
Definability and Computability for PRSPDL

Philippe Balbiani 1

Institut de recherche en informatique de Toulouse
CNRS — Université de Toulouse

Tinko Tinchev 2

Department of Mathematical Logic and Applications
Sofia University

Abstract

PRSPDL is a variant of PDL with parallel composition. In the Kripke models
in which PRSPDL-formulas are evaluated, states have an internal structure. We
devote this paper to the definability issue of several classes of frames by means of the
language of PRSPDL and to the computability issue of PRSPDL-validity for various
fragments of the PRSPDL-language and for various classes of PRSPDL-frames.

Keywords: Propositional dynamic logic; parallel composition; definability;
computability.

1 Introduction

Propositional dynamic logic (PDL) is a non-classical logic designed for rea-
soning about the behaviour of programs [11,16,19]. Its syntax is based on the
idea of associating with each program α of some programming language the
modal operator [α], formulas [α]φ being read “every execution of α from the
present state leads to a state bearing the formula φ”. Syntactically, PDL is a
modal logic with a structure in the set of modal operators: composition (α;β)
of programs α and β corresponds to the composition of the accessibility rela-
tions R(α) and R(β); test φ? on formula φ corresponds to the partial identity
relation in the subsets of the Kripke models in which the formula φ is true; iter-
ation α? corresponds to the reflexive and transitive closure of R(α). A number

1 Address: Institut de recherche en informatique de Toulouse, CNRS — Université de
Toulouse, 118 route de Narbonne, 31062 Toulouse Cedex 9, FRANCE; balbiani@irit.fr.
Partially supported by the “French National Research Agency” (contract ANR-11-BS02-011)
and the “Bulgarian National Science Fund” (contract DID02/32/2009).
2 Address: Department of Mathematical Logic and Applications, Sofia University, Blvd
James Bouchier 5, 1126 Sofia, Bulgaria; tinko@fmi.uni-sofia.bg. Partially supported by the
“Centre international de mathématiques et d’informatique” (contract ANR-11-LABX-0040-
CIMI within the program ANR-11-IDEX-0002-02).



Balbiani and Tinchev 17

of variants have been obtained by extending or restricting the syntax or the
semantics of PDL [3,4,5,9,10,15,17,21,22].

The problem with most of these variants is that the states of the Kripke
models in which formulas are evaluated have no internal structure. However,
in the field of non-classical logics, it seems natural to propose formalisms with
which one can cope with structured data such as heaps, pointers, etc. In
addition to the standard Boolean constructs, separation logics are based on the
formula construct (· ◦ ·) of separating conjunction, formulas (φ ◦ ψ) being read
“the memory model can be split into two disjoint models respectively satisfying
φ and ψ”, and the formula construct (·–◦·) of adjoint implication, formulas (φ–
◦ψ) being read “if the memory model is extended with a model satisfying φ,
then the resulting model satisfies ψ” [7,8,14,25]. In order to illustrate the
significance of these constructs, one may consider the set of all words on an
alphabet and its associated operation of concatenation, the set of all binary
trees and its associated operation of join and the set of all heaps (partially
defined functions mapping locations to values) and its associated operation of
union (undefined when domains overlap).

PRSPDL, the propositional dynamic logic with storing, recovering and
parallel composition introduced by Benevides et al. [5], is a separation-based
non-classical logic too. Benevides et al. [5] extend the semantics of PDL by
considering Kripke models structured by means of a function ∗: the state x is
the result of applying the function ∗ to the states y, z iff x can be separated
in a first part y and a second part z. They extend the syntax of PDL as well
by adding the program construct (· ‖ ·) of parallel composition, the storing
programs s1 and s2 and the recovering programs r1 and r2. In this variant,
parallel composition (α ‖ β) corresponds to the fork R(α)∇R(β) of R(α) and
R(β) defined as follows:

• whenever x and y are related via R(α) and z and t are related via R(β), x∗z
and y ∗ t are related via R(α)∇R(β).

About s1 and s2, x is related, by s1, to the states x∗z and, by s2, to the states
z ∗ x. As for r1 and r2, the states x ∗ z, by r1, and the states z ∗ x, by r2, are
related to x. Hence, s1, s2, r1 and r2 enable us to view states as ordered pairs
of states. The function ∗ considered in [5] has its origin in the addition of an
extra binary operation of fork denoted ∇ in relation algebras [12,13].

It appears that (· ‖ ·) can be eliminated from the language of PRSPDL
extended with (· ∩ ·). To see this, it suffices to consider the equivalence be-
tween (α ‖ β) and ((r1;α; s1) ∩ (r2;β; s2)) in all Kripke models structured
by means of a function ∗ as above. On one hand, the decidability of PDL
with intersection [9] seems to indicate that PRSPDL-validity is decidable as
well. The problem is that the language of PRSPDL contains two programs,
namely r1 and r2, interpreted in [5] by deterministic binary relations. Hence,
Danecki’s result cannot be directly applied. On the other hand, the undecid-
ability of PDL with intersection and at least two program variables interpreted
by deterministic binary relations [18] seems to indicate that PRSPDL-validity



18 Definability and Computability for PRSPDL

is undecidable as well. The problem is that (· ∩ ·) cannot be defined in the
language of PRSPDL. Thus, Harel’s result cannot be directly applied.

Nevertheless, following the line of reasoning suggested in [18], it is possi-
ble to reduce the Σ1

1-hard N × N recurring tiling problem to satisfiability of
PRSPDL-formulas when r1 and r2 are interpreted by deterministic binary re-
lations as in [5]. Hence, PRSPDL-validity is Π1

1-hard. The section-by-section
breakdown of this article is as follows. In Section 2, we present the syntax and
semantics of PRSPDL. The aim of Section 3 is to investigate the definabil-
ity of several classes of frames. In Section 4, we demonstrate that neither the
program construct (· ‖ ·), nor the storing programs s1 and s2, nor the recov-
ering programs r1 and r2 can be eliminated from the language of PRSPDL.
For various fragments of the PRSPDL-language and for various classes of
PRSPDL-frames, we will devote Sections 5 and 6 to the computability of
PRSPDL-validity.

2 Syntax and semantics

2.1 Syntax

Programs and formulas are inductively defined as follows:

• α ::= a | (α;β) | φ? | α? | (α ‖ β) | s1 | s2 | r1 | r2;

• φ ::= p | ⊥ | ¬φ | (φ ∨ ψ) | [α]φ;

where a ranges over a countably infinite set of program variables and p ranges
over a countably infinite set of propositional variables. The other Boolean
constructs for formulas are defined as usual. The modal construct 〈·〉· for
formulas is defined as follows:

• 〈α〉φ ::= ¬[α]¬φ.

We will follow the standard rules for omission of the parentheses.

Example 2.1 If α, β are programs and φ, ψ are formulas, then 〈α ‖ β〉φ →
〈r1;α; s1〉(φ ∧ ψ) ∨ 〈r2;β; s2〉(φ ∧ ¬ψ) is a formula as well.

Let the level of an expression exp (either a program, or a formula), in
symbols lev(exp), be the number of occurrences of the program construct (· ‖ ·)
of parallel composition in exp.

2.2 Frames

A frame is a 3-tuple F = (W,R, ∗) where

• W is a nonempty set of states,

• R is a function from the set of all program variables into the set of all binary
relations between states,

• ∗ is a function from the set of all pairs of states into the set of all sets of
states.

We will use x, y, . . . for states. In F , W is to be regarded as the set of all possible
states in a computation process, R associates with each program variable a the



Balbiani and Tinchev 19

binary relation R(a) on W with xR(a)y meaning “y can be reached from x by
performing program variable a” and ∗ associates with each pair (y, z) of states
the subset y ∗ z of W with x ∈ y ∗ z meaning “x can be obtained as a result
of the combination of y and z”. We shall say that a frame F = (W,R, ∗) is
functional iff for all x, y, z ∈ W , if xR(a)y and xR(a)z, then y = z for every
program variable a. We will also be interested in the following types of frames:

• ∗-distributive frames, i.e. frames F = (W,R, ∗) such that for all x, y, z, t ∈
W , (x ∗ y) ∩ (z ∗ t) = (x ∗ t) ∩ (z ∗ y),

• ∗-separated frames, i.e. frames F = (W,R, ∗) such that for all x, y, z, t ∈W ,
if (x ∗ y) ∩ (z ∗ t) 6= ∅, then x = z and y = t,

• ∗-deterministic frames, i.e. frames F = (W,R, ∗) such that for all x, y, z, t ∈
W , if x ∈ z ∗ t and y ∈ z ∗ t, then x = y,

• ∗-serial frames, i.e. frames F = (W,R, ∗) such that for all x, y ∈W , x∗y 6= ∅.
Remark that every ∗-separated frame is ∗-distributive. Moreover, each frame
considered in [5] is ∗-separated and ∗-deterministic. In order to illustrate the
significance of these types of frames, we present the following:

Example 2.2 Let W1 be the set of all words on an alphabet and ∗1 be the
operation of concatenation. The structure F1 = (W1, ∗1) is not ∗-distributive.
Nevertheless, it is ∗-deterministic and ∗-serial.

Let W2 be the set of all binary trees and ∗2 be the operation of join. The
structure F2 = (W2, ∗2) is ∗-separated, ∗-deterministic and ∗-serial.

Let W3 be the set of all heaps (partially defined functions mapping locations
to values) and ∗3 be the operation of union (undefined when domains overlap).
The structure F3 = (W3, ∗3) is neither ∗-distributive, nor ∗-serial. Nevertheless,
it is ∗-deterministic.

2.3 Models

A model on the frame F = (W,R, ∗) is a 4-tuple M = (W,R, ∗, V ) where

• V is a valuation on F , i.e. a function from the set of all propositional variables
into the set of all sets of states.

In M, V associates with each propositional variable p the subset V (p) of W
with x ∈ V (p) meaning “propositional variable p is true at x”. In a model
M = (W,R, ∗, V ), we inductively define the properties “y can be reached from
x by performing program α” (in symbols xRM(α)y) and “formula φ is true at
x” (in symbols x ∈ VM(φ)) as follows:

• xRM(a)y iff xR(a)y;

• xRM(α;β)y iff there exists z ∈W such that xRM(α)z and zRM(β)y;

• xRM(φ?)y iff x = y and y ∈ VM(φ);

• xRM(α?)y iff there exists n ∈ N and there exists z0, . . . , zn ∈ W such that
z0 = x, z0RM(α)z1, . . ., zn−1RM(α)zn and zn = y;

• xRM(α ‖ β)y iff there exists z, t, u, v ∈ W such that x ∈ z ∗ t, zRM(α)u,



20 Definability and Computability for PRSPDL

tRM(β)v and y ∈ u ∗ v;

• xRM(s1)y iff there exists z ∈W such that y ∈ x ∗ z;
• xRM(s2)y iff there exists z ∈W such that y ∈ z ∗ x;

• xRM(r1)y iff there exists z ∈W such that x ∈ y ∗ z;
• xRM(r2)y iff there exists z ∈W such that x ∈ z ∗ y;

• x ∈ VM(p) iff x ∈ V (p);

• x 6∈ VM(⊥);

• x ∈ VM(¬φ) iff x 6∈ VM(φ);

• x ∈ VM(φ ∨ ψ) iff either x ∈ VM(φ), or x ∈ VM(ψ);

• x ∈ VM([α]φ) iff for all y ∈W , if xRM(α)y, then y ∈ VM(φ).

As a result, x ∈ VM(〈α〉φ) iff there exists y ∈ W such that xRM(α)y and
y ∈ VM(φ). A formula φ is said to be true in the model M = (W,R, ∗, V ), in
symbols M |= φ, iff VM(φ) = W . We shall say that a formula φ is satisfied in
M iff VM(φ) 6= ∅. A formula φ is said to be valid in the frame F , in symbols
F |= φ, iff for all models M on F , M |= φ. We shall say that a formula φ is
satisfied in F iff there exists a modelM on F such that φ is satisfied inM. A
formula φ is said to be satisfied in a class C of frames iff there exists a frame
F in C such that φ is satisfied in F .

Example 2.3 The formula 〈α ‖ β〉φ→ 〈r1;α; s1〉(φ ∧ ψ) ∨ 〈r2;β; s2〉(φ ∧ ¬ψ)
considered in Example 2.1 is valid in every ∗-separated frame.

2.4 A decision problem

Let L be a fragment of the PRSPDL-language and C be a class of PRSPDL-
frames. The set of all L-formulas that are valid in every C-frame will be denoted
V AL(L, C). For various fragments L of the PRSPDL-language and for various
classes C of PRSPDL-frames, we will devote Sections 5 and 6 of this paper to
the computability of the following decision problem:

• input: an L-formula φ;

• output: determine whether φ is valid in every C-frame.

3 Definability

A class C of frames is said to be modally defined by a set Σ of formulas iff for
all frames F , F is in C iff F |= Σ. We shall say that a class of frames is modally
definable iff it is modally defined by a set of formulas. Obviously, the class of
all functional frames is modally defined by the formulas 〈a〉p → [a]p for every
program variable a. About the class of all ∗-distributive frames, the class of
all ∗-separated frames and the class of all ∗-deterministic frames, we have the
following:

Proposition 3.1 1) The class of all ∗-distributive frames is modally defined
by the formula 〈p? ‖ >?〉> ∧ 〈>? ‖ q?〉> → 〈p? ‖ q?〉>.



Balbiani and Tinchev 21

2) The class of all ∗-separated frames is modally defined by the formulas 〈p? ‖
>?〉> → [¬p? ‖ >?]⊥, 〈>? ‖ q?〉> → [>? ‖ ¬q?]⊥.

3) The class of all ∗-deterministic frames is modally defined by the formula
p→ [>? ‖ >?]p.

Proof. We only give the proof of 1), leaving the proof of 2) and 3) to the
reader. Let F = (W,R, ∗) be a frame.
Suppose F is ∗-distributive. If F 6|= 〈p? ‖ >?〉> ∧ 〈>? ‖ q?〉> → 〈p? ‖ q?〉>,
then there exists a model M = (W,R, ∗, V ) on F and there exists x ∈W such
that x 6∈ VM(〈p? ‖ >?〉> ∧ 〈>? ‖ q?〉> → 〈p? ‖ q?〉>). Hence, x ∈ VM(〈p? ‖
>?〉>), x ∈ VM(〈>? ‖ q?〉>) and x 6∈ VM(〈p? ‖ q?〉>). Thus, there exists
y, z, s, t ∈ W such that x ∈ y ∗ z, y ∈ V (p), x ∈ s ∗ t and t ∈ V (q). Therefore,
x ∈ (y∗z)∩(s∗t). Since F is ∗-distributive, then (y∗z)∩(s∗t) = (y∗t)∩(s∗z).
Since x ∈ (y ∗ z) ∩ (s ∗ t), then x ∈ (y ∗ t) ∩ (s ∗ z). Consequently, x ∈ y ∗ t.
Since y ∈ V (p) and t ∈ V (q), then x ∈ VM(〈p? ‖ q?〉>): a contradiction.
Suppose F |= 〈p? ‖ >?〉>∧〈>? ‖ q?〉> → 〈p? ‖ q?〉>. If F is not ∗-distributive,
then there exists y, z, s, t ∈W such that (y ∗z)∩ (s∗ t) 6= (y ∗ t)∩ (s∗z). Hence,
there exists x ∈W such that either x ∈ (y ∗ z)∩ (s ∗ t) and x 6∈ (y ∗ t)∩ (s ∗ z),
or x ∈ (y ∗ t) ∩ (s ∗ z) and x 6∈ (y ∗ z) ∩ (s ∗ t). Without loss of generality,
assume x ∈ (y ∗ z) ∩ (s ∗ t) and x 6∈ (y ∗ t) ∩ (s ∗ z). Thus, x ∈ y ∗ z,
x ∈ s ∗ t and either x 6∈ y ∗ t, or x 6∈ s ∗ z. Without loss of generality, assume
x 6∈ y ∗ t. Let V be a valuation on F such that V (p) = {y} and V (q) = {t}.
Let M = (W,R, ∗, V ). Since F |= 〈p? ‖ >?〉> ∧ 〈>? ‖ q?〉> → 〈p? ‖ q?〉>,
then x ∈ VM(〈p? ‖ >?〉> ∧ 〈>? ‖ q?〉> → 〈p? ‖ q?〉>). Therefore, if x ∈
VM(〈p? ‖ >?〉>) and x ∈ VM(〈>? ‖ q?〉>), then x ∈ VM(〈p? ‖ q?〉>) Since
x ∈ y ∗ z, V (p) = {y}, x ∈ s ∗ t and V (q) = {t}, then x ∈ VM(〈p? ‖ >?〉>) and
x ∈ VM(〈>? ‖ q?〉>). Since if x ∈ VM(〈p? ‖ >?〉>) and x ∈ VM(〈>? ‖ q?〉>),
then x ∈ VM(〈p? ‖ q?〉>), then x ∈ VM(〈p? ‖ q?〉>). Consequently, there
exists u, v ∈W such that x ∈ u ∗ v, u ∈ V (p) and v ∈ V (q). Since V (p) = {y}
and V (q) = {t}, then u = y and v = t. Since x ∈ u ∗ v, then x ∈ y ∗ t: a
contradiction. 2

As for the class of all ∗-serial frames, we have the following:

Proposition 3.2 The class of all ∗-serial frames is not modally definable.

Proof. Suppose there exists a set Σ of formulas that modally defines the class
of all ∗-serial frames. Let F = (W,R, ∗) and F ′ = (W ′, R′, ∗′) be the frames
defined as follows:

• W = {x1, x2},
• R is the empty function,

• x1 ∗ x1 = {x1}, x2 ∗ x2 = {x2} and otherwise ∗ is the empty function,

• W ′ = {x′},
• R′ is the empty function,

• x′ ∗′ x′ = {x′}.



22 Definability and Computability for PRSPDL

Obviously, F is not ∗-serial and F ′ is ∗-serial. Since Σ modally defines the
class of all ∗-serial frames, then F 6|= Σ and F ′ |= Σ. Hence, there exists
a formula φ ∈ Σ such that F 6|= φ. Since F ′ |= Σ, then F ′ |= φ. Since
F 6|= φ, then there exists a model M = (W,R, ∗, V ) on F such that either
x1 6∈ VM(φ), or x2 6∈ VM(φ). Without loss of generality, assume x1 6∈ VM(φ).
Let M′ = (W ′, R′, ∗′, V ′) be the model on F ′ defined as follows:

• V ′(p) = if x1 ∈ V (p), then {x′}, else ∅ for every propositional variable p.

Since F ′ |= φ, then x′ ∈ VM′(φ).

Claim 3.3 Let α be a program and ψ be a formula from the language of
PRSPDL. Then,

• not x1RM(α)x2,

• x1RM(α)x1 iff x′RM′(α)x′,

• x1 ∈ VM(ψ) iff x′ ∈ VM′(ψ).

Proof. By induction on α and ψ. Left to the reader. 2

Since x1 6∈ VM(φ), then x′ 6∈ VM′(φ): a contradiction. 2

4 Expressivity

In the class of all ∗-separated frames, remark that the formula construct of
separating conjunction (· ◦ ·) and the formula construct of adjoint implication
(·–◦·) evoked in the introduction can be defined in the language of PRSPDL
as follows:

• (φ ◦ ψ) ::= 〈r1〉φ ∧ 〈r2〉ψ,

• (φ–◦ψ) ::= [s2](〈r1〉φ→ ψ).

Here are results proving that the program construct (· ‖ ·) of parallel compo-
sition, the storing programs s1 and s2 and the recovering programs r1 and r2
cannot be eliminated from the language of PRSPDL.

Proposition 4.1 For all ‖-free formulas φ from the language of PRSPDL,
〈a ‖ a〉> ↔ φ is not valid in the class of all ∗-separated ∗-deterministic frames
for every program variable a.

Proof. Suppose there exists a ‖-free formula φ from the language of PRSPDL
such that 〈a ‖ a〉> ↔ φ is valid in the class of all ∗-separated ∗-deterministic
frames for some program variable a. Without loss of generality, assume a is
the only program variable in φ and φ contains no propositional variable. Let
F = (W,R, ∗) and F ′ = (W ′, R′, ∗′) be the ∗-separated ∗-deterministic frames
defined as follows:

• W = {x, y, z, t, u},
• R(a) = {(y, z), (y, t)} and otherwise R is the empty function,

• y ∗ y = {x}, z ∗ t = {u} and otherwise ∗ is the empty function,

• W ′ = {x′, y′, z′1, z′2, t′1, t′2, u′1, u′2},



Balbiani and Tinchev 23

• R′(a) = {(y′, z′1), (y′, t′2)} and otherwise R′ is the empty function,

• y′ ∗′ y′ = {x′}, z′1 ∗′ t′1 = {u′1}, z′2 ∗′ t′2 = {u′2} and otherwise ∗′ is the empty
function.

Since 〈a ‖ a〉> ↔ φ is valid in the class of all ∗-separated ∗-deterministic
frames, then F |= 〈a ‖ a〉> ↔ φ and F ′ |= 〈a ‖ a〉> ↔ φ. Let
Z = {(x, x′), (y, y′), (z, z′1), (z, z′2), (t, t′1), (t, t′2), (u, u′1), (u, u′2)}. Let M =
(W,R, ∗, V ) be a model on F and M′ = (W ′, R′, ∗′, V ′) be the model on F ′
corresponding to it with respect to Z. Obviously, x ∈ VM(〈a ‖ a〉>) and
x′ 6∈ VM′(〈a ‖ a〉>). Since F |= 〈a ‖ a〉> ↔ φ and F ′ |= 〈a ‖ a〉> ↔ φ, then
x ∈ VM(〈a ‖ a〉> ↔ φ) and x′ ∈ VM′(〈a ‖ a〉> ↔ φ). Since x ∈ VM(〈a ‖ a〉>)
and x′ 6∈ VM′(〈a ‖ a〉>), then x ∈ VM(φ) and x′ 6∈ VM′(φ).

Claim 4.2 Let α be a ‖-free program and ψ be a ‖-free formula from the lan-
guage of PRSPDL. For all v ∈W and for all v′ ∈W ′, if vZv′, then

• for all w ∈ W , if vRM(α)w, then there exists w′ ∈ W ′ such that wZw′ and
v′RM′(α)w′,

• for all w′ ∈ W ′, if v′RM′(α)w′, then there exists w ∈ W such that wZw′

and vRM(α)w,

• v ∈ VM(ψ) iff v′ ∈ VM′(ψ).

Proof. By induction on α and ψ. Left to the reader. 2

Since xZx′ and x ∈ VM(φ), then x′ ∈ VM′(φ): a contradiction. 2

Proposition 4.3 For all storing-free formulas φ from the language of
PRSPDL, 〈si〉> ↔ φ is not valid in the class of all functional ∗-separated
∗-deterministic frames for every i ∈ {1, 2}.

Proof. Suppose there exists a storing-free formula φ from the language of
PRSPDL such that 〈si〉> ↔ φ is valid in the class of all functional ∗-separated
∗-deterministic frames for some i ∈ {1, 2}. Without loss of generality, assume
φ contains neither program variable, nor propositional variable. Moreover, we
can assume i = 1. Let F = (W,R, ∗) and F ′ = (W ′, R′, ∗′) be the functional
∗-separated ∗-deterministic frames defined as follows:

• W = {x, y},
• R is the empty function,

• x ∗ x = {y} and otherwise ∗ is the empty function,

• W ′ = {x′, y′},
• R′ is the empty function,

• ∗′ is the empty function.

Since 〈s1〉> ↔ φ is valid in the class of all functional ∗-separated ∗-deterministic
frames, then F |= 〈s1〉> ↔ φ and F ′ |= 〈s1〉> ↔ φ. LetM = (W,R, ∗, V ) be a
model on F . Let M′ = (W ′, R′, ∗′, V ′) be the model on F ′ defined as follows:

• V ′(p) = if x ∈ V (p), then {x′}, else ∅ for every propositional variable p.



24 Definability and Computability for PRSPDL

Obviously, x ∈ VM(〈s1〉>) and x′ 6∈ VM′(〈s1〉>). Since F |= 〈s1〉> ↔ φ and
F ′ |= 〈s1〉> ↔ φ, then x ∈ VM(〈s1〉> ↔ φ) and x′ ∈ VM′(〈s1〉> ↔ φ). Since
x ∈ VM(〈s1〉>) and x′ 6∈ VM′(〈s1〉>), then x ∈ VM(φ) and x′ 6∈ VM′(φ).

Claim 4.4 Let α be a storing-free program and ψ be a storing-free formula
from the language of PRSPDL. Then,

• not xRM(α)y,

• xRM(α)x iff x′RM′(α)x′,

• x ∈ VM(ψ) iff x′ ∈ VM′(ψ).

Proof. By induction on α and ψ. Left to the reader. 2

Since x ∈ VM(φ), then x′ ∈ VM′(φ): a contradiction. 2

Proposition 4.5 For all recovering-free formulas φ from the language of
PRSPDL, [r?i ]〈>? ‖ >?〉> ↔ φ is not valid in the class of all functional
∗-separated ∗-deterministic frames for every i ∈ {1, 2}.

Proof. Suppose there exists a recovering-free formula φ from the language of
PRSPDL such that [r?i ]〈>? ‖ >?〉> ↔ φ is valid in the class of all func-
tional ∗-separated ∗-deterministic frames for some i ∈ {1, 2}. Let n = lev(φ).
Without loss of generality, assume φ contains neither program variable, nor
propositional variable. Moreover, we can assume i = 1. Let F = (W,R, ∗) and
F ′ = (W ′, R′, ∗′) be the functional ∗-separated ∗-deterministic frames defined
as follows:

• W = {x, y} × N,

• R is the empty function,

• (x, k + 1) ∗ (y, k + 1) = {(x, k)} and otherwise ∗ is the empty function,

• W ′ = {x′, y′} × {0, . . . , n},
• R′ is the empty function,

• (x′, 1) ∗′ (y′, 1) = {(x′, 0)}, . . ., (x′, n) ∗′ (y′, n) = {(x′, n− 1)} and otherwise
∗′ is the empty function.

Since [r?1 ]〈>? ‖ >?〉> ↔ φ is valid in the class of all func-
tional ∗-separated ∗-deterministic frames, then F |= [r?1 ]〈>? ‖
>?〉> ↔ φ and F ′ |= [r?1 ]〈>? ‖ >?〉> ↔ φ. Let Z =
{((x, 0), (x′, 0)), . . . , ((x, n), (x′, n)), ((y, 0), (y′, 0)), . . . , ((y, n), (y′, n))}. Let
M = (W,R, ∗, V ) be a model on F and M′ = (W ′, R′, ∗′, V ′) be the model
on F ′ corresponding to it with respect to Z. Obviously, (x, 0) ∈ VM([r?1 ]〈>? ‖
>?〉>) and (x′, 0) 6∈ VM′([r?1 ]〈>? ‖ >?〉>). Since F |= [r?1 ]〈>? ‖ >?〉> ↔ φ
and F ′ |= [r?1 ]〈>? ‖ >?〉> ↔ φ, then (x, 0) ∈ VM([r?1 ]〈>? ‖ >?〉> ↔ φ) and
(x′, 0) ∈ VM′([r?1 ]〈>? ‖ >?〉> ↔ φ). Since (x, 0) ∈ VM([r?1 ]〈>? ‖ >?〉>) and
(x′, 0) 6∈ VM′([r?1 ]〈>? ‖ >?〉>), then (x, 0) ∈ VM(φ) and (x′, 0) 6∈ VM′(φ).

Claim 4.6 Let α be a recovering-free program from the language of PRSPDL.
For all k ∈ {0, . . . , n},



Balbiani and Tinchev 25

• RM(α)((x, k)) ⊆ {(x, 0), . . . , (x, k)} and
RM′(α)((x′, k)) ⊆ {(x′, 0), . . . , (x′, k)},

• RM(α)((y, k)) ⊆ {(x, 0), . . . , (x, k − 1)} ∪ {(y, k)} and
RM′(α)((y′, k)) ⊆ {(x′, 0), . . . , (x′, k − 1)} ∪ {(y′, k)}.

Proof. By induction on α. Left to the reader. 2

Claim 4.7 Let α be a recovering-free program and ψ be a recovering-free for-
mula from the language of PRSPDL. For all k ∈ {0, . . . , n}, if k+ lev(α) ≤ n
and k + lev(ψ) ≤ n, then

• (x, k)RM(α)(x, l) iff (x′, k)RM′(α)(x′, l),

• (y, k)RM(α)(x, l) iff (y′, k)RM′(α)(x′, l),

• (y, k)RM(α)(y, l) iff (y′, k)RM′(α)(y′, l),

• (x, k) ∈ VM(ψ) iff (x′, k) ∈ VM′(ψ),

• (y, k) ∈ VM(ψ) iff (y′, k) ∈ VM′(ψ).

Proof. By induction on α and ψ. Left to the reader. 2

Since (x, 0) ∈ VM(φ), then (x′, 0) ∈ VM′(φ): a contradiction. 2

Now, let us extend PRSPDL with the program construct (· ∩ ·) of inter-
section. In this variant, intersection (α ∩ β) of programs α and β corresponds
to the intersection of the accessibility relations R(α) and R(β). We have the
following:

Proposition 4.8 Let α, β be programs from the language of PRSPDL ex-
tended with (·∩·). For all modelsM, RM(α ‖ β) = RM((r1;α; s1)∩(r2;β; s2)).

Proof. Left to the reader. 2

Hence, the program construct (· ‖ ·) of parallel composition can be elim-
inated from the language of PRSPDL extended with (· ∩ ·). Nevertheless,

Proposition 4.9 For all formulas φ from the language of PRSPDL, 〈a ∩
b〉> ↔ φ is not valid in the class of all functional ∗-separated ∗-deterministic
frames for every distinct program variables a, b.

Proof. Suppose there exists a formula φ from the language of PRSPDL
such that 〈a ∩ b〉> ↔ φ is valid in the class of all functional ∗-separated ∗-
deterministic frames for some distinct program variables a, b. Without loss
of generality, assume a, b are the only program variables in φ and φ contains
no propositional variable. Let F = (W,R, ∗) and F ′ = (W ′, R′, ∗′) be the
functional ∗-separated ∗-deterministic frames s defined as follows:

• W = {x, y},
• R(a) = {(x, y)}, R(b) = {(x, y)} and otherwise R is the empty function,

• ∗ is the empty function,

• W ′ = {x′, y′1, y′2},



26 Definability and Computability for PRSPDL

• R′(a) = {(x′, y′1)}, R′(b) = {(x′, y′2)} and otherwise R′ is the empty function,

• ∗′ is the empty function.

Since 〈a ∩ b〉> ↔ φ is valid in the class of all functional ∗-separated ∗-
deterministic frames, then F |= 〈a ∩ b〉> ↔ φ and F ′ |= 〈a ∩ b〉> ↔ φ.
Let Z = {(x, x′), (y, y′1), (y, y′2)}. Let M = (W,R, ∗, V ) be a model on F
and M′ = (W ′, R′, ∗′, V ′) be the model on F ′ corresponding to it with re-
spect to Z. Obviously, x ∈ VM(〈a ∩ b〉>) and x′ 6∈ VM′(〈a ∩ b〉>). Since
F |= 〈a ∩ b〉> ↔ φ and F ′ |= 〈a ∩ b〉> ↔ φ, then x ∈ VM(〈a ∩ b〉> ↔ φ) and
x′ ∈ VM′(〈a∩ b〉> ↔ φ). Since x ∈ VM(〈a∩ b〉>) and x′ 6∈ VM′(〈a∩ b〉>), then
x ∈ VM(φ) and x′ 6∈ VM′(φ).

Claim 4.10 Let α be a program and ψ be a formula from the language of
PRSPDL. For all v ∈W and for all v′ ∈W ′, if vZv′, then

• for all w ∈ W , if vRM(α)w, then there exists w′ ∈ W ′ such that wZw′ and
v′RM′(α)w′,

• for all w′ ∈ W ′, if v′RM′(α)w′, then there exists w ∈ W such that wZw′

and vRM(α)w,

• v ∈ VM(ψ) iff v′ ∈ VM′(ψ).

Proof. By induction on α and ψ. Left to the reader. 2

Since xZx′ and x ∈ VM(φ), then x′ ∈ VM′(φ): a contradiction. 2

Hence, the program construct (·∩ ·) of intersection cannot be defined in the
language of PRSPDL.

5 Decidability

Let Ls1,s2
PDL be the set of all ‖-free recovering-free formulas. Let C∗sep be the class

of all ∗-separated frames and C∗det∗sep be the class of all ∗-separated ∗-deterministic
frames. The tree model property of PDL enables us to prove the following:

Proposition 5.1 (i) V AL(Ls1,s2
PDL, C∗sep) is EXPTIME-complete.

(ii) V AL(Ls1,s2
PDL, C∗det∗sep) is EXPTIME-complete.

Proof. The key thing to note about ‖-free recovering-free formulas is the fol-
lowing:

Claim 5.2 Let φ ∈ Ls1,s2
PDL. The following conditions are equivalent:

a) φ, where s1 and s2 are considered as ordinary program variables, is satisfied
in a PDL-frame.

b) φ, where s1 and s2 are considered as ordinary program variables, is satisfied
in a tree-like PDL-frame.

c) φ, where s1 and s2 are considered as storing programs, is satisfied in a
∗-separated ∗-deterministic PRSPDL-frame.

d) φ, where s1 and s2 are considered as storing programs, is satisfied in a
∗-separated PRSPDL-frame.



Balbiani and Tinchev 27

Proof. a)⇒ b) Suppose φ, where s1 and s2 are considered as ordinary program
variables, is satisfied in a PDL-frame F = (W,R). Hence, there exists a model
M = (W,R, V ) on F and there exists x ∈ W such that x ∈ VM(φ). Let
F ′ = (W ′, R′) be the Unravelling of F around x andM′ = (W ′, R′, V ′) be the
model on F ′ corresponding to M. See [6, Pages 63, 218 and 219] for precise
definitions. Obviously, F ′ is a tree-like PDL-frame. Since x ∈ VM(φ), by [6,
Proposition 2.14 and Lemma 4.52], then (x) ∈ VM′(φ). Thus, φ, where s1
and s2 are considered as ordinary program variables, is satisfied in a tree-like
PDL-frame.

b) ⇒ c) Suppose φ, where s1 and s2 are considered as ordinary program
variables, is satisfied in a tree-like PDL-frame F = (W,R). Hence, there exists
a modelM = (W,R, V ) on F and there exists x ∈W such that x ∈ VM(φ). Let
F ′ = (W ′, R′, ∗′) be the ∗-separated ∗-deterministic PRSPDL-frame defined
as follows:

• W ′ = W ∪ {(y, z, i): y, z ∈W , i ∈ {1, 2} and yR(si)z},
• R′(a) = R(a) for every program variable a,

• y ∗′ (y, z, 1) = {z} for every (y, z, 1) ∈ W ′, (y, z, 2) ∗′ y = {z} for every
(y, z, 2) ∈W ′ and otherwise ∗′ is the empty function.

Let M′ = (W ′, R′, ∗′, V ′) be the model on F ′ defined as follows:

• V ′(p) = V (p) for every propositional variable p.

Claim 5.3 Let ψ ∈ Ls1,s2
PDL. For all y ∈W , y ∈ VM(ψ) iff y ∈ VM′(ψ).

Proof. By induction on ψ. Left to the reader. 2

Since x ∈ VM(φ), then x ∈ VM′(φ). Thus, φ, where s1 and s2 are considered as
storing programs, is satisfied in a ∗-separated ∗-deterministic PRSPDL-frame.

c)⇒ d) Obvious.
d)⇒ a) Suppose φ, where s1 and s2 are considered as storing programs, is

satisfied in a ∗-separated PRSPDL-frame F = (W,R, ∗). Hence, there exists
a model M = (W,R, ∗, V ) on F and there exists x ∈W such that x ∈ VM(φ).
Let F ′ = (W ′, R′) be the PDL-frame defined as follows:

• W ′ = W ,

• R′(a) = R(a) for every program variable a,

• R′(s1) = {(x, y): x, y, z ∈W and y ∈ x ∗ z},
• R′(s2) = {(x, y): x, y, z ∈W and y ∈ z ∗ x}.
Let M′ = (W ′, R′, V ′) be the model on F ′ defined as follows:

• V ′(p) = V (p) for every propositional variable p.

Claim 5.4 Let ψ ∈ Ls1,s2
PDL. For all y ∈W , y ∈ VM(ψ) iff y ∈ VM′(ψ).

Proof. By induction on ψ. Left to the reader. 2

Since x ∈ VM(φ), then x ∈ VM′(φ). Thus, φ, where s1 and s2 are considered
as ordinary program variables, is satisfied in a PDL-frame. 2



28 Definability and Computability for PRSPDL

Since satisfiability in a PDL-frame of Ls1,s2
PDL-formulas where s1 and s2 are

considered as ordinary program variables is EXPTIME-complete [11,24],
then satisfiability in a ∗-separated PRSPDL-frame and satisfiability in a ∗-
separated ∗-deterministic PRSPDL-frame of Ls1,s2

PDL-formulas where s1 and
s2 are considered as storing programs are EXPTIME-complete. Hence,
V AL(Ls1,s2

PDL, C∗sep) and V AL(Ls1,s2
PDL, C∗det∗sep) are EXPTIME-complete. 2

Let Ls1,s2
; be the set of all ?-free ?-free ‖-free recovering-free formulas.

Claim 5.2 enables us to prove the following:

Proposition 5.5 1) V AL(Ls1,s2
; , C∗sep) is PSPACE-complete.

2) V AL(Ls1,s2
; , C∗det∗sep) is PSPACE-complete.

Proof. By Claim 5.2, φ, where s1 and s2 are considered as ordinary program
variables, is satisfied in a PDL-frame iff φ, where s1 and s2 are considered
as storing programs, is satisfied in a ∗-separated ∗-deterministic PRSPDL-
frame iff φ, where s1 and s2 are considered as storing programs, is satisfied in
a ∗-separated PRSPDL-frame for every φ ∈ Ls1,s2

; . Since satisfiability in a
PDL-frame of Ls1,s2

; -formulas where s1 and s2 are considered as ordinary pro-
gram variables is PSPACE-complete [20], then satisfiability in a ∗-separated
PRSPDL-frame and satisfiability in a ∗-separated ∗-deterministic PRSPDL-
frame of Ls1,s2

; -formulas where s1 and s2 are considered as storing programs

are PSPACE-complete. Hence, V AL(Ls1,s2
; , C∗sep) and V AL(Ls1,s2

; , C∗det∗sep) are
PSPACE-complete. 2

6 Undecidability

Together with the decidability of PDL with intersection obtained by Da-
necki [9], Propositions 4.8 and 4.9 seems to indicate that PRSPDL is de-

cidable. It is interesting to observe that this assertion is false. Let L‖,r1,r2PDL be
the set of all storing-free formulas. Solving an open problem put forward in [5],
with the aid of the N×N recurring tiling problem, let us prove the following:

Proposition 6.1 V AL(L‖,r1,r2PDL , C) is Π1
1-hard for the following classes C of

frames:

• the class C∗det,∗serfun,∗sep of all functional ∗-separated ∗-deterministic ∗-serial
frames,

• the class C∗detfun,∗sep of all functional ∗-separated ∗-deterministic frames,

• the class C∗serfun,∗sep of all functional ∗-separated ∗-serial frames,

• the class C∗det,∗ser∗sep of all ∗-separated ∗-deterministic ∗-serial frames,

• the class Cfun,∗sep of all functional ∗-separated frames,

• the class C∗det∗sep of all ∗-separated ∗-deterministic frames,

• the class C∗ser∗sep of all ∗-separated ∗-serial frames,

• the class C∗sep of all ∗-separated frames.



Balbiani and Tinchev 29

Proof. Let C be one of the classes of frames considered in Proposition 6.1.
A tile type t is a square, fixed in orientation, each side of which has a color:
left(t), right(t), down(t) and up(t). A finite set T of tile types is said to tile
N×N iff there exists a function f from N×N into T such that for all x, y ∈ N,
right(f(x, y)) = left(f(x + 1, y)) and up(f(x, y)) = down(f(x, y + 1)). The
N× N recurring tiling problem is the following decision problem:

• input: a finite set T of tile types which includes some distinguished tile type
t1;

• output: determine whether T can tile N × N in such a way that t1 occurs
infinitely often in the first row.

It is a well-known fact that the N×N recurring tiling problem is Σ1
1-hard [18].

Given pairwise distinct tile types t1, . . . , tn, let p1, . . . , pn be pairwise distinct
propositional variables. We associate to t1, . . . , tn, the conjunction φ(t1, . . . , tn)
of the following formulas:

B1 [r?1 ‖ r?2 ]〈r1 ‖ >?〉>;

B2 [r?1 ‖ r?2 ]〈>? ‖ r2〉>;

B3 [r?1 ‖ r?2 ]¬(pi ∧ pj) for every i, j ∈ {1, . . . , n} such that i 6= j;

B4 [r?1 ‖ r?2 ](p1 ∨ . . . ∨ pn);

B5 [r?1 ‖ r?2 ](pi → [>? ‖ >?]pi) for every i ∈ {1, . . . , n};
B6 [r?1 ‖ r?2 ](pi → 〈r1 ‖ >?〉(pk1 ∨ . . .∨pkl

)) for every i ∈ {1, . . . , n}, tk1 , . . . , tkl

being the tile types in t1, . . . , tn horizontally matching with ti;

B7 [r?1 ‖ r?2 ](pi → 〈>? ‖ r2〉(pk1 ∨ . . .∨pkl
)) for every i ∈ {1, . . . , n}, tk1 , . . . , tkl

being the tile types in t1, . . . , tn vertically matching with ti.

Let ψ(t1, . . . , tn) ::= 〈>? ‖ >?〉> ∧ φ(t1, . . . , tn) ∧ [r?1 ‖ >?]〈r?1 ‖ >?〉p1.

Claim 6.2 The following conditions are equivalent:

a) {t1, . . . , tn} can tile N × N in such a way that t1 occurs infinitely often in
the first row.

b) ψ(t1, . . . , tn) is satisfied in C.

Proof. a) ⇒ b) Suppose {t1, . . . , tn} can tile N × N in such a way that t1
occurs infinitely often in the first row. Hence, there exists a function f from
N × N into T such that for all x, y ∈ N, right(f(x, y)) = left(f(x + 1, y))
and up(f(x, y)) = down(f(x, y + 1)). Moreover, for all x ∈ N, there exists
z ∈ N such that x ≤ z and f(z, 0) = t1. Let F = (W,R, ∗) be the functional
∗-separated ∗-deterministic ∗-serial PRSPDL-frame defined as follows:

• W = (N×N)∪(N×{l1, l2, l3, l4}) where l1, l2, l3, l4 are new distinct elements,

• R is the empty function,

• ∗ is a one-to-one correspondence between the elements of W ×W and the
singletons over W such that (x, l1) ∗ (y, l2) = {(x, y)}, (x + 1, l1) ∗ (x, l3) =
{(x, l1)} and (y, l4) ∗ (y + 1, l2) = {(y, l2)}.



30 Definability and Computability for PRSPDL

Let M = (W,R, ∗, V ) be the model on F defined as follows:

• V (pi) = {(x, y): f(x, y) = ti} and otherwise V is the empty function.

Obviously, for all x, y ∈ N, (x + 1, y) is the only state in W accessible from
(x, y) by means of RM(r1 ‖ >?) and (x, y + 1) is the only state in W acces-
sible from (x, y) by means of RM(>? ‖ r2). Thus, (0, 0) ∈ VM(ψ(t1, . . . , tn)).
Therefore, ψ(t1, . . . , tn) is satisfied in a functional ∗-separated ∗-deterministic
∗-serial PRSPDL-frame. Consequently, ψ(t1, . . . , tn) is satisfied in C.

b) ⇒ a) Suppose ψ(t1, . . . , tn) is satisfied in C. Hence, ψ(t1, . . . , tn) is
satisfied in a ∗-separated PRSPDL-frame F = (W,R, ∗). Thus, there ex-
ists a model M = (W,R, ∗, V ) on F and there exists u ∈ W such that
u ∈ VM(ψ(t1, . . . , tn)). Obviously, thanks to the formulas B1 and B2, for
all x, y ∈ N, there exists v ∈ W such that uRM(rx1 ‖ r

y
2)v; the set of all such

v will be denoted P (x, y). Moreover, thanks to the formulas B3, B4 and B5,
for all x, y ∈ N, there exists i ∈ {1, . . . , n} such that P (x, y) ⊆ V (pi) and
for all j ∈ {1, . . . , n}, if i 6= j, then P (x, y) ∩ V (pj) = ∅. In other respect,
thanks to the formulas B6 and B7, for all x, y ∈ N and for all i, j ∈ {1, . . . , n},
if P (x, y) ⊆ V (pi) and P (x + 1, y) ⊆ V (pj), then right(ti) = left(tj) and if
P (x, y) ⊆ V (pi) and P (x, y + 1) ⊆ V (pj), then up(ti) = down(tj). Finally,
thanks to the formula [r?1 ‖ >?]〈r?1 ‖ >?〉p1, for all x ∈ N, there exists z ∈ N
such that x ≤ z and P (z, 0) ⊆ V (p1). Let f be the function from N × N into
{t1, . . . , tn} defined as follows:

• f(x, y) = ti iff P (x, y) ⊆ V (pi).

Obviously, for all x, y ∈ N, right(f(x, y)) = left(f(x+ 1, y)) and up(f(x, y)) =
down(f(x, y + 1)). Moreover, for all x ∈ N, there exists z ∈ N such that x ≤ z
and f(z, 0) = t1. Therefore, {t1, . . . , tn} can tile N × N in such a way that t1
occurs infinitely often in the first row. 2

Hence, the N × N recurring tiling problem is reducible to satisfiability in the

class C of L‖,r1,r2PDL -formulas. Since the N × N recurring tiling problem is Σ1
1-

hard [18], satisfiability in the class C of L‖,r1,r2PDL -formulas is Σ1
1-hard. Thus,

V AL(L‖,r1,r2PDL , C) is Π1
1-hard. 2

Corollary 6.3 V AL(L‖,r1,r2PDL , C) is Π1
1-complete for all classes C of frames con-

sidered in Proposition 6.1.

Proof. It suffices to prove that if a PRSPDL-formula is satisfied in a frame
in C, then it is satisfied in a finite or countable frame in C. By means of the
so-called Standard Translation, one can prove that PRSPDL is a fragment of
Lω1ω, the infinitary logic in which one is allowed to consider countable con-
junctions in addition to the usual first-order constructs. See [6, Pages 83–86
and 496] for precise definitions. By the Löwenheim-Skolem theorem for Lω1ω,
if the standard translation of a PRSPDL-formula is satisfied in a frame in C,
then it is satisfied in a finite or countable frame in C. Hence, if a PRSPDL-
formula is satisfied in a frame in C, then it is satisfied in a finite or countable
frame in C. 2



Balbiani and Tinchev 31

7 Conclusion

We present our computability results in the following tables.

C∗det,∗serfun,∗sep C∗detfun,∗sep C∗serfun,∗sep C∗det,∗ser∗sep
Ls1,s2
PDL

Ls1,s2
;

L‖,r1,r2PDL Π1
1-c Π1

1-c Π1
1-c Π1

1-c

Cfun,∗sep C∗det∗sep C∗ser∗sep C∗sep
Ls1,s2
PDL EXPTIME-c EXPTIME-c
Ls1,s2
; PSPACE-c PSPACE-c

L‖,r1,r2PDL Π1
1-c Π1

1-c Π1
1-c Π1

1-c

Let C be one of the classes of frames considered in the above tables.
As a consequence of Corollary 6.3, V AL(L‖,r1,r2PDL , C) is Π1

1-complete. Never-

theless, one may try to axiomatize V AL(L‖,r1,r2PDL , C) by means of an infinitary
derivation rule similar to the one used in [4]. The result stated in Proposi-
tion 4.8 suggests that an unorthodox derivation rule similar to the one used
in [3] could be considered as well.

As for the set L‖,s1,s2PDL of all recovering-free formulas, the decidabil-

ity/undecidability status of V AL(L‖,s1,s2PDL , C) is not known.
In other respect, seeing that in a frame F = (W,R, ∗), W is to be regarded

as the set of all possible states in a computation process, it seems natural to
consider the restriction C |wf of C to those frames F = (W,R, ∗) in which the
transitive closure of the binary relation −→F defined as follows is well-founded:

• x −→F y iff there exists z ∈W such that either x ∈ y ∗ z, or x ∈ z ∗ y.

Remark that the transitive closures of the binary relations −→F1
, −→F2

and
−→F3

associated to the frames F1, F2 and F3 considered in Example 2.2 are

well-founded. The computability status of V AL(L‖,r1,r2PDL , C |wf) is not known.
Finally, following the line of reasoning suggested in [12], the accessibility

relation associated to (α ‖ β) can be defined as follows in the class of all
∗-deterministic frames:

• whenever x and y are related via R(α) and x and z are related via R(β), x
and y ∗ z are related via R(α ‖ β).

Seeing that this variant of PRSPDL is appealing in computer science, espe-
cially in system specification and program construction [13], it seems natural
to consider, with respect to it, the computability status of satisfiability in the

class C of L‖,r1,r2PDL -formulas. The equivalence, in the class of all ∗-separated
frames, between (α ‖ β) — when interpreted by Benevides et al. [5] — and
((r1;α) ‖ (r2;β)) — when interpreted by Frias [12] and Frias et al. [13] — sug-

gests that satisfiability in the class C of L‖,r1,r2PDL -formulas is highly undecidable.



32 Definability and Computability for PRSPDL

Acknowledgements

Special acknowledgement is heartly granted to Joseph Boudou who made sev-
eral helpful comments for improving the correctness and the readability of
this article. The work of Philippe Balbiani was partially supported by the
“French National Research Agency” (contract ANR-11-BS02-011) and the
“Bulgarian National Science Fund” (contract DID02/32/2009). The work
of Tinko Tinchev was partially supported by the “Centre international de
mathématiques et d’informatique” (contract ANR-11-LABX-0040-CIMI within
the program ANR-11-IDEX-0002-02).

References

[1] Balbiani, P., Boudou, J.: Decidability of iteration-free PDL with parallel composition.
Submitted for publication.

[2] Balbiani, P., Boudou, J.: Iteration-free PDL with storing, recovering and parallel
composition: a complete axiomatization. Submitted for publication.

[3] Balbiani, P., Vakarelov, D.: Iteration-free PDL with intersection: a complete
axiomatization. Fundamenta Informaticæ45 (2001) 173–194.

[4] Balbiani, P., Vakarelov, D.: PDL with intersection of programs: a complete
axiomatization. Journal of Applied Non-Classical Logics 13 (2003) 231–276.

[5] Benevides, M., de Freitas, R., Viana, P.: Propositional dynamic logic with storing,
recovering and parallel composition. Electronic Notes in Theoretical Computer Science
269 (2011) 95–107.

[6] Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press
(2001).

[7] Brotherston, J., Calcagno, C.: Classical BI: its semantics and proof theory. Logical
Methods in Computer Science 6 (2010) 1–42.

[8] Courtault, J.-R., Galmiche, D.: A modal BI logic for dynamic resource properties. In
Artemov, S., Nerode, A. (Editors): Logical Foundations of Computer Science. Springer
(2013) 134–148.

[9] Danecki, R.: Nondeterministic propositional dynamic logic with intersection is decidable.
In Skowron, A. (Editor): Computation Theory. Springer (1985) 34–53.

[10] Fariñas del Cerro, L., Or lowska, E.: DAL — a logic for data analysis. Theoretical
Computer Science 36 (1985) 251–264.

[11] Fisher, M., Ladner, R.: Propositional dynamic logic of regular programs. Journal of
Computer and System Sciences 18 (1979) 194–211.

[12] Frias, M.: Fork Algebras in Algebra, Logic and Computer Science. World Scientific
(2002).

[13] Frias, M., Veloso, P., Baum, G.: Fork algebras: past, present and future. Journal of
Relational Methods in Computer Science 1 (2004) 181–216.

[14] Galmiche, D., Larchey-Wendling, D.: Expressivity properties of Boolean BI through
relational models. In Arun-Kumar, S., Garg, N. (Editors): FSTTCS 2006: Foundations
of Software Technology and Theoretical Computer Science. Springer (2006) 357–368.

[15] Gargov, G., Passy, S.: A note on Boolean modal logic. In Petkov, P. (Editor):
Mathematical Logic. Plenum Press (1990) 299–309.

[16] Goldblatt, R.: Logics of Time and Computation. Center for the Study of Language and
Information (1987).

[17] Göller, S., Lohrey, M., Lutz, C.: PDL with intersection and converse: satisfiability and
infinite-state model checking. The Journal of Symbolic Logic 74 (2009) 279–314.

[18] Harel, D.: Recurring dominoes: making the highly undecidable highly understandable.
Annals of Discrete Mathematics 24 (1985) 51–72.

[19] Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press (2000).



Balbiani and Tinchev 33

[20] Ladner, R.: The computational complexity of provability in systems of modal
propositional logic. SIAM Journal on Computing 6 (1977) 467–480.

[21] Massacci, F.: Decision procedures for expressive description logics with intersection,
composition, converse of roles and role identity. In Nebel, B. (Editor): Proceedings of the
Seventeenth International Joint Conference on Artificial Intelligence. Morgan Kaufmann
(2001) 193–198.

[22] Mirkowska, G.: PAL — propositional algorithmic logic. Fundamenta Informaticæ4
(1981) 675–760.

[23] O’Hearn, P., Pym, D.: The logic of bunched implications. The Bulletin of Symbolic Logic
5 (1999) 215–244.

[24] Pratt, V.: Models of program logics. In: 20th Annual Symposium on Foundations of
Computer Science. IEEE (1979) 115–122.

[25] Reynolds, VJ.: Separation logic: a logic for shared mutable data structures. In: 17th
Annual IEEE Symposium on Logic in Computer Science. IEEE (2002) 55–74.


	Introduction
	Syntax and semantics
	Syntax
	Frames
	Models
	A decision problem

	Definability
	Expressivity
	Decidability
	Undecidability
	Conclusion
	References

