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Abstract

Sugarcane is one of the most important agricultural crops in the world. However, pathogen infection and herbivore at-
tack cause constant losses in yield. Plants respond to pathogen infection by inducing the expression of several pro-
tein types, such as glucanases, chitinases, thaumatins, peptidase inhibitors, defensins, catalases and glycoproteins.
Proteins induced by pathogenesis are directly or indirectly involved in plant defense, leading to pathogen death or in-
ducing other plant defense responses. Several of these proteins are induced in sugarcane by different pathogens or
insects and have antifungal or insecticidal activity. In this review,defense-related proteins in sugarcane are de-
scribed, with their putative mechanisms of action, pathogen targets and biotechnological perspectives.
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Introduction

Sugarcane (Saccharum spp. hybrids) is the primary

source of sugar and renewable biofuel energy worldwide.

With high carbohydrate content, favorable energy in-

put/output ratio and high biomass production capacity, sug-

arcane is one of the best options to generate biofuel (Hoang

et al., 2015). The growing global demand for energy has led

to increased interest in the development of new sugarcane

cultivars with high productivity for use as bioenergy feed-

stock (Hoang et al., 2015).

Sugarcane production is constantly challenged by dif-

ferent abiotic and biotic stresses (Long and Hensley, 1972;

Azevedo et al., 2011). Biotic stresses include, among oth-

ers, fungal infection by species such as Colletotrichum

falcatum (red rot disease), Sporisorium scitamineum (sug-

arcane smut), Fusarium spp. and Ceratocystis paradoxa

(pineapple disease), bacterial diseases such as red stripe

(Acidovorax avenae), leaf scald (Xanthomonas

Albileneans) and sugarcane grassy shoot disease (Phyto-

plasma), virus infection by species such as sugarcane mo-

saic virus (ScMV) and yellow leaf virus (ScYLV), and

insect attack by species such as Diatraea saccharalis (sug-

arcane stem borer), Eldana saccharina (African sugarcane

stalkborer) and Sphenophorus levis (sugarcane weevil).

Plants respond to biotic stress by constitutive or in-

ducible defense mechanisms. Many defense related (DR)

proteins have been identified in different plants after infec-

tion by fungi, oomycetes, bacteria and viruses or attack by

insects and nematodes (Van Loon, 1999; Van Loon et al.,

2006).

Plant microbe-induced proteins and their homologs

are usually collectively called as “pathogenesis-related”

(PR) proteins. However, this concept has been revised to

include only proteins induced by pathogens and which are

mostly not detectable in their absence (Van Loon et al.,

2006). In plant defense responses, PRs affect pathogen or

herbivore development (Ryan, 1990; Bohlmann and

Broekaert, 1994; Broekaert et al., 1995) or stimulate plant

defensive barriers (Van Loon et al., 2006).

Other proteins are also involved in plant defense,

such as NBS-LRR proteins, which recognize a wide variety

of pathogens and insects (Li et al., 2015), glycoproteins

(MMMGs and HMMGs), which are produced after patho-

gen infection and modify some physiological functions of

the invader (Legaz et al., 1998), catalases, which are anti-

oxidant enzymes that detoxify reactive oxygen species

(ROS) (Sharma et al., 2012) and WRKY proteins, which

comprise a large family of transcription factors that recog-

nize the W box (TTGACC/T) type DNA sequence, which is

found in the promoters of many plant defense genes

(Rushton et al., 1996).

This review describes defense-related proteins of

sugarcane and addresses their putative mechanisms of ac-

tion, pathogen targets and biotechnological perspectives.
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PR families and their sugarcane homologs

PR proteins were first reported in a tobacco variety

hypersensitive to tobacco mosaic virus (TMV) infection

(Van Loon and Van Kammen, 1970). PRs are classified

into 17 different families, PR-1 to PR-17, based on their

primary structure and biological activity (Van Loon et al.,

1994; van Loon et al., 2006). New PR families have been

proposed, such as the PR-18, which was first purified from

sunflower (Custers et al., 2004) and the PR-19, which was

identified in Scots pine (Sooriyaarachchi et al., 2011).

Several sugarcane proteins presenting homology to

different PR families were already described. PR proteins

in sugarcane are induced by fungi, bacteria, oomycetes, vi-

ruses and insects (Table 1). These PR proteins showed anti-

microbial or insecticidal activity (Table 1).

PR-1 family

The most abundant PR in Nicotiana tabacum is in the

PR-1 family, with a high level of induction (~10,000-fold)

in response to pathogen infection (Alexander et al., 1993).

PR-1 induction increased the tolerance of different plants,

such as tomato, tobacco and Arabidopsis, to pathogens, af-

fecting fungal development (Niderman et al, 1995; Segarra

et al., 2013). In transgenic tobacco plants that overexpress

the PR-1a gene, tolerance to infection by two oomycetes,

Peronospora tabacina and Phytophthora parasitica var.

nicotianae, was improved (Alexander et al., 1993). Pro-

teins in the PR-1 family from tobacco and tomato have dif-

ferent levels of fungicidal activity and affect the germina-

tion of Phytophthora infestans zoospores (Niderman et al.,

1995). PR-1 gene expression was increased in Arabidopsis
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Table 1 - Defense related proteins identified in sugarcane in response to biotic stress.

Protein type Targets References

�-1 3-glucanase (PR-2) Fungi: Colletotrichum falcatum and Sporisorium

scitamineum

(Prathima et al., 2013; Su et al., 2013)

Chitinases (PR-3, PR-4, PR-8 and

PR-11)

Fungi: Fusarium solani var. caeruleum; Fusarium

verticillioides; Colletotrichum falcatum; Ceratocystis

paradoxa; Gibberella fujikuroi and Sporisorium

scitamineum

(Franco et al., 2014; Medeiros et al., 2012; Que et

al., 2014)

Thaumatin (PR-5) Fungi: Sporisorium scitamineum and Colletotrichum

falcatum

(Heinze et al., 2001; Rocha et al., 2007; Sundar et

al., 2008; Viswanathan et al., 2005)

Insect: Diatraea saccharalis

Proteinase inhibitors (PR-6) Fungi: Trichoderma reesei; (Ribeiro et al., 2008; Soares-Costa et al., 2002)

Insect: Sphenophorus levis

Peroxidase (PR-9) Fungi: Colletotrichum falcatum; Sporisorium

scitamineum and Puccinia melanocephala

(Asthir et al., 2009)

Bacteria: Gluconacetobacter diazotrophicus

Ribonuclease-like (PR-10) Fungi: Sporisorium scitamineum and Puccinia

melanocephala

(Oloriz et al., 2012; Que et al., 2014)

Defensin (PR-12) Fungi: Aspergillus niger; Fusarium solani and

Neurospora crassa

(De-Paula et al., 2008)

Lipid-transferprotein (PR-14) Bacteria: Burkholderia sacchari (Borrás-Hidalgo et al., 2005)

NBS-LRR protein Fungi: Colletotrichum falcatum and Puccinia

melanocephala

(Borrás-Hidalgo et al., 2005; Carmona et al., 2004;

Glynn et al., 2008; Gupta et al., 2010; Rossi et

al., 2003; Selvaraj et al., 2014; Que et al., 2009)

Virus: Sugarcane Yellow Leaf Virus (ScYLV)

Glycoproteins Fungi: Sporisorium scitamineum (Fontaniella et al., 2002; Legaz et al., 2011; Martinez

et al., 1990; Millanes et al., 2005; Millanes et

al., 2008)

Bacteria: Xanthomonas albilineans

Catalases Fungi: Sporisorium scitamineum; Colletotrichum

falcatum and Puccinia melanocephala;

(Asthir et al., 2009; Kuramae et al., 2002;

Lambais, 2001; Lao et al., 2008; Que et al., 2014;

Sundar and Vidhyasekaran, 2003; Su et al., 2014b)

Bacteria: Gluconacetobacter diazotrophicus and

Herbaspirilum rubrisubalbicans

WRKY proteins Fungi: Puccinia melanocephala; Sporisorium

scitamineum and Colletotrichum falcatum

(Liu et al., 2012; Muthiah et al., 2013; Prathima et

al., 2013; Que et al., 2014; Santos et al., 2015; Sundar

et al., 2012)



after the inoculation with Botrytis cinerea fungi (Segarra et

al., 2013).

For sugarcane, a putative PR-1-encoding gene was

observed in the SUCEST database (Sugarcane EST Ge-

nome Project) (Kuramae et al., 2002). Based on the in-

creased activity of other members of the PR-1 family,

showed in tobacco and tomato, against Phytophthora spe-

cies (Alexander et al., 1993; Niderman et al., 1995), PR-1

proteins are relevant targets for future studies against the

oomycete species that also affect sugarcane.

�-1,3-glucanases (PR-2 family)

The PR-2 family includes �-1,3-glucanases, which

are enzymes that catalyze the endo-type hydrolytic cleav-

age of 1,3-�-D-glucosidic linkages in �-1,3-glucans (Leub-

ner-Metzger and Meins Jr, 1999). These enzymes are

involved in several physiological and developmental pro-

cesses in non infected plants (Romero et al., 1998;

Leubner-Metzger, 2003; Balasubramanian et al., 2012) and

in responses to abiotic (Hincha et al., 1997) and biotic fac-

tors (Kemp et al., 1999; Leubner-Metzger and Meins Jr,

1999). �-1,3-Glucanases release �-glucans from fungal cell

walls, which in turn can act as elicitors in plant defense, in-

ducing accumulation of the antibiotic phytoalexin (Sharp et

al., 1984; Okinaka et al., 1995).

In sugarcane, �-1,3-glucanase genes are differentially

expressed after C. falcatum (Prathima et al., 2013) and S.

scitamineum (Su et al., 2013) infection, with different ex-

pression profiles. In response to both S. scitamineum infec-

tion and abiotic stresses, ScGluA1 (KC848050) was up-

regulated, whereas ScGluD1 (KC848051) was slightly

down-regulated (Su et al., 2013). The activity was variable

for �-1,3-glucanase in genotypes with different levels of

susceptibility to S. scitamineum. For example, following

infection with S. scitamineum, glucanase activity increases

more rapidly and last longer in a variety of sugarcane resis-

tant to smut than in a susceptible one (Su et al., 2013).

Chitinases (PR-3, PR-4, PR-8 and PR-11 families)

Chitinases are enzymes that hydrolyze the �-1,4-lin-

kage between N-acetylglucosamine residues of chitin,

which is a structural polysaccharide that is the primary

component of cell walls of several types of fungi and

exoskeletons of invertebrates (Datta et al., 1999). In the

molecular defense of plants, chitinases degrade the chitin in

fungal cell walls, with a consequent inhibition of pathogen

growth (Schlumbaum et al., 1986). These proteins are

grouped in several classes based on sequence similarity and

are distributed in four PR families: PR-3, PR-4, PR-8 and

PR-11 (Neuhaus, 1999).

Chitinase proteins in sugarcane are associated with

responses to biotic and abiotic stresses (Su et al., 2014a,

2015).The ScChiVII1 gene showed differential expression

pattern in sugarcane genotypes resistant and susceptible to

smut (Wang et al., 2014). Transcript levels of chitinase

genes were differentially expressed after infection by the

fungi C. falcatum (Sundar et al., 2008; Rahul et al., 2013),

S. scitamineum (Su et al., 2014a, 2015; Que et al., 2014)

and Giberella fujikuroi (Lin et al., 2010). Additionally, the

constitutive chitinase activity was higher in sugarcane vari-

eties resistant to red rot disease than in susceptible geno-

types (Viswanathan, 2012).

The sugarcane chitinase ScChi, an acidic class III

chitinase (PR-8 family), has antifungal activity and inhibits

the hyphal growth of Fusarium solani var. coeruleum (Que

et al., 2014). Moreover, sugarcane chitinases showed ac-

tion against C. falcatum and are also associated with Pseu-

domonas-mediated induced resistance (Viswanathan et al.,

2003) and with sugarcane response to D. saccharalis attack

(Medeiros et al., 2012).

Sugarcane has two homologs (SUGARWIN1 and

SUGARWIN2) of the antifungal barley wound-inducible

protein BARWIN, a class II chitinase (PR-4 family) (Me-

deiros et al., 2012). BARWIN is a basic protein composed

of 125 residues, with the tridimensional structure stabilized

by three disulfide bonds (Ludvigsen and Poulsen, 1992;

Svensson et al., 1992). Proteins with a domain similar to

BARWIN are observed in several different plants, with

(Broekaert et al., 1990) or without an associated chitin-

binding domain (Friedrich et al., 1991; Linthorst et al.,

1991; Caruso et al., 1999), including Hevea brasiliensis,

Solanum lycopersicum, Nicotiana tabacum and Triticum

aestivum. These proteins have antimicrobial activities to-

ward fungi (Hejgaard et al., 1992; Caruso et al., 1999; Zhu

et al., 2006) or both fungi and bacteria (Kiba et al., 2003).

Transcript levels of genes encoding SUGARWINs

were up-regulated in response to mechanical wounding,

sugarcane borer (D. saccharalis) attack and methyl jasmo-

nate treatment (Medeiros et al., 2012). Although induced

by D. saccharalis damage, SUGARWIN2 proteins have no

insecticidal activity; however, these proteins have an anti-

microbial role against the opportunistic fungi Fusarium

verticillioides (Medeiros et al., 2012) and C. falcatum

(Franco et al., 2014), which typically develop after sugar-

cane borer attacks. Based on these results, SUGARWIN2

proteins are likely involved in a finely regulated defense

mechanism in which insect damage induces plant defenses

against imminent opportunistic fungi (Medeiros et al.,

2012; Franco et al., 2014). Moreover, the sugarcane patho-

genic fungus C. paradoxa was affected by SUGARWIN2,

but the nonpathogenic fungi Aspergillus nidulans and

Saccharomyces cerevisiae are not (Franco et al., 2014).

With SUGARWIN2, the morphogenesis and viability of

the target fungus were affected by increasing vacuolization,

points of fractures and overflow of intracellular material,

which lead to cell death (Medeiros et al., 2012; Franco et

al., 2014).
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Thaumatin-like proteins (PR-5 family)

Thaumatin-like proteins (TLPs) have a sequence sim-

ilar to that of thaumatin, a protein extracted from

Thaumatococcus daniellii (a west African shrub). Thau-

matin is a monomeric protein composed of 207 residues

and stabilized by eight disulfide bonds (Kim et al., 1988).

TLPs are induced by biotic and abiotic stresses

(Velazhahan et al., 1999; Rajam et al., 2007). In in vitro as-

says, the plasma membranes (PL) of fungi were disrupted

by the antifungal activity of TLPs (Vigers et al., 1992).The

mechanisms responsible for the fungal plasma membrane

rupture are the direct insertion of TLP in its membrane (for-

mation of pores), causing changes in membrane permeabil-

ity (Roberts and Selitrennikoff, 1990), or by the hydrolysis

of �-1,3-glucans from fungal cell walls (Grenier et al.,

1999).

TLP was induced in sugarcane after S. scitamineum

(smut) inoculation (Heinze et al., 2001), C. falcatum glyco-

protein elicitor treatment (Sundar et al., 2008) and in re-

sponse to D. saccharalis attack (Rocha et al., 2007). PR-5

genes were differentially expressed after sugarcane chal-

lenge with C. falcatum (Sathyabhama et al., 2015).

Peptidase inhibitors (PR-6 family)

Peptidase inhibitors (PIs) in plants are important in

the control of endogenous and exogenous peptidase activ-

ity. The activity of PIs in plant defense is primarily to in-

hibit the peptidases secreted by insects and pathogenic

microorganisms with the digestion of these proteins (Habib

and Fazili, 2007).

Plant cystatins, or phytocystatins (PhyCys), are one

of the most studied plant protease inhibitors (Benchabane

et al., 2010). They are competitive and reversible inhibitors

of cysteine proteases (Martínez and Díaz, 2008). The genes

of the cystatin family have been identified and character-

ized in some plant species, demonstrating functions in de-

fense against pathogens (Bobek and Levine, 1992;

Gutierrez-Campos et al., 1999; Belenghi et al., 2003), in re-

sponse to insect attack (Goulet et al., 2008; Konrad et al.,

2008; Liang et al., 2015), in programmed cell death (Solo-

mon et al., 1999; Zhao et al., 2013), in seed germination

(Hwang et al., 2009, Zhao et al., 2014), and in responses to

abiotic environmental stresses (Hwang et al., 2010). Fur-

thermore, the genes in the cystatin family were differen-

tially expressed in response to different abiotic/biotic

stresses, with essential roles in plant defense and hypersen-

sitive cell death (Koiwaet al. 2000; Belenghi et al. 2003;

van der Linde et al., 2012, Wang et al., 2015).

Canecystatin, a sugarcane phytocystatin, is composed

of 106 amino acid residues and typically seems to occur as a

domain-swapped dimer in solution (Valadares et al., 2013).

The canecystatin dimerization mechanism turns this inhibi-

tor inactive, avoiding the inhibition of nontarget endoge-

nous cysteine peptidases (Valadares et al., 2013).

The Sugarcane Genome Project SUCEST was the

first to characterize canecystatin (Soares-Costa et al.,

2002). Following recombinant expression and purification,

the antifungal activity of canecystatin was demonstrated

against Trichoderma reesei by reducing germination of the

filamentous fungus (Soares-Costa et al., 2002). The cane-

cystatin provided inhibitory effect against thiol peptidases,

showing that may provide protection for sugarcane against

fungi and insects (Oliva et al., 2004). Purified from trans-

genic sugarcane, His-tagged CaneCPI-1 affects the cata-

lytic activity of cysteine peptidases partially purified from

the midgut of the coleopteran S. levis (sugarcane weevil;

Ribeiro et al., 2008). Furthermore, some sugarcane cys-

tatins present high homology with the mir 1 gene from

maize, which inhibits the growth of a wide range of lepi-

dopteran species (Pechan et al., 2000). These results cor-

roborate that cystatins have potential roles in the defense of

sugarcane against insect pests.

In addition to the well-described cysteine peptidase

inhibitors, sugarcane also has serine peptidase inhibitors of

the Bowman-Birk type (BBI) (Mello et al., 2003). BBIs are

small double-headed serine peptidase inhibitors that are

highly stabilized by several disulfide bonds (Birk, 1985).

Sugarcane likely has at least 14 BBI genes, with highly

variable compositions of the amino acid sequences (Mello

et al., 2003). The introduction of soybean Bowman-Birk

and Kunitz-type serine peptidase inhibitors into sugarcane

transgenic lines significantly retards the development of D.

saccharalis, although the damage caused by this herbivore

was not prevented (Falco and Silva-Filho, 2003).

Endoproteinases (PR-7 family)

The proteins in the PR-7 family are similar to potato

alkaline endoproteinase p-69, which is the primary PR in

tomato involved in the response to citrus exocortis viroid

(CEV) infection (Vera and Conejero, 1988), and to the

subtilisin serine protease family (Tornero et al., 1997).

Endoproteinases are essential in hydrolyzing peptide bonds

in the process of protein degradation. The role of these pro-

teins in biotic defense is unclear, but these proteins may

contribute to the dissolution of microbial cell walls (van

Loon et al., 2006) or to the posttranslational modification

of proteins involved in plant defense (Tornero et al., 1996).

The genes P69B and P69C from tomato inserted into trans-

genic Arabidopsis are induced by salicylic acid and by

plant interaction with Pseudomonas syringae (Jordá and

Vera, 2000).

Endoproteinase genes with diverse substrate specific-

ity are reported in sugarcane, but their involvement in plant

defense remains to be explored (Correa et al., 2001; Ramos

and Selistre-de-Araujo, 2001; Santos-Silva et al., 2012).

Peroxidases (PR-9 family)

Peroxidases are glycoproteins that catalyze the oxida-

tion of several organic and inorganic substrates by H2O2
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and are involved in a wide variety of physiological and

plant defense processes (Chittoor et al., 1999). Peroxidases

respond to biotic stress by affecting cell wall cross-linking

and by creating an unfavorable environment for pathogen

growth in plants with the generation of reactive oxygen

species (ROS) (Passardi et al., 2005). The role of peroxi-

dases in plant cell walls is associated with the biosynthesis

of lignin, which is a phenolic biopolymer synthesized for

mechanical support and in response to pathogen attack in

vascular plants (Østergaard et al., 2000). For example, ATP

A2 peroxidase in Arabidopsis thaliana is a lignin-asso-

ciated peroxidase that was potentially used in defense

against pathogens (Østergaard et al., 2000).

In sugarcane, peroxidase activity increases after inoc-

ulation with the pathogen C. falcatum (red rot) (Sundar et

al., 2006), with a greater increase in activity in a resistant

genotype than in a susceptible one (Asthir et al., 2009). Ad-

ditionally, an elicitor isolated from C. falcatum induces

peroxidase activity in sugarcane leaves and in suspension-

cultured cells (Sundar et al., 2002). For sugarcane varieties

with different levels of susceptibility to S. scitamineum, en-

zyme activity levels were also variable, with higher in-

creases in activity in a resistant genotype than in a suscepti-

ble one after inoculation with the pathogen (Esh et al.,

2014). Transcripts encoding peroxidase genes were also in-

duced in sugarcane tissues infected by Gluconacetobacter

diazotrophicus (Lambais, 2001) and during interaction

with Puccinia melanocephala (Carmona et al., 2004).

Ribonuclease-like proteins (PR-10 family)

The PR-10 family includes intracellular proteins with

ribonuclease activity (Van Loon et al., 1994). PR-10 pro-

teins are induced by pathogens in several plants and shown

to possess antifungal, antibacterial, antiviral and anti-

nematode activity (Fernandes et al., 2013; Park et al., 2004;

McGee et al., 2001).

In sugarcane, PR-10 homologs were induced after

treatment with the defense-regulator methyl jasmonate

(MJ) (Bower et al., 2005) and inoculation of sugarcane

buds with S. scitamineum (Que et al., 2014) and in response

to P. melanocephala infection (Oloriz et al. 2012).

Defensins (PR-12 family)

Plant defensins are small, cysteine-rich antimicrobial

peptides found in several organisms, typically with a char-

acteristic �-fold (Stotz et al., 2009). These cationic pep-

tides, likely act as antimicrobial molecules that induce the

formation of pores in pathogen membranes or modify

membrane permeability by a mechanism based on electro-

static charge (Thomma et al., 2002).

Sugarcane has at least three putative functional

defensins: Sd1, Sd3 and Sd5 (De-Paula et al., 2008). Sd1,

Sd3 and Sd5 have antifungal activity against the fungi

Aspergillus niger, F. solani and Neurospora crassa; how-

ever, these proteins have no antibacterial activity against

Kocuria rhizophila, Bacillus subtilis, Escherichia coli and

Staphylococcus aureus (De-Paula et al., 2008).

Lipid-transferproteins (PR-14 family)

Lipid-transfer proteins (LTPs) are small, basic and

cysteine-rich lipid-binding proteins in plants that transport

lipids between membranes in vitro (Rueckert and Schmidt,

1990). These proteins are observed in plant cell walls, with

putative roles in cutin biosynthesis and in response to biotic

and abiotic stresses (Kader, 1997). Genes encoding the

PR-14 type-member, barley LTP4, are differentially in-

duced after fungal and bacterial inoculation (Molina and

García-Olmedo, 1993; Molina et al., 1996).

After pathogen inoculation, putative homologs of

LTPs are differentially induced in a sugarcane genotype re-

sistant to eyespot (Biopolaris sacchari; Borrás-Hidalgo et

al., 2005).

Other defense-related proteins in sugarcane

NBS-LRR proteins

Plant NBS-LRR proteins are used to recognize a wide

variety of pathogens and insects (Li et al. 2015). These pro-

teins encoded by plant resistance genes contain two typical

domains: a nucleotide binding site (NBS) and a leucine-

rich repeat (LRR). Plant NBS-LRR proteins detect the

effector molecules of pathogens that are responsible for vir-

ulence. The NBS-LRR class of R genes is categorized into

TIR and non-TIR classes based on sequence similarity in

the region that precedes the NBS domain. The plant NBS-

LRR proteins in the TIR class transport the TOLL/inter-

leukin-1 receptor (TIR) and are called TNL proteins (Joshi

and Navak, 2011). The TIR class was found in most dicots

but is rare or absent in monocots (Bai et al., 2002; Meyers et

al., 2003). The proteins in the non-TIR class are typically

called CNL proteins, with most members containing a

coiled-coil (CC) N-terminal domain or zinc finger and

RPW8 domains (Meyers et al., 2002, DeYoung and Innes,

2006). The CNL class was found in both dicots and mono-

cots (Pan et al., 2000).

Red-rot-related NBS-LRR genes were found in sug-

arcane EST databases (Gupta et al., 2010); these genes

were up-regulated in response to C. falcatum challenge,

suggesting a possible role in systemic acquired resistance,

SAR (Selvaraj et al., 2014). These genes were also induced

in sugarcane somaclonal variants during interaction with P.

melanocephala (Carmona et al., 2004). An NBS-LRR class

resistance-gene, non-TIR-NBS-LRR-type, was induced in

sugarcane in response to infection by S. scitamineum, the

causal agent of smut (Borrás-Hidalgo et al., 2005;Que et

al., 2009).

Resistance-associated genes that encode an NBS do-

main have been identified in plants using disease resistance

gene analog (RGA) markers (Sekhwal et al., 2015). RGA

sequences are a large set of potential resistance-associated
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genes with conserved domains. The NBS domain was used

to amplify RGA fragments from various plant species

(Wang et al., 2001). For example, NBS-RGA analogs from

wheat and soybean were used to amplify NBS-LRR DNA

in sugarcane; the genes identified were associated with re-

sistance against yellow leaf virus (SCYLV) and moderate

resistance against rust caused by P. melanocephala (Glynn

et al., 2008). Non-TIR-NBS-LRR resistance genes (Xa1

and RPS2) and TIR-NBS-LRR resistance genes (L6 and N)

were also identified in sequences of RGAs from smut-

resistant sugarcane (Que et al., 2009). Eighteen other sug-

arcane NBS-LRR gene homologs were found in the

SUCEST database with homology to maize and rice variet-

ies resistant to rust (Rossi et al., 2003). Analyses of these

genes may enhance the understanding of stress-responsive

pathways in sugarcane and lead to the development of

markers for disease.

Glycoproteins

The production of glycoproteins is likely the primary

response of sugarcane to infection by pathogens (Fonta-

niella et al., 2002). These macromolecules are found in

plant cell walls (Martínez et al. 1990) and are of two types,

mid molecular mass glycoproteins (MMMGs) or high mo-

lecular mass glycoproteins (HMMGs) (Legaz et al., 1998).

In response to the entry of a pathogen, sugarcane

glycoproteins (MMMGs and HMMGs) are produced that

modify some physiological functions of the invader. These

glycoproteins were first isolated from sugarcane juice pro-

duced in response to mechanical injuries (Legaz et al.,

1998).

The inoculation of sugarcane with smut teliospores of

S. scitamineum induces a significant increase in concentra-

tion of HMMGs, the polymers from which MMMGs are

derived (Martínez et al. 1990). In other studies on smut dis-

ease, both types of glycoproteins act against the fungus by

increasing cytoagglutination and decreasing the germina-

tion of teliospores by 50% (Fontaniella et al., 2002) or by

preventing cell polarization with inhibition of germination

tube protrusion and spore germination (Millanes et al.,

2005). Furthermore, HMMGs and MMMGs produced by

healthy sugarcane cause a complete inhibition of smut my-

celium growth (Millanes et al., 2008).

Xanthomonas albilineans is the causal agent of leaf

scald, a bacterial-vascular disease in sugarcane. Sugarcane

HMMGs and MMMGs act as cell-to-bacterial signals in-

ducing the production of xanthan, an exocellular poly-

saccharide, by X. albilineans. The production of xanthan is

likely caused by inhibition of bacterial proteases by these

glycoproteins, which consequently protects the enzymes

responsible for xanthan biosynthesis from proteolytic deg-

radation (Legaz et al., 2011).

Catalases

Catalase was the first antioxidant enzyme discovered

and characterized. In plants, these enzymes detoxify reac-

tive oxygen species (ROS). Catalases are hemeproteins that

have high specificity for H2O2 and catalyze the dismutation

of two molecules of H2O2 into water and oxygen (Sharma et

al., 2012).

A search in the SUCEST database found catalases

with similarities to the three maize isoforms (CAT 1, CAT

2 and CAT 3) (Soares Netto, 2001). The level of gene ex-

pression for a catalase isoform (CAT3) increases after in-

fection with G. diazotrophicus (2.5-fold), Herbaspirillum

rubrisubalbicans (5-fold) (Lambais, 2001) and S.

scitamineum (Lao et al., 2008). CAT 1 and CAT 3 were

also found in sugarcane leaves inoculated with the patho-

gen P. melanocephala, the causal agent of sugarcane rust

disease (Kuramae et al., 2002).

The elicitor of C. falcatum induces variable levels of

catalase in suspension-cultured sugarcane cells (Sundar

and Vidhyasekaran, 2003). Moreover, high catalase activ-

ity was found in two cultivars with varying sensitivity to C.

falcatum after inoculation with conidia of red rot fungus

(Asthir et al., 2009).

After inoculation with S. scitamineum, the expression

of the catalase gene (ScCAT1) in sugarcane increases sig-

nificantly, which suggests that ScCAT1 protects plants a-

gainst reactive oxidant-related fungal stimuli. Based on this

study, a positive correlation between activity of catalase

and smut resistance in sugarcane was also confirmed (Su et

al., 2014b). Furthermore, the transcription and expression

of the catalase gene were also induced by this interaction

(Que et al., 2014).

WRKY proteins

WRKY proteins are a large family of transcription

factors. These proteins are named because of a highly con-

served 60 amino acid-long WRKY domain, which is com-

posed of the highly conserved motif WRKYGQK at the

N-terminus and a novel metal-chelating zinc finger signa-

ture at the C-terminus (Agarwal et al., 2011). WRKY pro-

teins recognize the W box (TTGACC/T) type DNA se-

quence, which was found in the promoters of many plant

defense genes (Rushton et al., 1996). WRKY proteins are

involved in differential responses to biotic stresses in

plants, either as transcriptional activators or as repressors of

pathogen-induced defense programs (Eulgem, et al., 2000;

Dong et al., 2003; Ulker and Somssich, 2004; Journot-

Catalino et al., 2006). Plant WRKY transcriptional factors

are activated as part of the plant innate immune system and

are triggered by pathogen-associated molecular patterns

(PAMP-triggered immunity or PTI) and pathogen virulent

effectors (effector-triggered immunity or ETI) (Jones and

Dangl, 2006). The high percentage of genes in this family

compared with that of other multigene families that also en-

code plant transcription factors suggests that biotic stresses
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may have played a key role in the expansion of the WRKY

family (Ulker and Somssich, 2004; Agarwal et al., 2011).

Data analyses of sugarcane defense-related genes

from many projects worldwide identified WRKY genes

(Lambais, 2001; Liu et al., 2012; Wanderley-Nogueira et

al., 2012; Que et al., 2014; Santos et al., 2015). The expres-

sion of �-1,3-glucanases, chitinases, peroxidases and cata-

lases was co-regulated with WRKY-like genes in sugar-

cane (Dellagi et al., 2000; Hara et al., 2000). Furthermore,

specific isoforms of sugarcane WRKY-like transcription

factor are associated with PR regulons (Lambais, 2001).

The expression analysis of WRKY genes indicates strong

inductions after sugarcane interaction with U. scitaminea

(Liu et al., 2012), C. falcatum (Sundar et al., 2012; Muthiah

et al., 2013; Prathima et al., 2013), S. scitamineum (Que et

al., 2014) and P. melanocephala (Santos et al., 2015).

Biotechnology potential of defense-related
proteins in sugarcane

Induced systemic resistance (ISR) is one strategy that

has been described as a potential weapon to improve sugar-

cane resistance to biotic stresses. Rhizobacterial strains of

Pseudomonas (nonpathogenic bacteria) were associated

with increased resistance in sugarcane to C. falcatum by in-

ducing PR proteins in stalk tissues (Viswanathan et al.,

2003) and by increasing chitinases with antifungal activity

(Viswanathan and Samiyappan, 2001; Viswanathan et al.,

2005).

PR proteins from the families PR-13, PR-15, PR-16,

PR-17, PR-18 and PR-19, with homologs not yet found in

sugarcane, can also be potential targets for RGA markers

for enhanced resistance to pathogens. PR-13 (thionins) de-

stroy fungal and bacterial membranes (Bohlmann and

Broekaert, 1994) and in barley and Arabidopsis inhibited

the growth of the sugarcane phytopathogenic fungi

Thielaviopsis paradoxa (Reimann-Philipp et al., 1989) and

Fusarium oxysporum (Epple et al., 1997), respectively.

Oxalate oxidases (PR-15 family) and oxalate-oxidase-like

proteins (PR-16 family) are correlated with the generation

of hydrogen peroxide, which produces a toxic environment

to the pathogen or stimulates directly or indirectly plant de-

fense responses (Van Loon et al., 2006). Members of the

newly described PR-17 family (Nt PRp27 like) were ob-

served in response to Blumeria graminis in barley

(Christensen et al., 2002), induced by the synthetic benzo

(1,2,3) thiadiazole-7-carbothioic acid S-methyl ester

(BTH) in wheat (Görlach et al., 1996) and upon mosaic vi-

rus infection in tobacco. PR-18 (fungus- and SA-inducible

carbohydrate oxydases) enhanced resistance to infection by

bacteria in tobacco transgenic plants (Custers et al., 2004).

Recently, a new PR protein with antimicrobial effect was

identified in Pinus sylvestris and named PR-19

(Sooriyaarachchi et al., 2011). This protein binds to fungal

cell wall glucans altering cell wall structure which leads to

morphological distortion of hyphae (Sooriyaarachchi et al.,

2011).

Recently, RNA interference also has been used for

control of sugarcane diseases. RNAi of endochitinases in

the sugarcane endophyte Trichoderma virens 223 was used

as a form of biocontrol for C. paradoxa (Romão-Dumaresq

et al., 2012). RNAi has been used for development of viral

resistant plants (Kim et al., 2013; Ntui et al., 2013). Gene

silencing has proven to be effective to obtain multistrain re-

sistant sugarcane plants for mosaic disease (Potyvirus sug-

arcane mosaic virus - ScMV and/or Sorghum mosaic virus -

SrMV)(Guo et al., 2015).

Studies have reported that microRNA-guided gene

regulation was essential for tolerance to biotic stresses

(Gupta et al., 2014). Thiebaut et al. (2012) identified sev-

eral microRNAs in sugarcane after inoculation with

Acidovorax avenae subsp avenae. These new microRNAs

have a potential use for genetic engineering of stress-

resistant plants and can contribute to an improved under-

standing of regulatory pathways for defense-related pro-

teins.

The development of transgenic plants is another strat-

egy proposed to increase resistance to pathogens. For ex-

ample, the insertion of single genes encoding PR proteins,

such as �-1,3-glucanase (Sundaresha et al., 2010) or

thaumatin-like proteins (Chen et al., 1999; Datta et al.,

1999; Velazhahan and Muthukrishnan, 2003; Schestibra-

tov and Dolgov, 2005), in transgenic plants increases host

resistance against fungi. Additionally, transgenic plants

that express more than one PR-encoding gene have also

been considered as a strategy to improve plant resistance to

pathogens (Anand et al., 2003; Amian et al., 2011).

Concluding remarks

Sugarcane is one of the most important commodities

worldwide, primarily for sugar and biofuel production.

However, despite the significant agronomical relevance,

little is known about the role of proteins in sugarcane de-

fense when compared with other plant species. Improving

our knowledge of sugarcane defense mechanisms against

pathogens is still a great challenge to be achieved.
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