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Abstract

Background: The neuronal microtubule-associated protein tau becomes hyperphosphorylated and forms
aggregates in tauopathies but the processes leading to this pathological hallmark are not understood. Because
tauopathies are accompanied by neuroinflammation and the complement cascade forms a key innate immune
pathway, we asked whether the complement system has a role in the development of tau pathology.

Findings: We tested this hypothesis in two mouse models, which expressed either a central inhibitor of
complement or lacked an inhibitor of the terminal complement pathway. Complement receptor-related gene/
protein y is the natural inhibitor of the central complement component C3 in rodents. Expressing a soluble variant
(sCrry) reduced the number of phospho-tau (AT8 epitope) positive neurons in the brain stem, cerebellum, cortex,
and hippocampus of aged P301L mutant tau/sCrry double-transgenic mice compared with tau single-transgenic
littermates (JNPL3 line). CD59a is the major inhibitor of formation of the membrane attack complex in mice.
Intrahippocampal injection of adeno-associated virus encoding mutant human P301L tau into Cd59a−/− mice
resulted in increased numbers of AT8-positive cells compared with wild-type controls. This was accompanied by
neuronal and synaptic loss and reduced dendritic integrity.

Conclusions: Our data in two independent mouse models with genetic changes in key regulators of the
complement system support the hypothesis that the terminal pathway has an active role in the development of
tau pathology. We propose that inhibition of the terminal pathway may be beneficial in tauopathies.
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Findings
Intraneuronal insoluble deposits of the microtubule-
associated protein tau are found in neurodegenerative
diseases commonly known as tauopathies [1]. One of
the causes leading to these deposits in sporadic tauopa-
thies may be aberrant phosphorylation of tau. A com-
mon feature in Alzheimer’s disease (AD), the most
prevalent tauopathy, and other tauopathies is activation
of immune pathways in the brain. The complement

system is a key innate immune pathway, which is fully
expressed in the brain, independent of peripheral contri-
bution, and exerts critical homeostatic cerebral functions
in development and aging (for extensive discussions and
citations of relevant original articles about the role of
complement system in the brain see [2,3]). Brains of
patients with Pick’s disease (a pure tauopathy), AD, or
individuals with Down’s syndrome with AD-pathology
are found to have tangle-bearing neurons that are deco-
rated with complement proteins, including the mem-
brane attack complex (MAC). The presence of MAC in
the brain even at early stages of AD or the deposition of
products of complement activation in aged normal
brains [4] suggests a lack of proper inhibitory control of
the cascade with age and disease. Indeed, in affected
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brain regions of AD patients, levels of the main inhibitor
of the MAC, CD59, are reduced [5,6]. These histological
and biochemical findings in human beings open the
question whether complement activation and formation
of the MAC, in particular, are involved in the develop-
ment of tau pathology.
To test this hypothesis we crossed human mutant

P301L tau transgenic mice (line JNLP3, herein called
‘tau transgenic’, a model for a genetic form of a pure
tauopathy [7]; all described mouse experiments have
been approved by the Palo Alto Veterans Hospital Insti-
tutional Review Board for Animal Experiments) with
transgenic mice overexpressing a soluble form of the
murine complement receptor 1-related gene/protein y
(sCrry) [8] (Figure 1A). Tau transgenic (n = 13) and
double-transgenic tau/sCrry mice (n = 17) were aged
until the first mice started to present with the described
lack of hind limb splay or weight loss in this line [7].
The symptoms developed, however, only in very few
mice and only after 15 to 20 months, which was much
slower and later in life than reported for the original line

on a mixed genetic background. Mice were sacrificed
and 30 μm floating cryotome brain sections were stained
according to the mouse-on-mouse protocol (Vector
Labs) with the phospho-tau specific antibody AT8
(0.5 μg/ml, mouse monoclonal antibody; Pierce Thermo
Scientific). After developing with immunoperoxidase
and diaminobenzidine, the number of AT8-positive cell
bodies was counted blindly by two independent obser-
vers using light microscopy. AT8 immunoreactivity was
observed in the neocortex, deep cerebellar nuclei, and,
most prominently, brainstem but only in about one-
third of all mice (Figure 1B). Despite this lack of consist-
ent penetration of tau pathology, the proportion of mice
that developed tau pathology in brainstem was signifi-
cantly higher in tau transgenic mice (6/13) compared
with the complement-inhibited tau/sCrry transgenic
mice (2/17) (Figure 1C; two-tailed Fisher’s exact test
P = 0.049). An increased inter-mouse variability of tau
pathology has been described previously for the JNLP3
line after crossing it for several generations onto the
C57BL/6 background [9]. Here, tau and tau/sCrry

Figure 1 Abnormal tau phosphorylation is reduced in genetically complement-inhibited P301L tau transgenic mice. A, Simplified
illustration of activation of the complement cascade in mice and its hypothetical effect on tau phosphorylation in the brain. Spontaneous
(alternative pathway) or antibody-mediated (classical pathway) activation can initiate the complement cascade in the aging brain and if
insufficiently controlled by inhibitory proteins (for example, Crry on C3 convertases or CD59a in the terminal pathway in mice) this can lead to
the formation of a self-integrating membrane pore formed by C5b-9, also known as the membrane attack complex (MAC). The MAC disrupts
cellular homeostasis by sublytic or lytic mechanisms potentially leading to activation of kinases, which could contribute to phosphorylation of tau
protein. B, Examples of high and low tau pathology in various brain regions of 15 to 20 months aged P301L tau or P301L tau/sCrry transgenic
mice, respectively, as detected by immunoreactivity of phospho-tau specific antibody AT8. C, Number of AT8-positive cells in the brainstem of 15
to 20 months aged tau (n = 13) and tau/sCrry (n = 17) transgenic mice. Each symbol indicates the mean from 5 to 6 sections per mouse (solid
line is the group mean). The proportion of mice that developed tau pathology above the overall mean (dashed line) was significantly higher in
tau mice than in the complement-inhibited tau/sCrry transgenic mice (2×2 contingency table, two-tailed Fisher’s exact test). D, Immunoreactivity
for microglia marker CD68 in the brainstem of the two mice shown in B. E, Average number of AT8-positive cells in the brainstem plotted against
% area of CD68 immunoreactivity in the same brain area. Linear regression with trend line (solid line) and 95% confidence intervals (C.I., dashed
lines) are indicated; r2 as goodness-of-fit is significant (95% C.I. for the slope and P = 0.0001, two-tailed F test). Scale bar, 100 μm.
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transgenic mice had a mixed background with at least
70% calculated contribution of the C57BL/6 J background.
Neuroinflammation was quantified by relative staining in-
tensity of microglial marker CD68 (diluted 1:50, FA-11;
Serotec) in the same brain region. CD68 staining intensity
correlated highly with the abundance of AT8-positive cells
(Figure 1D,E). Together, this points to an involvement of
innate immune pathways and in particular the comple-
ment system in tau pathology.
Insertion of the MAC into the cell membrane in mice

is tightly controlled by CD59a in mice and in human
beings by CD59 [10] (Figure 1A). A lack thereof leaves
cells more susceptible to spontaneous and induced attack
by the MAC [10,11]. To test the effect of CD59a-
deficiency on tau phosphorylation in the brain, Cd59a−/−
mice (n = 5) [11] and wild-type littermates (n = 3) aged
4.5 months were injected stereotaxically with an adeno-
associated virus (AAV2 serotype) encoding human P301L
mutant tau in the right hippocampus and with an AAV2
encoding green fluorescent protein (GFP, internal control)
in the left hippocampus. Two microliters of each AAV2
(tau or GFP; 8 × 1012 vg/ml [12]) were injected with a
10 μl Hamilton syringe for 2 min at a rate of 1 μl/min in a
nanoinjector system. The needle was allowed to remain in
the brain for an additional 2 min. The coordinates were
anterior/posterior from bregma −2.0 mm, lateral +/−
1.5 mm, and dorsal/ventral 1.4 mm. After 5 months, mice
were sacrificed and prepared for histological analysis as
described previously. We observed a strong cytoplasmic
and neuritic GFP signal in the granular layer of AAV2-
GFP injected hippocampi of wild-type and Cd59−/− mice,

consistent with robust expression of GFP and efficient
transduction by AAV2. Occasionally, GFP-positive neur-
ites were also present in the contralateral hemisphere
(Figure 2A). The hippocampus of Cd59a−/− mice
expressing human P301L mutant tau had significantly
higher levels of AT8-positive cells than the respective
hippocampus of their wild-type littermates (Figure 2A,B;
P = 0.036, Mann–Whitney U test). AT8 immunoreac-
tivity was detected in neuronal cell bodies, neurites, and
axons in the CA2 and CA3 regions of the tau-injected side
(Figure 2A). Relative staining intensity of microglial mar-
ker CD68 did not correlate with immunoreactivity for tau
phosphorylation (Figure 3A,B). Tau phosphorylation was,
however, accompanied by significant reduction of hip-
pocampal immunoreactivity for markers of neuronal
(NeuN and microtubule-associated protein 2, MAP-2;
both antibodies at 1:500, Millipore) and synaptic integ-
rity (synaptophysin, 1:500, Millipore) (Figure 3C-H;
ANOVA and post-hoc Tukey-Kramer test). In conclu-
sion, lack of CD59a promotes abnormal tau phosphoryl-
ation and loss of neuronal and synaptic integrity in mouse
brains producing human P301L mutant tau pointing to an
active role of the terminal complement pathway in tau
pathology.
Earlier studies in mouse models of tauopathies reported

a strong link between microglia activation and devel-
opment of tau pathology [13-17] or vice versa [18].
Whereas some identified this link after administration
of an exogenous trigger of inflammation [14-16], we
observed a significant correlation between microglial
activation and the number of AT8-positive cells in tau

Figure 2 Lack of CD59a promotes abnormal tau phosphorylation, which is accompanied by neuronal and synaptic degeneration.
A, Immunoreactivity of AT8 phosphorylated tau in the granular cell layer of the CA2/3 region of Cd59a−/− mice (n = 5) and wild-type (wt)
littermate controls (n = 3) 5 months after intrahippocampal injection of adeno-associated virus (AAV2) encoding human P301L mutant tau
(arrowheads indicates needle track). Contralateral hippocampus was injected with AAV2 encoding green fluorescent protein (AAV2-GFP), resulting
in cytoplasmic and neuritic distribution of GFP. Occasionally, GFP-positive neuritis can also be observed in the AAV2-P301L tau-injected
hemisphere. B, Number of AT8-positive cell bodies in the entire AAV2-P301L tau-injected hippocampus in Cd59a−/− mice and wild-type
littermate controls. Each symbol indicates the mean number of 3 to 4 sections per mouse. Significance was calculated by Mann–Whitney U test;
*P ≤ 0.05. Scale bar, 100 μm.
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transgenic mice in the absence of exogenous stimuli
(Figure 1D,E), which is consistent with findings in the
brains of AD patients [19].
A growing number of studies show that the comple-

ment system probably has multiple functions in normal
and injured brain and this may be relevant for AD [2,3].
For instance, overexpression of sCrry or ablating C3
in APP transgenic mouse models of AD accelerated for-
mation of amyloid-β plaques and neurodegeneration
[20,21]. This apparently protective effector function of the
central component of the complement cascade may in-
volve the opsonization of plaques followed by clearance of
amyloid (Figure 1A). In contrast, full activation of the
complement system and the terminal or lytic pathway
can lead to formation of the MAC with possibly det-
rimental consequences. If not properly controlled by

CD59, the MAC can generate differently sized (lytic and
sublytic) pores in the cell membrane. Such pores then lead
to increased Ca2+ influx, which may trigger depolarization
of the membrane and activation of kinases in the cell [22].
Thus, full complement activation involving the ter-
minal pathway and MAC formation may be upstream
in the activation of kinases, such as MAPK, PKC, JNK,
or PI3K/AKT, which have been implicated in the
regulation of tau phosphorylation. Cellular and in vivo
experiments also demonstrate that MAC formation in
neurons can induce seizures and excitotoxicity, which
promote neurodegeneration [23]. Excitotoxicity and
seizures have also been proposed to contribute to
cognitive decline in AD mouse models and patients.
Interestingly, the absence of tau protects APP trans-
genic and wild-type mice from excitotoxic insults and

Figure 3 Neuronal and synaptic degeneration in AAV2-P301L tau-injected hemisphere. Microglial marker (A,B, CD68), neuronal
(C,D, NeuN), dendritic (E,F, MAP-2), and synaptic (G,H, synaptophysin) integrity was quantified based on mean % area of immunoreactivity (IR, for
example, neuropil occupied for the respective markers) (B,F,H) or IR alone (D). MAP-2 was quantified lateral to injection site to avoid overlap with
the GFP signal. Each symbol indicates the mean number of 3 to 4 sections per mouse. Significance was calculated by ANOVA and post-hoc
Tukey-Kramer test; *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. Scale bar, 100 μm (A), 200 μm (B), and 50 μm (D,E).
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prevents behavioral deficits [24]. Whether MAC forma-
tion and excitotoxicity are linked through tau would need
to be studied in more detail.
Neuropathological analyses in human beings and our

in vivo data do indeed point to an active role of the ter-
minal complement pathway in the development of tau
pathology, a neuropathological hallmark of AD and
other tauopathies. Intriguingly, recent genome-wide as-
sociation studies identified independently genetic variants
of complement receptor 1 (CR1/CD35) and clusterin
to be associated with AD ([25], replicated by others:
www.alzgene.org). CR1/CD35 is one of the human func-
tional analogs of the murine Crry and clusterin, which is
also known as apolipoprotein J or complement lysis in-
hibitor, acts just one step upstream of CD59. It is interest-
ing that, out of all immune-function-related proteins, two
key regulators of the central component and the terminal
cascade seem to be genetically linked with AD. It remains
to be shown whether variants of genes coding for comple-
ment components or regulators are associated with other
tauopathies as well.
In summary, complement proteins are key compo-

nents of the innate immune system and have been impli-
cated in homeostasis as well as degeneration of the
human brain. Our data in two independent mouse models
with genetic alterations in complement regulatory pro-
teins support the hypothesis that the terminal pathway
has an active role in the development of tau pathology.
We propose that inhibition of the terminal pathway and,
more specifically, inhibition of the MAC may be beneficial
in tauopathies.
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