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DEFICIENT VALUES OF ENTIRE FUNCTIONS

AND THEIR DERIVATIVES

DAVID DRASIN, ZHANG GUANGHOU,

YANG LO AND ALLEN WEITSMAN1

Abstract. Let /(z) be entire and of finite order, /** be the nth derivative, and

A„(/) = D8(a,f<">), the sum of all deficient values of fi"\ The authors show that

A„(/) can be strictly increasing.

Let/(z) be entire of order p < oo, and for 0 < j < oo let

A,(/)=    S   8(a,fJ>),
\a\<<x>

where/(0) = /and/w is they'th derivative. Using the relation [4, p. 104] ~2.8(a,f) <

5(0, /'), it is clear that Aj(f) is nondecreasing in 7 while àj(f) < 1 for ally. Professor

W. H. J. Fuchs [7, p. 167] recently asked if it is possible that A^/) be strictly

increasing. In this paper we give an affirmative answer. More precisely, we have the

stronger

Theorem. Let cJk (J = 0, 1, 2, ... ; k = 1, 2, . . . , Ky, 1 < Kj < oo) be finite

complex numbers, with cjk ¥= cjk. (k # k'). Given | < p < oo, and an increasing

sequence {«,} of integers, there exists an entire function fiz) of order p, mean type,

such that

«(<>,/*>) >.0

for all j and k.

Recently, two of us [8] proved that if A = lim A//) = 1, then A,(/) = 1 for

j >70(/). In the example here A is considerably less than 1.

Our proof is based on N. Arakeylan's method [2] which produces entire func-

tions of finite order having an infinite set of deficient values. Here, we have a set of

deficient functions rather than numbers, but Arakelyan's method is sufficiently

flexible to adapt to this situation. The restriction p > \ is essential, since if p < \,

then Ay(/) = 0 for ally.
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1. Preliminary propositions.

Proposition 1 (Mergelyan [6, p. 125]). Let £: z = z(t), 0 < t < I, be a simple

rectifiable curve of length L, z(0) = a, z(l) — b. If d > 0 and 0 < e < 1, there exists

a polynomial P(z) such that

holds except in a d-neighborhood of £ and also2

\p{v=~b)\< cxp{{1 + M1 + id))eML/d)+A)    (|z ~bl>d)- (1-2)

Proposition 2 (Mergelyan [5, p. 61]). Let f(z) be analytic in the sector

|arg z| < a/2, let the number p satisfy the condition 0 < p < m/a, and e > 0, tj > 0

be any numbers. Then there exists an entire function G(z) with

|/(z) - G(z)\ < e exp(-|z|') (1.3)

in the sector |arg z| < a/2 — 17 and

k«|G<*)|<(l+ !■)•'*-'*{*+*     max     '" + loS+y {) 1      (1.4)
61   Wl      v ' [ o<t<kr+\   (1 + ty/V'-«)   J       v    '

in the whole plane; in (1.4) k is a constant depending on 17, K depends on e and tj, and

A/(/,/) = max|/(fe'*)|(|0| < a/2).

2. Proof of the theorem.

2.1. It is no loss of generality to assume n, = /.

Choose 0 < a < min(7r/p, 2tt — tt/o) and yJ (j = 0, 1, 2, ... ) such that

0 < y° < y1 < • • ■  < a/2,

and then, for each j, choose

T/<Yyi <yj2< ■ ■ ■ <yJKi<yJ+l-

Then we let

yj.-k = -y,*,     0 = 0,1,2,... ; k = 1,2,..., Kj),

aJk = min{!(-r>+1 - yJk), \{yJk - yJk-\)} = %*>

where

yJki^ = yJ+\     Yjo-Y7     0 = 0,1,2,...).

Put

£,,„ = {re": 2" < r < 2" + I, |0 - yJk\ < (1/16)«,,},

EjL = {«": (15/16)2" < r < (17/16)2"+1, |0 - YjJ < (1/8)«*},

Ejkn = {*"= (7/8)2" < r < (9/8)2"+1, \9 - yjk\ < (1/4)«,,}.

We will construct an entire function fiz) which satisfies

|/(z)| < ^p{A(\z\" + 1)} (2.1)

2Here and henceforth A denotes a generic positive absolute constant.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



DEFICIENT VALUES OF ENTIRE FUNCTIONS 609

for all z and, for a positive sequence zjk to be determined by (2.5),

l/W - icpJßW < 2 txpi-A^W} (2.2)

for

* e EJkn        (n > njk, n even),

2 G £,!-m     (" > «/*' " odd)-

The w* are chosen precisely in (2.15) below. Let i/ be the set of (J, k, ri) which

appear in (2.3) and denote a typical element (J, k, ri) of H by h.

We see that/(z) is our required function. In fact, when z G Eh, a disk with center

at z and radius 10~2a*2" is contained completely in EJkn = E¿. According to

Cauchy's inequality and (2.2),

„ expf->ie,J|z| - (10)-2aft2nlP)

<2    10^! *'" (¿BE,),
(«,*2-y

i.e.

—    l-> -—^—— «42"' expire Jz|p)       (z G £.),
l/^z) - cJk\      (2 • Kty!) Jk        Fl    jtM/       V "'

where h = (/, A:, ri) G //. On noting from (2.1) that

T(r,^) = m(r,^) < «(/■,/) + m(r,f»/f) < A(r» + 1),

we obtain by integrating over (|z| = r) n £A

%*,/<») > ¿«^ > 0       0' = 0, 1, 2, ... ; A: = 1, 2, ... , *,).

2.2. We now construct a function Q(X,, z). When h = (J, k, ri) G H, let Ch be the

arc of the circle \z\ = (9/8)2"+1 linking dEf to the point z = -(9/8)2"+1 which

does not meet the positive axis, and let Dh be the (2"-5a*)-neighborhood of

Ch u dEh2. If f is an arbitrary point of dEk, we may connect f to z = -(9/8)2"+1

by a curve contained in CA u 3£A2. This curve has length less than A • 2", so

Proposition 1 produces a rational function Q(£, z) with a unique pole at

-(9/8)2"+1 such that

| CU, z) - 1/ (| - z)\ < T,,        (f G 9£A2, z G />„). (2.4)

Thus let

£Jk = «pM/«yJ (2-5)

so that e,-t > 0 and

2 *ß = 2 exp(-^/«,J < 2 a,*/^ < v4.
./,* j,k j,k

Then we choose

V* = Vjkn = «^lr^+2-+W expi-4^^2""},
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ßtt, *) < a^12-°n+2"+2-') exp{-4p+1e/Vt • 2""}

?2

and observe that

{1 + log(l + A/r,h2"aJk)} cxp(A/aJk) < A4"eJk2^ txp{A/ajk) <A4"eJ/2

(« > nJk).

Further, recall the choice of a from the beginning of §2.1. Then if |arg z\ < a/2, it

is clear that \z - (-(9/8)2"+1)| >A2n+i. With these choices of e and tja in (1.2)

and (2.4) we have

1

(f G ■bEl, z € Dh),   (2.6)

| ß(J, z)\ < exp(A4>e]k/22'»>)       (|arg z\ < a/2, £ G dE2). (2.7)

2.3. The next proposition is essentially in [1], [2, p. 96].

Proposition 3. Let 0 < a < min(7r/p, 2ir — n/p), yJk and ajk be as in §2.1, and

set

>P(z) = exp(-e,*z>)        (|arg z - yJk\ < fa*). (2.8)

Then there exists a function w(z) holomorphic in |arg z\ < a/2 such that

|<o(z)| < exp(l + |z|")        (|argz| < a/2) (2.9)

and for h = (J, k, ri) G H

A < |ío(z)/^(z)| <^1        (z G U   F2). (2.10)

Proposition 4. We can choose njk so that if

g(z) = (Cj/ß)zJ       (z G E2, n > njk), (2.11)

there there exists a function F(z) analytic in |arg z\ < a/2 such that

\F(z)\ < exp A(\z\" + 1)        (|arg z] < a/2) (2.12)

W») - (CJk/j\)zJ\ < \cxp(-eJkz")\        (z G Eh\ n > njk). (2.13)

Proof. Let w(z) be the function obtained in Proposition 3. Then if h = (Jkri) G

i/, and

27T/ Ariut'3i#w(£)

Proposition 3 shows that gA is analytic in |arg z| < a/2. Using (2.6), (2.8), (2.10)

and (2.11), we can obtain

gkfz)-±(        g«>*

<>*/   M |?K«,*'exp{-4"+V"P + ^lflP} l«l
/8£2 -        - -- —    - 2W+2»+tt

< ^|c,,|a^exp(-£,, • 2"") • 2-       (z « D,1)- (2.14)
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Choose njk so that

«¿'exp(-£,A • 2"") < exp{- (eJk/2) ■ 2""}       (n > nJk) (2.15)

and that

^2 \cjk\2~" < l- (2-16)
H

The integral in the left-hand side of (2.14) is given by

_Lf    sim   .fo «»«.j?. (
2ot^2W(£)(£-z)       [g(z)/co(z)     iîzGE2.2t

When z£f»2u A.1, we nave 2"" ' < |z| < 2"+2, so that

\gh{z)\<A\cjk\2^+2^txp(A4^22^)-txp{tJk2n'')2n

< |c,,|2-"exp(^^/22"") (2.18)

by (2.7) and Proposition 3.

Consequently, from (2.14), (2.16), (2.17) and (2.18),

H

is absolutely convergent for every compact region in the angle |arg z\ < a/2 and

G(z) is analytic in this angle. Moreover, from (2.14), (2.17) and (2.18), we have

|G(z)|<2l^)l<exp^(l + |zn)

n ^      c*    zJ
G(z) - < 1       (z G E¿).

ß  «(z)

Thus if F(z) = G(z)u(z), then F(z) satisfies the conditions of Proposition 4.

2.4. In order to complete the proof of the theorem, we apply Proposition 2. There

exists an entire function/(z) such that

|/(z) - F(z)\ < exp(-|z|>) (2.19)

in the angle |arg z\ < a/2 — tj and

log|/WK(l + ,r/(2->(^^     max     <> + ^M(t,F)\

in the whole plane.

On noting (2.12) and

t"
max     -—- < Akf

0<t<kr+l  (1   + f\»/<2»-«) (1   + ry/(2*-a)

we have (2.1). In every Eh\ we obtain from (2.13) and (2.19)

l/W - (^/ytyi < *-rP + i*w - fez/iM
< e~rP + txp(-AeJkr") < 2 <txp{-AeJkr>).

Thus (2.2) is satisfied and so fiz) is our desired function.
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