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Abstract

BSP trees and KD trees are fundamental data structures for collision detection in walkthrough environments. A

basic issue in the construction of these hierarchical data structures is the choice of cutting planes. Rather than

base these choices solely on the properties of the scene, we propose using information about how the tree is used

in order to determine its structure. We demonstrate how this leads to the creation of BSP trees that are small, do

not require much preprocessing time, and respond very efficiently to sequences of collision queries.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry

and Object Modeling I.3.6 [Computer Graphics]: Graphics data structures and data types, Interaction techniques

I.3.7 [Computer Graphics]: Virtual reality

Keywords: Binary space partitioning, collision detection, ray-shooting, walkthrough, self-organizing data struc-

tures, deferred data structures.

1. Introduction

Ray-shooting and collision detection are fundamental prob-

lems in computer graphics. Of the many algorithms and data

structures used 5 ✁ 7 ✁ 11 ✁ 12 ✁ 14 ✁ 15, we choose to focus on Binary

Space Partitioning (BSP) trees 1 ✁ 9 ✁ 10 ✁ 13 ✁ 17 ✁ 19 ✁ 20 ✁ 23 ✁ 24 ✁ 25, which

represent a data structure with a recursive search algorithm

embedded in it. We explore BSP trees for collision detection

in walkthrough environments and for ray shooting in a new

way.

Obviously, there are many possible BSP trees for any

given scene. The major consideration in the construction of

a BSP tree is the choice of a “good” cutting plane. Tradi-

tionally, cutting planes are chosen so as to hopefully keep

the BSP tree small under the assumption that this will help

keep traversal times low. It is not known, however, how to

find the smallest BSP tree for a given scene. It was shown

that random constructions can limit the size to quadratic 19

and it seems much less in practice 8. In actual applications,

people employ greedy heuristics 18, which cannot guarantee

small trees (nevertheless, often produce them). Moreover, as

is shown in 3, tree size is not necessarily a significant factor
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in the time required to answer a query, for query types which

need not explore the whole tree.

The expectation that small trees will keep query response

times low amounts to attributing equal likelihood to each

query. In other words, assuming a uniform distribution on

the queries. However, in “real life”, that is not the case.

Three-dimensional scenes are not random; nor are ray-

shooting queries or navigation paths in walkthrough sys-

tems. People, and even robots, rarely navigate randomly

through a building in a walkthrough environment while aim-

lessly bouncing against the walls.

Our basic premise is that queries are typically dependent

on previous ones. For instance, certain paths in a museum

walkthrough are more popular than others. (Think, for ex-

ample, of the room or hallway where Venus de Milo is dis-

played.) Therefore, our underlying assumption is that data

structure construction should not depend solely on the static

data set, but rather incorporate information about likely

queries. That is, rather than base BSP tree construction only

on the properties of the scene, as is customary, we propose

gathering information about how the tree is used to service

ray-shooting or collision-detection queries and use this in-

formation to determine the BSP tree’s structure. This can be

done if tree construction is delayed until there is some in-
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formation about the nature of the queries it will be used to

service.

Naylor 17 was the first to propose constructing a cost

model for BSP trees based on the probability distribution of

the input (i.e., the rays) or some estimate of this probability.

In practice, it is assumed in 17 that the distribution is uniform,

and thus the relative area can be used to estimate it.

As noted above, uniform distribution is not necessar-

ily representative. Ar, Chazelle & Tal 3 presented the self-

customized BSP tree, where tree construction is based on the

same temporal coherence principle used in caches: Events

are more likely to happen in the future, if they have already

happened in the past. This is done by hypothesizing a proba-

bilistic distribution of requests based on a log of recent client

usage. After this learning stage, that information is used

to configure the BSP tree to optimize its expected request-

answering complexity. It has been demonstrated that using

probabilistic cost models to guide BSP tree construction re-

sults in trees which outperform other forms of BSP trees for

ray shooting queries.

But, what about situations where we do not have any, or

enough information ahead of time to determine the distribu-

tion? We would still like to be able to service queries effi-

ciently. This is the topic of the current paper.

The strategy we explore in this paper, is to defer full con-

figuration and use a partially constructed tree to respond to

queries, while continuing information collection. This leads

us to propose a new BSP tree scheme – a deferred, self-

organizing BSP tree. The statistics about the queries are rep-

resented in the structure of the (partial) tree itself. When it

is determined that enough additional information has been

collected, some more of the tree is constructed, based on

this information. Thus, the structure of the deferred, self-

organizing BSP tree evolves, reflecting the way it is expected

to be used, when answering future queries. Obviously, the

same scheme can be applied to a KD tree which is a special

case of a BSP trees.

Our deferred, self-organizing BSP trees successfully at-

tempt to construct trees that suit the client’s usage, while

putting an emphasis on keeping the trees small and saving on

preprocessing time. We will show that our proposed partial

structuring scheme has several obvious advantages: Conve-

niently, there is no need for prior information. Partial tree

construction can start, using any available information about

queries, even if that information is not statistically signifi-

cant. Most importantly, in spite of using only partial infor-

mation and in spite of the data structure being very simple

when not fully constructed, the response to queries is very

cost effective. In addition, since these trees are only partially

constructed, they are much smaller than trees produced by

other BSP tree construction methods.

Though small trees are not required for answering queries

efficiently 3, there are still many advantages to reducing

tree size. For example, think of a multi-user virtual reality

walkthrough environment, where each user “walks” along

a unique path in the environment. Different paths, on their

own, do not require more than a single BSP tree for the whole

system. However, different BSP trees can be beneficial for

query processing when each tree fits the usage patterns of a

specific user. Obviously, it would be advantageous if each of

these trees did not require too much space.

The rest of this paper is organized as follows. In Section 2,

we define deferred, self-organizing BSP trees and describe

how they are constructed. In Section 3, we present our ex-

periments and explain the results. We briefly conclude in

Section 4.

2. Definitions and Tree Construction

A BSP tree is a method for partitioning n-dimensional space

using ☎ n ✆ 1 ✝ -dimensional hyperplanes. Once a space has

been partitioned by a hyperplane, it is represented by two

n-dimensional sub-spaces, one on each side of the partition-

ing hyperplane. These can now be recursively partitioned.

Our scene is given as a set S of disjoint polygons in R3.

These are the scene polygons. The corresponding BSP tree

is a binary tree, where each node v is associated with a par-

titioning plane πv and a closed convex polyhedron Cv. The

root’s polyhedron is a large box enclosing the entire scene.

If v is not a leaf, the plane πv cuts Cv into the two convex re-

gions associated with the children of v. We restrict ourselves

to auto-partitioning BSP trees: ones where each cutting plane

contains a scene polygon.

The basic question in the construction of BSP trees is how

to choose the cutting planes. We answer this question by

proposing a new BSP tree scheme – one which is both De-

ferred and Self-Organizing.

Deferred data structures, first suggested by Karp et al. 16,

involve dynamic or query driven structuring. The idea is to

process the data set only when doing so is required for an-

swering a query, that is during the query processing phase.

This contrasts with conventional data structures, that are

fully configured prior to any query answering accesses.

A self-organizing data structure 2 ✁ 4 ✁ 6 ✁ 21 ✁ 22 is a conven-

tional data structure with rules or algorithms for changing

itself, potentially after each access. The rules are designed to

respond to initially unknown properties of the input request

sequence, and to get the data structure into a state that will

take advantage of these properties and reduce the time per

operation. Unlike deferred data structures, self-organizing

data structures are fully configured ahead of time.

Both deferred and self-organizing data structures are de-

signed to address the issue of responding efficiently to

queries when there is not enough prior information about the

query distribution. In what follows, we show how to com-

bine these two notions in the context of BSP trees.
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We define a deferred, self-organizing BSP tree as a par-

tially constructed BSP tree. It will have a root node, and may

have some of the tree structure below the root, but not all of

its leaves will be proper BSP tree leaves. Each leaf of a par-

tially constructed tree may have a list of scene faces, whose

corresponding planes are the potential cutting planes for that

BSP node. These face lists are managed with a set of rules

for their potential re-organization with each tree access.

Note that the tree is used to respond to queries even be-

fore it is fully constructed. To do this, we start at the root

of the tree and recurse downwards, checking for collisions

against the polygons associated with the relevant tree nodes,

in the standard way. When we get to a node that does not

have a subtree configured below it, we check for collision

by performing a sequential search through that node’s list of

potential cutting planes.

TREE CONSTRUCTION

A BSP tree is built incrementally by inserting cutting

planes one at a time. At any time during the construction,

i.e., at any “leaf”, a list is kept. This is a list L of the scene

planes (i.e., the planes coplanar with polygons of S) that are

potential cutting planes for that node. When beginning tree

construction, the single leaf-node is the root of the tree, and

all scene polygons are on its list. To continue construction

of the BSP tree at a given node, one of the potential cutting

planes needs to be chosen, to “split” that node. The list of

scene faces at that node then needs to be parceled out to

its two children nodes. A fully constructed tree is obtained

when this process can no longer continue.

When executing a sequence of queries on a BSP tree, the

total access time will be small if frequently accessed items

are near the root of the tree. Thus, if we expect past queries to

reflect likely future one, we want cutting planes at nodes near

the root of the BSP tree to be ones corresponding to polygons

likely to be hit. To avoid extensive log-keeping, the collected

information is represented in the data structure, bypassing

the need to create a probabilistic model based on the input.

Given a partially constructed tree, we may, at intervals,

want to configure more of the tree. That is, we may want

to “split” more of the tree nodes. There are several issues

regarding splitting a node having a list of potential cutting

planes. First, when do we split a node? Second, the closely

related question of which node do we split? Third, there is of

course the question of how to maintain the lists of potential

cutting planes at nodes that may be split, so that choosing the

actual cutting plane may be done quickly. In what follows,

we will answer these three questions.

NODE SPLITTING

Intuitively, we would like to render more structure to a

part of the tree that is used a lot for query processing. If

we have reached a node frequently, and it may be split, that

means useful information is sitting in the lists, rather than

in BSP tree structure. We would like to put that information

into the tree structure, by choosing as cutting plane one that

will help reduce query processing time in the future.

When using deferred data structures, there needs to be

a criterion for deciding when to continue configuration. In

the case of deferred BSP trees, that means deciding which

nodes, of those that can be, will be split by a cutting plane

and when, to create more of the tree structure. Obviously, a

node that is never accessed will not be considered for further

splitting. Creating tree structure which is never used to re-

spond to queries is wasted effort. Conversely, a node that is

accessed frequently, and is one that may be further split, in-

dicates a likely location where more BSP tree structure will

be beneficial to better query processing times.

Thus, we count accesses to nodes of the partially con-

structed BSP tree during the processing of queries. It is time

to split a node when that node is accessed, and the count for

that node has reached a pre-specified threshold. This thresh-

old may be of one of two kinds: constant or relative. A con-

stant threshold specifies the number of allowed accesses to

a node before it is split to two nodes by a cutting plane. A

relative threshold specifies the number of accesses to a node,

as a fraction of total accesses to the BSP tree, before the node

is split. Below, when a walkthrough application is discussed,

another possibility will be described.

In actual use, the BSP tree construction is only started.

That is, the tree is only a root with a list of all scene faces,

each corresponding to a potential cutting plane. When a node

is accessed and has reached the threshold for number of ac-

cesses, it is split into two nodes with a cutting plane chosen

from its list of polygons. If the polygon lists are maintained

such that the frequently accessed polygons are brought close

to the head of the list, choosing the first on the list is a good

choice, and is obviously the quickest. Next we discuss list

maintenance methods.

MAINTAINING FACE LISTS

The potential cutting planes maintained at each BSP tree

node, need to be ranked based on query patterns. Rather than

maintain an explicit score for each plane, we would like to

keep the ranking information in the structure of the lists. This

brings us to the list update problem of online algorithms,

where a list is re-organized, potentially after each access,

with the goal of speeding up query service time for future

accesses.

In a partially constructed BSP tree, when the search for

collision reaches a node with a polygon list, each list element

is examined until a collision is found, or it is determined that

there is none. Every time a scene face, or polygon, is checked

for collision it is accessed. Thus, it would be advantageous to

maintain the polygon lists so as to keep frequently accessed
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ones close to the head of the list. This will help keep query

processing times low, and will keep those polygons readily

available when it is time to choose a cutting plane.

There are some well-known, deterministic online algo-

rithms used for list update, or re-organization. We experi-

mented with the most common ones, which we list below.

✞
Move To Front: Move each accessed item to the front of

the list.✞
Transpose: Exchange the accessed item with the one im-

mediately before it in the list.✞
Frequency Count: Maintain a frequency count for each

list item. Whenever an item is accessed, increase its fre-

quency count by one. Maintain the list so that items are

sorted in non-increasing order of their frequency counters.

Note that Move-To-Front and Transpose define memory-

less algorithms, while Frequency-Count is a strategy that

needs some additional memory in the data structure. How-

ever, in either case, the self-organizing rules can be viewed

as putting the “memory” about the history of past requests

into the data structure, by re-organizing it.

TREE RE-CONFIGURATION

There are times when access patterns change dramatically.

If this situation arises and large parts of the tree are already

configured, response to queries may not be as efficient as

they could be. If usage indicates this situation, we choose to

start the relevant sub-tree configuration from scratch.

3. Experimental Results

We have tested our deferred self-organizing BSP trees for

two applications – ray shooting and collision detection in

walkthrough environments. In this section we summarize

our findings and analyze them.

RAY SHOOTING EXPERIMENTATION

Given a ray specified by a point p and a direction ✟ , and

a scene S represented by a deferred self-organizing BSP tree,

we can find the first polygon of S that the ray hits by recurs-

ing on the following process. Assume that the ray is known

to cross Cv, the polyhedron associated with a tree node v and

with a cutting plane πv. If v is a BSP leaf, then we may com-

pute the answer by exhaustive examination of all the scene

polygons that intersect Cv; otherwise, check if the ray hits a

scene polygon associated with node v. If it does, we have a

collision. If there is no collision in v, recurse in either child

whose polyhedron lies on the same side of πv as p.

We compared BSP trees produced using deferred, self-

organizing methods to two optimized BSP tree types. The

first kind of BSP tree we compare against is what we call the

standard BSP tree which is based on the BSP code presented

in the Graphics Gems 18, and which we further optimized.

The strategy used when constructing a standard BSP tree is

to always choose a cutting plane which “cuts” the minimal

number of scene faces. In other words, this is a greedy pro-

cedure with the goal of minimizing the number of intersec-

tions between cutting planes and thus minimizing the tree

size. The second kind of BSP tree we compare against is the

self-customized BSP tree 3, which bases the scoring of the

cutting planes on the hypothesized probabilistic distribution

of a history of queries.

To compare the performance of these BSP schemes, we

use two main measures for the traversal cost of a directed

line in a BSP tree. We count the number of tree nodes ac-

cessed before the first collision is found. More importantly,

we count the number of scene polygons that are checked

for collision with the ray, before a collision is found, or it

is determined that there is none. In the standard and self-

customized trees, these are the faces defining the cutting

planes of tree nodes encountered during the search. In the

deferred, self-organizing trees, since they are only partially

built, these may include both faces that define cutting planes

of configured tree nodes and may also include lists of faces

corresponding to candidate cutting planes, when the search

is at a node that is not yet “split”. These checks consume the

bulk of the computation time.

To benchmark the performance of any given BSP tree,

we produced ray shooting queries assuming a multivari-

ate normal distribution. Similar distribution parameters were

used to simulate the learning process in the self-customized

BSP trees 3.

Figures 1–2 present results of our experiments. Next to

each object name, we indicate the number of faces com-

prising it. Every object is associated with a table. Each ta-

ble header lists the total number of rays and the number of

ray classes (of the multi-variate distribution). Note that the

classes may have different sizes. The table has a line for each

of several runs: the standard BSP tree construction, the self-

customized BSP tree construction, and two lines for deferred,

self-organizing tree construction runs, indicating the thresh-

old type used to determine when to split a node (constant or

relative). The first column indicates the the number of tree

nodes accessed before the first collision is found. The sec-

ond column indicates the number of scene polygons that are

checked for collision. The third column indicates the size of

the BSP tree.

We show the results of only one run of each possible de-

ferred threshold kind, although we performed many more.

We varied the threshold for each type, and we experimented

with all three methods of list maintenance. Our conclusion

is that frequency count is the most cost effective list mainte-

nance method.

Our experiments indicate that deferred, self-organizing

BSP trees can offer stunning speedup factors. For instance,

in the case of the Dalek with 30 ✠ 000 rays of two different

classes, the deferred BSP tree checks for collision against
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30,000 rays, two classes

run type # nodes # faces tree size

Standard 3995683 868538 68407

Self-Customized 780988 246709 86057

Deferred, Constant 67084 48926 247

Deferred, Relative 68270 44841 261

(a) Dalek - 21,814 faces

60,000 rays, five classes

run type # nodes # faces tree size

Standard 8950467 1580270 1785

Self-Customized 4799768 759976 3139

Deferred, Constant 1166721 237213 169

Deferred, Relative 1130651 248176 127

(b) Ear - 454 faces

120,000 rays, five classes

run type # nodes # faces tree size

Standard 7473397 1169935 7161

Self-Customized 2854606 716882 15395

Deferred, Constant 1843284 487166 245

Deferred, Relative 1924076 511810 323

(c) Human Head - 1850 faces

Figure 1: Ray shooting experimental results

48 ✠ 926 faces (1 ✡ 63 faces per ray, on average), while the self-

customized BSP checks 246 ✠ 709 (8 ✡ 22 faces per ray), and the

standard BSP checks 868538 faces (28 ✡ 95 faces per ray).

The preprocessing time for the standard BSP may get quite

substantial in the case of scenes made up of many faces. For

instance, in the case with the Nerd, which has 7 ✠ 312 faces,

the preprocessing time for the standard BSP is 510 ✠ 326 ✠ 810

microseconds. In the same case, the preprocessing for the

self-customized BSP is 76 ✠ 606 ✠ 230 microseconds. Obvi-

ously, there is virtually no preprocessing time for a de-

ferred BSP tree. Although time is spent both building and

re-organizing the deferred self-organizing tree (this time is

interleaved with query processing), it is done only when

deemed advantageous, in that it pays off in faster processing

for future queries. This process is very quick since the self-

organization of the lists means that the first face is always

picked, and no complex computation is needed. Moreover,

this is done very rarely. At the end of each run, very few

nodes have actually been split, as can be seen with the final

trees being very small. For instance, in the case of the Dalek,

the standard BSP tree has 68407 nodes, the self-customized

BSP tree has 86057 nodes, while the deferred self-organizing
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20,000 rays, one class

run type # nodes # faces tree size

Standard 8765706 1273440 17941

Self-Customized 3146212 554789 25009

Deferred, Constant 1281526 329239 843

Deferred, Relative 1336004 399571 883

(d) Moraccas - 3251 faces

30,000 rays, two classes

run type # nodes # faces tree size

Standard 6168995 689758 36199

Self-Customized 1168756 570634 52051

Deferred, Constant 1163687 496080 353

Deferred, Relative 1176089 492143 325

(e) Nerd - 7312 faces

45,000 rays, three classes

run type # nodes # faces tree size

Standard 3181464 973197 9085

Self-Customized 2734468 529039 18069

Deferred, Constant 1713029 428393 897

Deferred, History 1637907 383095 1039

(e) Enterprise - 1989 faces

Figure 2: Ray shooting experimental results (Cont’)

BSP tree, which is only partially built, has only 247 (261)

nodes.

WALKTHROUGH COLLISION EXPERIMENTATION

To achieve the feeling of presence in a walkthrough set-

ting, one must address many issues, a key one among them

is that of collision detection. The user should be kept from

colliding with walls or other obstacles. In this section we

describe our experiments using our deferred self-organizing

BSP trees as our data structure for representing walkthrough

scenes.

Recall that the BSP tree is built incrementally, by insert-

ing one cutting plane at a time. In a walkthrough environ-

ment this is done while the user is “walking” within the given

scene. The first walk can thus be considered as a “training”

walk, and subsequent similar walks use the partial BSP trees

constructed during the training walk (and can of course con-

tinue construction).

As before, there are three questions which need to be an-

swered: When do we split a node? Which node do we split?

How to maintain the lists of potential cutting planes at nodes

that may be split?
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In general, our goal is to construct a tree which optimizes

collision detection queries for a specific walk. Obviously,

faces the walker is more likely to collide with should be se-

lected as cutting planes. It is a wasted effort to use faces

which are far from the walker. In other words, the path the

walker uses should determine the structure of the BSP tree.

On every step the walker makes, we consider splitting the

BSP node the walker is currently in. Of all the faces which

belong to this node’s face candidate list, we wish to select

the face closest to the walker as a cutting plane. However,

if the closest face is still far away from the walker, it is not

necessary to grow the tree at all, and no cutting plane should

be chosen. This is somewhat different from the ray-shooting

application, where a node is split when some threshold is

reached.

To choose the cutting plane efficiently, the candidate list at

every node should be sorted according to the distance from

the walker. Of course, keeping theses lists updated at all

times would be costly. Instead, we use self-organizing lists.

Initially, all the faces are sorted according to their distance

from the walker. Since the steps the walker makes are small,

very few changes need to be done to the list at every step.

In fact, only a few faces from the head of the list need to be

checked. Moreover, when the list needs to be modified, one

of the nodes at the head of the list should move forward. This

brings us to the “move to front” method described above.

Obviously, only lists at the relevant nodes should be up-

dated, and other nodes’ lists are updated only when becom-

ing relevant. At times, a whole list needs to be re-sorted. This

happens either when many modifications are done to a list,

or when the the current location of the walker is far from the

location during previous re-sorting.

Figure 3 demonstrates the construction of the BSP tree, as

done during a walk in the scene. In Figure 3(a), the walk-

through scene is shown together with a specific walk (in a

dashed line). In Figure 3(b), the BSP tree, as built for this

walk, is shown. It can be seen that though the scene consists

of 24 possible cutting planes, the constructed tree is very

small (having only 9 internal nodes). Only relevant planes,

those that are close to the walk, are used as cutting planes.

Other planes are left un-explored.

As the walk begins, plane 1 is the closest to the walker,

and thus is chosen as the first cutting plane, and is associ-

ated with the root of the tree. On the second step, plane 15

is chosen since it is almost as close. As the walker keeps

walking, the tree need not be further constructed, since all

relevant faces are still far. Once the walker gets closer to the

first intersection, Plane 2 becomes sufficiently close and is

chosen as the next cutting plane. Similarly, Plane 16 is used

as a cutting plane. Next, Plane 5 becomes the closest and is

chosen as a cutting plane. This is done first on the left branch

of the root node, and after the walker turns right, on the right

branch. As this walker is approaching the next intersection,

Plane 4 is chosen as the next cutting line, followed by Plane

3 (on both branches of node 5 ✡ 2). This ends the construction

of the BSP node for this specific walk. It is not necessary to

explore all the other cutting planes which are far from the

walker.

To test our data structure, we let a user move through vari-

ous walkthrough scenes, using both deferred, self organizing

BSP trees and standard BSP trees. (Self-customized BSP trees

are designed for ray shooting applications.) During the first

walk, the deferred, self organizing BSP tree is built. During

subsequent similar walks, this tree is used (and construction

continues when necessary). Recall that the main advantage

of our scheme is when it is used for these subsequent similar

walks, since each tree is optimized for a specific walk.

Figure 4 illustrates our results. Our deferred BSP tree is

compared to a standard BSP tree. Each walkthrough scene is

described by a table and is accompanied with an image of

the model. See also the color section.

The first column of the table shows the tree sizes. Though

standard BSP trees optimize tree sizes, the deferred, self or-

ganizing BSP trees maintain only partial constructed trees,

hence their significantly smaller sizes. The other three

columns show times in milliseconds. In the “walk” column,

the walkthrough time using a similar path to the training path

is given. In the “construct” column” the construction time is

given. Since in deferred BSP trees the construction time in-

terleaves with the time of the first walk, we measure the con-

struction time plus the walk time also for standard BSP trees.

Finally, in the “track II” column the times to walk through a

different path than the training path is measured.

It can be seen that the deferred BSP tree outperforms the

standard BSP tree. For instance, in the case of the castle (Fig-

ure 4(a)), walking through the training path takes 30ms for

deferred BSP trees and 2273ms for the standard trees. More-

over, using a different path (entering the castle through the

bridge rather than through the lobby) takes 271ms using a

deferred BSP tree. The training walk through the castle, dur-

ing which the tree is built, takes 1793ms.

ANALYSIS

The marked advantage of the deferred BSP trees comes

from several factors. The first factor is the use of the actual

queries to “train” the data structure for future queries. This

training process suggests picking the BSP cutting planes as

the ones that are expected to be hit (or close) in the fu-

ture. Note that a similar coherence principle is used in the

construction of self-customized BSP trees. However, in this

case the data is used within a function that estimates the ef-

ficiency of candidate cutting planes. In the case of deferred

BSP trees the choice of a cutting plane is more directly de-

pendent on the actual use of the tree, and thus the advantage

over self-customized BSP trees. The second factor is that the

partially constructed trees are small, so searches through the

fully configured parts of the tree are quick. Finally, the self-
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(a) The walkthrough scene (b) The deferred self-organizing BSP tree

Figure 3: The deferred self-organizing BSP as built throughout the walk

organizing lists keep searches for collisions efficient in all

tree parts, in spite of the lacking tree structure.

Though not shown in the tables, there are other obvious

advantages to the deferred BSP trees being much smaller

than both the standard BSP trees and the self-customized

ones. Obviously, smaller trees mean less storage space. This

saving can be significant in a walkthrough environment

where the scene is quite large and therefore a fully config-

ured BSP tree is likely to be very big. Small trees let each

user maintain a tree that suits his or her access patterns.

Moreover, little configuration ahead of use means big sav-

ings in preprocessing time. In the standard BSP trees, prepro-

cessing time is spent on calculating intersections of potential

cutting planes. The bigger the scene the more time spent on

this preprocessing. In the self-customized BSP trees, prepro-

cessing time is spent on classification of the training data,

later used to give scores to potential cutting planes. This time

is independent of the number of scene polygons. Deferred,

self-organizing BSP trees do not need pre-processing at all.

4. Conclusions

Traditionally, BSP trees are constructed without any consid-

eration to their use, configuration being based only on the

scene for which they are built. In this paper this approach

has been challenged. Instead, tree access information has

been utilized in the construction of deferred, self-organizing

BSP trees.

With deferred, self-organizing BSP trees prior informa-

tion is not necessary. Rather, the tree is partially constructed

whenever enough information about its use is available, and

whenever it is deemed beneficial to configure more of the

tree. We show that while the trees are indeed kept small, due

to being only partially constructed, the response to queries is

very cost effective.

Although not necessary for processing queries efficiently,

we show other advantages to keeping the trees small, most

notably, saved preprocessing time and saved storage space.

To benchmark the performance of deferred, self-

organizing BSP trees on collision detection or ray shooting

queries, we compared the query answering costs of the de-

ferred, self-organizing BSP trees to those of some public do-

main BSP trees. On the basis of our experimental results, it is

clear that deferred data structuring, with re-organization can

minimize both preprocessing time and storage requirements.

Obviously, the main advantage is that this can be done while

greatly improving query response time.

We deem the combination of deferred data structures with

self-organizing data structures worthy of further investiga-

tion, perhaps for other data structures. Moreover, in the con-

text of BSP trees, potential other domains where deferred,

self-organizing BSP trees may prove beneficial include point

location and range searching.
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BSP type tree size walk (ms) construct (ms) track II (ms)

Standard 17442 2273 3025 390

Deferred 552 30 1793 271

(a) Castle - 4686 faces

BSP type tree size walk (ms) construct (ms) track II (ms)

Standard 270455 221058 238423 22470

Deferred 811 261 160841 531

(b) Houses - 28995 faces

BSP type tree size walk (ms) construct (ms) track II (ms)

Standard 15165 1312 1883 3925

Deferred 822 20 1502 480

(c) Barcelona - 5338 faces

BSP type tree size walk (ms) construct (ms) track II (ms)

Standard 48374 15132 17335 9436

Deferred 116 40 15803 140

(d) Temple - 28995 faces

Figure 4: Walkthrough collision experimental results
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