

bacterium initiates its specific uptake in macrophages and dendritic cells through FcγRIa

(CD64), and in neutrophils through gp96, to replicate intra-cellularly [50]. In this niche, the

bacterium is protected from serum bactericidal activity and from phagocyte-mediated

clearance by suppressing oxidative burst [51-53]. Increasing bacterial clearance from the

blood would prevent or limit bacterial survival and multiplication, thereby limiting the

possibility to reach the CNS. Vaccination poses a successful strategy to limit the risk for

developing meningitis as it significantly decreases carriage, and reduces the levels of

bacteremia due to enhanced phagocytic clearance by neutrophils and macrophages for

vaccine-included serotypes. Once disease is established, early and aggressive antibiotic

therapy can help reduce the bacterial load associated with disease progression.

Following bloodstream survival, bacteria will ultimately leave the bloodstream and invade

the CNS, resulting in inflammation of the meninges, increased BBB permeability and

pleocytosis. The molecular mechanisms involved in bacterial penetration of the BBB are

complex, and common themes are described in more detail below. Subsequent CNS tissue

injury results from cerebral ischemia, edema, hydrocephalus and increased intracranial

pressure [54] and is caused by both toxic bacterial products and host inflammatory pathways

initiated to clear the infection. In particular, the excessive inflammatory response of

neutrophils has been associated with increased CNS injury [55,56]. Consequently, several

large clinical trials have studied the potential benefit of corticosteroid therapy to improve

disease outcome by reducing unwanted inflammatory responses [57-60]. Overall, adjuvant

corticosteroid therapy does not decrease mortality [61], although it does reduce hearing loss

and neurological sequelae, but only in high income countries [61].

BBB composition

The BBB is a structural and functional barrier that maintains the homeostasis of the neutral

microenvironment by impeding the passage of virtually all molecules except those that are

small and lipophilic [62,63]. The BBB is composed of brain microvascular endothelial cells

(BMECs) that line cerebral microvessels along with periendothelial structures, which
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include pericytes, astrocytes and a basal membrane [64]. Together, these cells function in

controlling the infiltration of blood proteins and cells through the vessel wall and into

underlying tissues and in general provide functional barrier properties [65]. Brain

endothelial cells are distinguished from the other cells of the BBB by possessing fewer

cytoplasmic vesicles, more mitochondria and a large number of intercellular junctions that

promote high transendothelial electrical resistance and retard paracellular flux [66]. Similar

to epithelial cells, endothelial cells possess adherens junctions (AJs) and tight junctions

(TJs) at their intercellular contacts [67,68]. Although TJs and AJs are formed by different

molecules, cell–cell adhesion is accomplished similarly by a trans-membrane protein that

interacts with the actin cytoskeleton and/or signaling proteins through an adaptor protein

[65]. AJs in BMECs are dependent on the interaction between the cytoplasmic tail of

cadherins with catenins, which in turn are linked to the actin cytoskeleton and/or signaling

components [69]. TJs in BMECs are composed of four integral membrane proteins

(occludin, claudins, junctional adhesion molecules and cell-selective adhesion molecules)

that are linked through cytoplasmic proteins (ZO-1, -2 and -3 and cingulin) to the actin

cytoskeleton [68,70,71]. Numerous endothelial functions are mediated by these junctional

structures including maintenance of cell polarity, signaling, modulation of transcription and

endothelial stabilization [72-74]. Another critically important function of AJs and TJs is

regulation of BBB permeability. Until recently, AJs were considered to be important for

basic cell–cell adhesion but not critically involved in regulating BBB permeability.

However, a recent study demonstrated cross-talk between the TJ and AJ. Homophilic

interactions between vascular endothelial cadherin expressed in AJs were demonstrated to

regulate expression of TJ claudin-5 [75], providing a molecular mechanism for increased

permeability when interfering with AJ formation.

Transcellular penetration of the BBB

The initial attachment of blood-borne bacteria to brain endothelium and subsequent invasion

may represent the initial step in penetration and/or disruption of the BBB. This interaction

involves a complex interplay between host receptors and bacterial components. In recent

years, significant progress has been made in understanding the molecular interaction

between the BBB and meningeal pathogens because of the availability of in vitro tissue

culture models of human BMECs (hBMECs) [76-78] and in vivo animal models of

hematogeneous meningitis [79-83]. Many meningeal bacteria cross the BBB transcellularly

as live organisms, requiring host actin cytoskeletal rearrangements that promote the initial

bacterial uptake into the cell [78,84-91]. The signal transduction pathways involved display

some common themes shared by different organisms, as will be discussed in more detail

below. Most in vitro work has focused on identifying the bacterial molecules and host

receptors involved in bacterial adherence to, and invasion of, the BBB, as recently reviewed

by Kim [92,93]. Identification of critical bacterial adhesion/invasion molecules can be

achieved using different approaches. An unbiased and comprehensive approach to identify

new bacterial components involved in BBB interaction uses random mutant libraries and

screens for loss of adherence and/or invasion [94,95]. This approach identified lipoteichoic

acid as a critical mediator in brain endothelial cell invasion for GBS, S. aureus and S.

pneumoniae both in vitro and in vivo [83,95]. Complementarily, one can determine critical

adhesins and invasins by analyzing bacterial transcriptional profiles [87,96,97] or

differential fluorescence gene induction [98] during BBB interaction. Subsequent ana lysis

of hBMEC adherence/invasion using defined isogenic mutants of candidate genes is needed

to confirm protein involvement. For example, this approach identified a strong contribution

for type I fimbriae in E. coli K1 in hBMEC adherence [97]. Bioinformatic approaches

comparing bacterial whole genome sequences can also identify key molecules as recently

exemplified for the HvgA protein found in hypervirulent GBS strains [99]. In addition to

expression of specific adhesion molecules, brain tropism seems to be critically determined
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by low blood flow in brain capillaries, as was recently demonstrated for N. meningitidis

[100]. Importantly, bacterial adherence to endothelial cells was similar under low flow

versus static conditions [100].

From the body of work studying molecular interactions between the BBB and bacteria, some

commonalities in the way different Gram-positive and Gram-negative bacteria interact with

brain endothelial cells can be discerned. First, many meningeal bacteria, including E. coli

K1 [97], GBS [101,102] and N. meningitidis [103] use pili (also called fimbriae) or the

shorter version, fibrils [104], to initiate binding to hBMECs. A similar mechanism is

probably involved in BMEC interaction with S. pneumoniae [105,106] and HiB [107,108] as

their pili or fibrils have been shown to contribute to interaction with other epithelial and

endothelial cell types. Second, many meningeal pathogens possess a capsular polysaccharide

[80,84,109-111], which promotes bloodstream survival and high-level bacteremia prior to

BBB penetration. Studies performed using in vitro assays demonstrate that the capsule

actually inhibits bacterial invasion, probably due to electrostatic repulsion or masking of

bacterial surface structures that could function as adhesins. Thus, it is likely that capsule

expression is highly regulated and may be induced during bloodstream replication and

repressed while on mucosal or endothelial cell surfaces [86,112]. Finally, the expression of

bacterial toxins can increase BBB penetration through different mechanisms. In the case of

E. coli K1, cytotoxic necrotizing factor-1 activates RhoA, resulting in increased invasion of

brain endothelial cells in vitro and increased penetration of the BBB in vivo [113]. By

contrast, GBS β hemolysin (β-h/c) [84], S. pneumoniae pneumolysin [114] and HiB

lipopolysaccharide [115] damage brain endothelial cells, resulting in increased BBB

permeability in vivo [80,116].

A broad range of host receptors has been described to mediate interaction with meningeal

pathogens (reviewed by [92]); also here, common themes can be recognized. First, bacterial

binding to host receptors on brain endothelium seems to be important for initial attachment.

The laminin receptor (LR) and platelet activating factor receptor (PAFr) have been

identified as common portals of CNS entry for the leading meningeal pathogens N.

meningitidis, S. pneumoniae and H. influenzae [86,117-119]. In addition, LR was identified

in previous studies as an important internalization receptor for E. coli K1 on hBMECs

[120,121]. Different bacterial adhesins, N. meningitidis PilQ and PorA, S. pneumoniae

CbpA and H. influenzae OmpP2, all target a common carboxy-terminal domain of LR to

establish initial contact with brain endothelium [117]. Sequential binding to PAFr through

bacterial surface phosphorylcholine results in β-arrestin-mediated pneumococcal invasion of

brain endothelial cells [86,122], and interfering with PAFr-mediated uptake protects the host

from pneumococcal meningitis in vivo [122,123]. It is likely that both N. meningitidis and

Haemophilus species similarly interact with PAFr on brain endothelial cells as both express

phosphorylcholine on their pili and lipopolysaccharide, respectively [119,124-126];

however, further experimentation is needed to definitively demonstrate this. Second, the

BBB interaction is not always direct but may involve bridging molecules such as

components of the extracellular matrix. For example, human collagen bridges GBS pili

adhesin, PilA, and α2β1 integrin on BMECs resulting in bacterial attachment, immune

activation and ultimately penetration of the CNS [56]. Similarly, fibronectin bridges N.

meningitidis and the α5β1 integrin on BMECs, promoting bacterial internalization [109].

Also, glucosaminoglycans on brain endothelium, which are also known to interact with

integrins [127], have recently been shown to bind the αC protein of GBS [128]. Therefore,

the LR, PAFr and integrin signaling pathways may represent attractive targets for

therapeutic intervention, as they would prevent a broad range of bacterial meningitis. Third,

inflammatory activation of brain endothelial cells by cytokines, which are typically elevated

in meningitis patients [129-134], can increase host receptor expression resulting in enhanced

bacterial invasion. For example, stimulation of cells with TNF-α, IL-1 or TGF-β resulted in
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increased bacterial uptake [86,135-137]. Some bacteria take advantage of this mechanism to

promote their own uptake; the surface-expressed neuraminidase, NanA on S. pneumoniae

promotes penetration of the BBB by inducing chemokine release from brain endothelial

cells [82,136]. Ultimately, a more detailed understanding of host–bacteria interactions at the

molecular level may result in therapeutic treatment strategies to block bacterial entry at an

early stage of infection.

Breakdown of BBB integrity

Besides evidence of transcellular migration, many in vitro studies have demonstrated that

bacteria can affect endothelial barrier integrity, allowing for direct entry or paracellular

translocation. As discussed above, BMECs are tightly interconnected by AJs and TJs, which

limit paracellular passage of foreign particles including bacteria. Disruption of the BBB is a

hallmark event in the pathophysiology of bacterial meningitis. Many meningeal pathogens

affect endothelium barrier integrity by direct toxic effects and/or by interfering specifically

with AJ/TJ formation. For example, GBS and S. pneumoniae directly affect barrier function

by secreting a pore-forming toxin [84,114,138]. For GBS, higher toxin production has been

associated with an increased capacity to cause meningitis [80]. In addition to pathogen-

derived toxins, increased expression of inflammatory cytokines/chemokines/molecules by

the host in response to infection can negatively impact BBB function and disease outcome.

Increased systemic expression of TNF-α is linked to enhanced permeability of the BBB

[139-141]. In addition, E. coli K1 (through OmpA), S. pneumoniae and GBS increase nitric

oxide production from brain endothelial cells by inducing expression of inducible nitric

oxide synthase (iNOS) [142-145]. Consequently, this attenuates BBB integrity [142,143]

and promotes bacterial invasion in the case of E. coli K1 [142]. However, inhibition of

iNOS function does not provide unambiguous answers; in the case of GBS meningitis,

pharmacological inhibition of iNOS results in increased pathology [144], whereas genetic

deletion of iNOS confers complete protection in models of E. coli K1 meningitis [146].

Besides general BBB insult, some pathogens use sophisticated strategies to target

endothelial cell junctions to promote barrier permeability resulting in increased bacterial

BBB traversal. The critical AJ protein, vascular endothelial cadherin, is a common target for

meningeal pathogens. E. coli K1 and N. meningitidis use their surface adhesion molecules to

exploit brain endothelial cell signaling to increase paracellular translocation [147-150].

OmpA-expressing E. coli K1 causes permeability changes by dissociating β-catenins from

cadherins and activating protein kinase Cα [150]. For meningococcal meningitis initial

observations suggested that attachment of meningococci to brain endothelial cells through

type IV pili signals the formation of mislocalized AJs, opening up the paracellular route for

N. meningitidis translocation into the CNS [148]. In a follow-up study, the β2-adrenoceptor/

β-arrestin signaling pathway was found to be involved in the induced junctional protein

rearrangements and bacterial crossing of the BBB [147]. In addition to targeting AJs, N.

meningitidis induces specific cleavage of the TJ component occludin through the release of

host matrix metalloproteinase 8, resulting in endothelial cell detachment and increased

paracellular permeability [149]. Pharmacological intervention of OmpA–hBMEC and type

IV pili–β2-adrenoceptor interaction would therefore not only block the initial interaction of

bacteria with the BBB, but would also prevent exploitation of host signaling machinery by

the pathogen.

In contrast to E. coli K1 and N. meningitidis, which use surface-associated molecules to

affect BBB permeability, B. anthracis disrupts both AJs and TJs by secreted non-pore-

forming factors including proteases and edema and lethal toxin complexes. Whereas edema

toxin and secreted protease InhA affect the distribution of the critical TJ component ZO-1

[151-153], AJ formation is blocked by a synergistic effect of lethal toxin and edema toxin on
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endosomal transport of cadherins [154]. Disruption of endosome recycling by anthrax toxins

has more widespread effects on vascular function as important cell-cell communication

pathways, such as the Notch signaling pathway, also depend on proper endosome transport

[154].

Finally, host inflammatory factors may also contribute to break down of the BBB. It was

recently demonstrated that host neutrophils contribute to BBB permeability during the

pathogenesis of GBS meningitis [56]. Although neutrophils were found to be critically

important to prevent bacterial sepsis, depletion of peripheral neutrophils in a murine

hematogenous model of GBS meningitis prolonged survival, and decreased bacterial brain

load and BBB permeability in GBS-infected mice [56]. Correspondingly, prevention of

leukocyte infiltration into the CNS using anti-CD18 antibody was previously shown to

improve pneumococcal and HiB meningitis outcome [155,156].

The BBB innate defense response

Many studies have shown that the host’s inflammatory response contributes to many adverse

events during bacterial meningitis. However, little is known about the role of the BBB as a

functional, rather than just a physical, barrier against the initial threat of an invading

pathogen. A better understanding of the host BBB responses to pathogen infection can aid in

the development of preventive therapies for CNS infection.

The first comprehensive microarray ana lysis of the BBB transcriptional response to a

pathogen was examined during GBS infection [80]. Interestingly, in this and subsequent

studies, infection triggered a specific gene expression program for neutrophil recruitment

(i.e., IL-8, CXCL1, CXCL2, ICAM-1) and activation (IL-6, IL-8), which was strongly

dependent on GBS β-h/c toxin [80], the transcriptional regulator of virulence, CovR [138]

and PilA expression [56]. Strong proinflammatory cytokines such as TNF-α or IL-1 were

absent [80], precluding the development of an unchecked pattern of activation that is

detrimental to CNS structures. Subsequent comparative microarray experiments with S.

pneumoniae, HiB and Salmonella enterica Typhimurium reveal the presence of a core

hBMEC transcriptional response in addition to pathogen-specific gene expression profiles

[VAN SORGE NM, DORAN KS, Unpublished Data] [89,136]. A group of core response genes

function to orchestrate neutrophil recruitment (IL8, CXCL1, CXCL2), extravasation

(ICAM-1), activation (IL6, IL8) and survival (GM-CSF). Similarly, other meningeal

bacteria including E. coli K1 [157], S. suis [158], L. monocytogenes [159] and N.

meningitidis [160,161] have been reported to induce the upregulation and secretion of

neutrophil-specific factors upon hBMEC infection. Again TNF-α and IL-1 are typically

absent from this response, except during infection with HiB [VAN SORGE NM, DORAN KS,

Unpublished Data] or N. meningitidis [161]. Whether this broader spectrum of inflammation

in response to HiB or N. meningitidis contributes to the high prevalence of these two

pathogens in bacterial meningitis or the often fulminant disease course during infection,

remains to be determined. Overall, these data suggest that the BBB response serves a

sentinel function by recognizing the threat of a bacterial pathogen, resulting in effective

clearance of the bacteria before it can enter the CNS. However, the timing and magnitude of

the neutrophil recruitment response is critical for the outcome of infection. Continued

exposure and invasion of the pathogen may result in overactivation of BBB endothelium

leading to increased inflammation that may compromise BBB integrity or cause neuronal

damage. Indeed, experimental delay of neutrophil apoptosis results in prolonged

inflammatory activity and more severe disease in a mouse pneumococcal meningitis model

[55]. A similar observation was recently published for GBS meningitis. Pilus adhesion

protein PilA, located at the tip of the pilus structure [162], induces hBMEC IL-8 expression

through α2β1 integrin/focal adhesion kinase signaling [56]. In an in vivo model of GBS
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meningitis, PilA-induced host signaling resulted in a disproportionate neutrophil

inflammatory response that increased BBB permeability, bacterial CNS penetration and

mortality [56]. In the case of anthrax meningitis, the opposite has been observed. Infection

of hBMEC with avirulent B. anthracis initiates the common neutrophil recruitment response

as observed with other meningeal pathogens. However, the presence of the toxin-encoding

pXO1 plasmid results in active downregulation of this innate defense pathway [163]. The

resulting suppression of neutrophil chemotaxis allows for unrestricted proliferation and

dissemination of the bacteria into the CNS [163].

Analysis of changes in transcriptional regulation upon BBB infection is just a starting point

for future studies. It will be important to use this information to determine the signal

transduction pathways and initiating receptors involved in this response, and whether their

activation contributes to host resistance or neuronal damage. Based on published studies,

some common downstream signaling pathways for bacterial internalization into hBMECs

can be identified. Both E. coli K1 and GBS activate focal adhesion kinase signaling to

trigger internalization in hBMECs [56,164,165]. Similarly, S. pneumoniae and N.

meningitidis both trigger β-arrestin signaling downstream of PAFr and β2-adrenoceptor,

respectively [147,148], which ultimately results in bacterial translocation across the BBB.

Interestingly, the effects downstream of β-arrestin are different in both cases: S. pneunoniae

β-arrestin signaling triggers vacuolar trafficking across brain endothelial cells [122],

whereas N. meningitidis β-arrestin signaling depletes intercellular junctions, allowing

paracellular translocation across the BBB [147].

In addition to signaling involved in bacterial translocation, unraveling signaling pathways

that trigger protective or unwanted cytokine release could aid the development of

pharmacological intervention strategies. For example, N. meningitidis, GBS and S.

pneumoniae trigger IL-6 and IL-8 production in hBMECs by activating MAPK pathways

[56,136,160]. The upstream receptors that induce this MAPK signaling have not been

identified but probably involve immune pattern recognition receptors, such as integrins,

Toll-like receptors and intracellular NOD-like receptors. Interestingly, in all these studies it

was found that activation of cytokine responses did not require bacterial invasion of brain

endothelial cells [56,136,160], suggesting that signaling is initiated at the host cell surface.

Also, for other bacteria, this dissociation between bacteria-host cell interaction and cytokine

production has been observed [157,166,167]. This suggests that interference with bacterial

attachment to brain endothelium could prevent many of the downstream effects of

meningitis pathogenesis.

Future perspective

Significant progress has been made in identifying molecular mechanisms that contribute to

bacterial-BBB interaction and signaling during the progression of CNS disease.

Identification of common pathways employed by bacterial pathogens to cross and penetrate

BBB endothelium will assist in the identification of important bacterial and host cell targets

for the development of effective therapies. However, a multi-disciplinary and systems

biology approach is necessary to incorporate all this knowledge into new testable hypotheses

that will provide insight into the pathogenesis and pathophysiology of bacterial meningitis

and the discovery of novel therapeutic strategies.
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Executive summary

Dynamic epidemiology of bacterial meningitis

■ There are still 1.2 million cases of bacterial meningitis per year, 170,000 of

which are fatal and survivors are left with permanent neurological sequelae.

■ Only a limited number of bacterial pathogens are capable of causing

meningitis, the severity of which varies depending on geographic location,

socioeconomic status, age, vaccination availability and overall health status

of the individual.

The pathogenesis & pathophysiology of bacterial meningitis

■ In order to cause meningitis, bacterial pathogens must survive in the

bloodstream and penetrate or transmigrate across the blood–brain barrier

(BBB), which is primarily comprised of a single layer of specialized

endothelial cells.

■ Once inside the CNS, the bacteria multiply and induce inflammation of the

subarachnoid and ventrical spaces with associated pathophysiologic

alterations such as increased BBB permeability and pleocytosis.

BBB composition

■ The BBB is composed of a single cell layer of brain microvascular

endothelial cells that line cerebral microvessels.

■ Brain endothelial cells contain adherens and tight junctions that act to impede

the passage of virtually all molecules, thereby maintaining the

microenvironment of the CNS.

Transcellular penetration of the BBB

■ The attachment of blood-borne bacteria to brain endothelium and subsequent

invasion may represent the initial step in penetration and/or disruption of the

BBB; this interaction involves a complex interplay between host receptors

and bacterial components.

Breakdown of BBB integrity

■ Many meningeal pathogens are capable of disrupting endothelium junction

complexes by direct toxic effects, interfering specifically with junctional

formation, and/or induction of an inflammatory response, which itself may

compromise BBB integrity.

BBB innate defense response

■ Studies suggest that the BBB responds to bacterial encounter with a core

gene activation program orchestrated to promote the targeted recruitment and

activation of neutrophils.

■ Continued exposure and invasion of the pathogen may result in

overactivation of BBB endothelium, leading to increased inflammation and

BBB breakdown.
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