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Deficiency for the ER-stress transducer OASIS
causes severe recessive osteogenesis imperfecta
in humans
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Abstract

Osteogenesis imperfecta (OI) is a clinically and genetically heterogeneous brittle bone disorder. Whereas dominant

OI is mostly due to heterozygous mutations in either COL1A1 or COL1A2, encoding type I procollagen, recessive

OI is caused by biallelic mutations in genes encoding proteins involved in type I procollagen processing or

chaperoning. Hitherto, some OI cases remain molecularly unexplained. We detected a homozygous genomic

deletion of CREB3L1 in a family with severe OI. CREB3L1 encodes OASIS, an endoplasmic reticulum-stress transducer

that regulates type I procollagen expression during murine bone formation. This is the first report linking CREB3L1

to human recessive OI, thereby expanding the OI gene spectrum.
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Background

Osteogenesis imperfecta (OI) is a genetically heteroge-

neous brittle bone disorder with varying degrees of clinical

severity, ranging from perinatal lethality to generalized

osteopenia [1]. The predominant autosomal dominant

forms display mutations in either COL1A1 or COL1A2,

encoding the α1- and α2-chains of type I procollagen,

while rarer autosomal recessive forms mostly result from

defective endoplasmic reticulum (ER)-resident proteins

involved in post-translational processing or chaperon-

ing of these α(I)-chains [1,2]. Processing defects prevent

normal collagen fibrillogenesis and on biochemical ana-

lysis often show perturbed modification of the collagen

α-chain. Known defects include biallelic mutations in

LEPRE1 [3-5], CRTAP [5,6], PPIB [7,8], BMP1 [9,10],

and PLOD2 [11]. Mutations in chaperones (including

Hsp47 (SERPINH1) and FKBP10) impair intracellular

collagen trafficking with intracellular retention or ag-

gregation of collagen molecules and show dilation of the

ER on electron microscopy, resulting in OI or related

phenotypes [12-14]. Finally, rare other defects linked

to distinct mechanisms involve the transcription fac-

tor osterix (SP7) [15], pigment epithelium derived fac-

tor (SERPINF1) [16] and transmembrane protein 38B

(TMEM38B) [17,18]. A recurrent mutation in a gene en-

coding the Interferon-inducible transmembrane protein 5

(IFITM5), which is involved in bone growth during pre-

natal murine development, was recently shown to cause

autosomal (AD) dominant OI [19-21]. Recently, heterozy-

gous and homozygous mutations in WNT1 (WNT1),

which is a key signalling molecule in osteoblast function

and bone development, were shown to underlie certain

forms of AD early-onset osteoporosis and AR OI, which

was in some patients associated with severe intellectual

disability [22-26]. However, a small proportion of OI pa-

tients remain molecularly unexplained.

Findings

We describe a Turkish family (Figure 1A) with three

sibs, two of whom were affected by severe OI (written

informed consent of the family was obtained and the

study was approved by the Ethics Committee of the

Ghent University Hospital (Ghent, Belgium)). Consan-

guinity was not reported, but the parents originated

from neighbouring villages. The first affected child (III:3)

developed several fractures in utero and was small for
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gestational age. His birth length was 40 cm (<P3).

At the first day of life he was hospitalized for

hyperbilirubinemia and O-bain-like deformities, soft

calvarial bones and widely open fontanelles were no-

ticed. He developed several fractures after birth and

multiple fractures healed with extremity deformities.

He also had a right inguinal hernia. X-rays showed

beaded ribs, callus formation and multiple fractured tubu-

lar bones with an accordion-like broadened appearance.

He was hospitalized several times due to recurrent consti-

pation and pulmonary infections (bronchopneumonia).

During this period, he developed abdominal distention

and hepatomegaly, the latter due to cardiac insufficiency.

No signs of T-cell dysfunction or other immune deficien-

cies have been noted. He died at 9 months of age. The sec-

ond affected sib (III:4, Figure 1A) was a male foetus from

a pregnancy that was medically terminated at 19 weeks of

gestation. Post-mortem examination showed thin ribs and

fractures at bowed humerus and femora (Figure 1B-C).

The parents have a healthy daughter (III:1) and have

had one miscarriage (III:2, cause unknown). The adoles-

cent daughter has blue sclerae but had not experienced

any fractures. The mother (II:5) at 38 years of age and

the father (II:6) at 47 years have blue sclerae, a soft and

velvety skin and normal teeth. While the mother has

small joint hypermobility, the father has conductive

hearing loss.

Biochemical (pro)collagen SDS-PAGE analysis was

performed on the medium and cellular fractions of cul-

tured skin fibroblasts of foetus III:4. No obvious quanti-

tative or qualitative abnormalities of 14C-labelled type I

procollagen (data not shown) and mature secreted and

intracellular type I collagen (Figure 2A) were detected.

Subsequently, all known OI genes (COL1A1, COL1A2,

BMP1, LEPRE1, CRTAP, PPIB, PLOD2, SERPINH1,

FKBP10, SP7, SERPINF1, TMEM38B, IFITM5and WNT1)

were sequenced by direct Sanger sequencing (ABI3730XL

automated sequencer, Applied Biosystems), but no causal

mutation(s) were detected.

We selected the CREB3L1 gene [GenBank:NM_052854.2],

encoding the ER-stress transducer OASIS (Old Astrocyte

Specifically Induced Substance), as an excellent candidate

gene based on the observation that OASIS−/− mice were

born with severe osteopenia and spontaneous fractures

Figure 1 Pedigree and clinical findings. A. Pedigree of the Turkish family. B. Post-mortem examination of foetus III:4 at 19 weeks of gestation

showed bowed extremities and pes equinovarus. C. X-rays of foetus III:4 revealed beaded ribs and multiple fractures of tubular bones.
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Figure 2 (See legend on next page.)
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[29], reminiscent of severe human OI. In those mice,

OASIS was shown to be crucial for bone formation

through activating col1a1 transcription and facilitating the

secretion of matrix proteins. Treatment of murine osteo-

blasts with BMP-2 (bone morphogenic protein 2) causes

mild ER-stress and is associated with accelerated RIP

(regulated intramembrane proteolysis) of OASIS. The

N-terminal part of OASIS is subsequently translocated to

the nucleus, where it binds to the osteoblast-specific

UPRE (unfolded protein response element) regulatory re-

gion in the murine Col1a1 promoter thereby causing high

levels of type I procollagen expression [29]. While the

amount of type I procollagen is normal in the murine

OASIS−/− skin, reduced amounts of type I procollagen

were detected in OASIS−/− calvaria and tibia, which sug-

gested tissue-specific decrease of type I procollagen in the

bone matrix but also failure of the OASIS−/− osteoblasts

to produce high levels of type I procollagen [29]. OASIS

further functions as a tissue-specific ER-stress trans-

ducer that alters transcription of target genes in-

volved in developmental processes, differentiation, or

maturation upon mild ER-stress. PCR amplification

of all exons and flanking introns of CREB3L1 failed

in foetus III:4, suggesting a homozygous whole gene

deletion. ArrayCGH analysis (1M SurePrint G3 Human

CGH Microarray, Agilent Technologies) and copy number

profiling (arrayCGHbase) confirmed this genomic dele-

tion, which encompasses CREB3L1 and the first exon of

DGKZ (arr11p11.2(46268141–46359490)×0, Figure 2B)

[30,31]. Whereas the arr11p11.2(46268141–46359490)×0

homozygous deletion was not reported before, heterozy-

gous deletions or gains of this genomic region are de-

scribed in the Decipher database [32] and the Database of

Genomic Variants [33] but encompassing large genomic

regions comprising multiple genes (6 to 86 genes and/

or multiple chromosomal abnormalities) which, in some

cases, are associated with intellectual disability. Both

parents and the healthy sister were heterozygous for

the deletion (data not shown). DGKZ encodes diac-

ylglycerol kinase zeta, an ubiquitously expressed en-

zyme that is most abundantly present in the brain,

thymus and skeletal muscle [34] and which has a

regulatory role in T-cell receptor signalling and T-cell

activation [35]. Two different isoforms (DGKζ1 in im-

mune cells and DGKζ2 in other cells) are known, in which

exon 1 is either present or absent and which have a

tissue- and developmental stage-specific expression

[28]. Hitherto, no known function in bone formation

has been ascribed to DGKζ and thus a possible con-

tributing role to (the severity of ) the bone phenotype

of patient III:3 and foetus III:4 cannot completely be

excluded. Expression analysis by real time-quantitative

PCR (RT-qPCR) on total RNA isolated from dermal

fibroblasts of foetus III:4 confirmed complete absence

of the CREB3L1 transcript. In order to investigate the

expression of the two DGKZ isoforms (DGKζ1 and

DGKζ2), two different primer pairs were designed, of

which one was specific for exon 1 that is only present

in the DGKζ1 isoform. RT-qPCR experiments revealed

no amplification for the primer pair specific for exon

1 in cultured dermal fibroblasts, suggesting that the

DGKζ1 isoform is not expressed in these cells. For

the second primer pair normal DGKZ expression was

observed, which implies normal expression of the

DGKζ2 isoform in cultured human dermal fibroblasts

(Figure 2C). RT-qPCR analysis of the ER-stress markers

BiP, CHOP and the spliced form of XBP1 showed levels

comparable to controls, even after stimulation of con-

fluent fibroblasts for 4 hours with the ER-stress in-

ducers Tunicamycin (Tu, 10 μg/ml, Sigma-Aldrich) and

Thapsigargin (Th, 1 μM, Sigma-Aldrich) (Figure 2C). This

is in accordance to the observations in OASIS−/− mice.

The expression level of CREB3L1 was unchanged in con-

trol fibroblasts after treatment withTu and Th (Figure 2C),

suggesting that OASIS does not play a major role in

the ER-stress pathways previously linked to disease

pathogenesis [1]. Additionally, our finding that type I

(pro)collagen production is normal in human dermal

fibroblasts (Figure 2A) confirms that OASIS has a

tissue-specific effect on type I (pro)collagen produc-

tion [29].

In conclusion, the identification of CREB3L1 (encod-

ing the ER-stress transducer OASIS) as a novel gene for

autosomal recessive OI expands the spectrum of genes

linked to OI and reinforces the role of ER-stress in the

pathophysiology of OI.

(See figure on previous page.)

Figure 2 Biochemical and molecular results. A. Biochemical collagen analysis was performed on collagens produced by the patients dermal

fibroblasts, which were grown for 16 hrs in the presence of 14C-Proline. Radioactively labelled intracellular and secreted fibrillar collagen proteins

were isolated and mature collagens were obtained by pepsin digestion. Foetal secreted (left panel) as well as intracellular (right panel) mature

type I collagen revealed a normal electrophoretic pattern when compared to a control (C) sample. Also for the unprocessed, secreted type I

procollagen a normal electrophoretic migration pattern was observed (data not shown). B. ArrayCGH analysis on a 1M SurePrint G3 Human CGH

Microarray revealed a homozygous deletion of the entire CREB3L1 gene in the affected foetus III:4. C. Expression level analysis by RT-qPCR was

performed in duplicate on total RNA extracted from three biological replicates of the fibroblast cell lines from foetus III:4 and three controls

(C1, C2 and C3) (LightCycler480 and RealTime ready DNA Probe Master Mix, Roche). The expression level of each investigated gene was

quantified using qbasePLUS (Biogazelle)[27]. HPRT1, RLP13a and YWHAZ were applied as reference targets. RT-qPCR for foetus III:4 confirmed the

total absence of CREB3L1 expression when compared to control samples (C1, C2 and C3). DGKZ has two alternative (tissue-specific) isoforms [28].
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