Purdue University

## Purdue e-Pubs

# Definability in the Monadic Second-Order Theory of Successor 

J. Richard Buchi

Lawrence H. Landweber

## Report Number:

67-015

Buchi, J. Richard and Landweber, Lawrence H., "Definability in the Monadic Second-Order Theory of Successor" (1967). Department of Computer Science Technical Reports. Paper 96.
https://docs.lib.purdue.edu/cstech/96

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.

Definability in the itonadic Second-Order Theory of Successor
J. Richard Buchi and Lawrence II. Landweber

September 1967
$\operatorname{CSD} T R 15$

By J. Richard Buchi and Lawrence ! H . Landweber**
Purdue University, Lafayette, Indiana

1. INTRODUCTION. Let $D=\left\langle D, P_{I}, P_{2}, \ldots\right\rangle$ be a relational system whereby $D$ is a non-empty set and $P_{i}$ is an $m_{i}$-ary relation on $D$. ifith $D$ we associate the (weak) monadic second-order theory (II)IT[D] consisting of: the first-order predicate calculus with individual variables ranging over D; monadic predicate variables ranging over (íinite) subsets of D ; predicate quantifiers; and constants corresponding to $P_{1}, P_{2}, \ldots$. He will often use (W)NT[D] anbiguously to mean also the set of true sentences of (N) HT [D].

In this note we study variants of the structure $\langle N$, '> where i is the set of natural numbers and $\quad$ is the successor function on in. Our results are a consequence of McNaugliton's [7] sork on the w-behavior of finite automatia and the decision procedure for ilt [ $N,{ }^{\prime}$ ] given in [1]. The former is essential as we have been unoble to obtain proofs which utilize only [1]'s characterization of w-behavior. In [2] we discuss related results.

Section 2 studies definability in MT[iN,']. For every formula $C(X)$ of $R T[N, ']$ where $X$ is a vector of unary predicate variables,

[^0]
#### Abstract

the relation $C(X)$ is arithnetic and, in fact, is in the Boolean algebra over $\Pi_{2}$. In section 3 , we investigate the existence of decision procedures for ( $W$ ) MT $[N, ', Q]$ where $Q$ is a subset of $N$. Such theories were previously studied by Elgot and Rabin [4]. For any recursive $Q$, the decision problem for MT[ $\mathrm{N}, \mathrm{\prime}, \mathrm{Q}$ ] is in $\Sigma_{3} \cap \Pi_{3}$. We also define a recursive $Q$ for which ( W )MT $\left[\mathrm{N}^{\prime},{ }^{\prime}, \mathrm{Q}\right]$ is undecidable. This provides a rather natural exomple of an undecidable theory which is still arithnetic.


## 2. DEFINABILITY IN MT[ $\left.\mathrm{N},{ }^{\prime}\right]$.

In this section we study definability in $\mathrm{AT}[\mathrm{N}, \mathrm{D}]$ with respect to the arithmetic and classical Borel hierarchies. In particular we are interested in those relations definable by formulas $C(X), X$ a vector of free set variables, of $\mathrm{AT}\left[\mathrm{N},{ }^{\prime}\right]$. The main result is that every such relation is in the Boolean algebra over $\Pi_{2}\left(G_{\delta}\right)$ of the arithmetic (Borel) hierarchy where $\Pi_{0}$ (G) are the recursive (open) sets and $C(X) \varepsilon \Pi_{2} \quad\left(G_{\delta}\right)$ if it is representable as $(\forall x)(\exists y) M(x, y, x)$, M recursive (a denumerable intersection of open sets). In fact Lema 1 below also gives this result for a wider class of $C(X)$ than are definable in MT[N,']. In the following $x, y, z, \ldots$ are individual variables ranging over $N$.

A recursive operator $(R O) Z=A(X)$ is an operator mapping $\omega$-sequences over a finite set $I$ inco $\omega$-sequences over a finite set $S$ which can be presented in the form

Whereby $\bar{X} t=X O_{4}, X t$ and $\phi$ and $\phi$ are recursive functions fron $I^{*}$ into $S$ and $N$ into $N$ respectively. Sup $Z$ is the set of menbers of $S$ appearing infinitely often in the $\omega$-sequence $Z=20,21, \ldots$.

LEMRA 1. Let $Z=A(X)$ be a $R O$ and $U \cong 2^{S}$. Then the relation $F(X)$ given by
( BZ ) $[2=\wedge(X) \wedge \sup Z \varepsilon U]$
is in the Boolean algebra over $\pi_{2}$ of the arithnetic hierarchy.

PROOF. $F(X)$ can be written as
$V_{B E U} .(\exists x)(\forall y)\left[y \geq x>\phi(\bar{X} \phi(y) ; \in B] \wedge \bigwedge_{S \in B}(\forall x)(\exists y)[y \geq x \wedge \Phi(\bar{X} \phi(y)]=s]\right.$

The relations given by $[y \geq x \wedge \phi(\bar{X} \phi(y)\}=s]$ and $[y \geq x=\varphi(\bar{X} \phi(y)) \in B]$ are recursive because $\phi$ and $\phi$ are recursive. llence $\mathscr{P}(x)$ is a Boolean combination of formulas of the form $(\forall y)(g x): I(x, x, y)$ where $i s$ is recursive so $\mathrm{F}(\mathrm{X})$ is in the Boolean algebra over $\mathrm{H}_{2}$. R.E.D.
$\Lambda$ finite automata operator (FAO) is a $R O Z=\Lambda(X)$ which can be presented in the form

```
Z0 = c
Zt'= IH[Xt,Zt]
```

whereby $I I: I \times S \rightarrow S$ and ces. Let $C(X)$ be a formula of ifT[N,'] where $X$ is an $n$-tuple of free set variables. Tho main definability results of [1] and [7] (see [2] for more details) state that from $C$ we can effectively construct a presentation of a $F A O Z=E(X)$ as in (3) (i.e., obtain $H, S$, and c) and a $u=2^{S}$ such that

$$
C(X), \equiv,(\exists Z)[Z=E(X) \wedge \sup Z E U]
$$

whereby $I=\{T, F\}^{n}$. Hence by Lemala 1 we have

Theoxem 1. Every relation between subsets of $N$ which is definable in $\mathrm{MT}[\mathrm{N}, \mathrm{\prime}]$ is arithmetical, and in fact occurs in the Boolean algebra over $\pi_{2}$. Furthermore, given a formula $C\left(x_{1}, \ldots, X_{n}\right)$ of $\operatorname{tT}[N, ']$ one can construct an index of the relation $C$ in the Boolean algebra over $\pi_{2}$.

In contrast, all relations $R\left(y_{1}, \ldots, y_{m}, X_{1}, \ldots, X_{n}\right)$ appearing in the function-quantifier hierarchy over recursive relations are definable in $\mathrm{MT}\left[\mathrm{N},{ }^{\wedge}, 2 \mathrm{x}\right]$ (see [8]).

[^1]and $U_{w}=\{X \mid(\exists t)[\bar{X} t=w]\}$. If $C$ is recursive, there is an effective procedure which decides whether $C(X)$ or $\sim C(X)$ is true after being given some finite portion $\bar{X}_{t}=x 0 \ldots X t$ of $X$. llence, if $X_{o}$ is such that $\bar{X}_{0} t=\bar{X}_{t}$, then $C(X) \equiv C\left(X_{0}\right)$. This inplies that every recursive set of $X ' s$ is open and closed. But every $C(X)$ of $\therefore T\left[N,{ }^{\prime}\right]$ is a Boolean combination of expressions of the form $(\forall x)(B y) M(x, y, X)$ where for fixed $x$ and $y \hat{X} \dot{f}:(x, y, \chi)$ is open and closed (since $i f$ is recursive). Thus by Theorem 1 we obtain,

COROLLARY 1. $\mathrm{I} \underset{\mathrm{f}}{\mathrm{C}} \mathrm{C}(\mathrm{X})$ is a fomiula of TT $\left[\mathrm{i}^{\prime}{ }^{\prime}\right]$, then the relation $\mathrm{C}(X)$ is in the Boolcan algebra over $G_{\delta}$ of the Borel hierarchy. We conclude this section with an example of a $C(X)$ of $i T\left[N,{ }^{\prime}\right]$ which is neither a $G_{\delta}$ nor an $F$ (and therefore neither a $\Sigma_{2}$ nor a $\Pi_{2}$ ). The following remark is obscrved in [3].
(1) A set $C(X)$ is a $G_{\delta}$, if and only if, there is a set $\|$ of words over I such that $C(X)$ lolds, if and only if, $w<X$ for infinitely many well.

Here w<X (w is initial sepment of $X$ ) stands for ( $\exists t$ ) $\bar{X} t=w$. Now define $C \subseteq\{T, F\}^{N}$ by,
(2) $\quad[X 0 \wedge(\forall x)(\exists y)[x \leq y \cap X y]] \vee[\sim X 0 \wedge(\exists x)(\forall y)[x \leq y \partial \sim X y]]$

Suppose $C$ is a $G_{\delta}$. Then, by (1), there exists a $W \subseteq I^{*}$ such that
(3) $\left.C(X) . \equiv, W \quad r_{i}\{w\} \mathbb{W} X\right\}$ is infinite

Define the sequence ${ }^{N_{0}, N_{1}, W_{2}, \ldots \text { by }}$

$$
\begin{array}{ll}
w_{0}=\text { shortest } v, v \in W \wedge v \text { of form } \Gamma F^{k} \\
w_{n+1}=\text { shortest } v, & v \in W_{i} s v \text { of form } w_{n} T F F^{k} \tag{4}
\end{array}
$$

By (2) $F^{w}$ belongs to $C$, therefore by (3) $w_{0}$ exists and $F \leq \psi_{0}$. ssume inductively that $W_{n}$ exists and $F \mathcal{c}_{n}$. Then by (2) $w_{n} T F^{\omega}$ belongs to $C$, therefore by (3) $w_{n+1}$ exists and $F \leq_{n+1}$. Thus (4) really defincs a
 and (2), the sequence $Y$ having all $w_{i}$ 's as initial segments belong to $C$. But this is contradictory, as $Y$ starts with $F$ and has infinitely many initial segments in W. Thus $\mathrm{C}_{\mathrm{C}}^{\mathrm{F}} \mathrm{o}$, and sinilarly one shows $\approx \mathrm{C} \not \mathrm{G}_{\delta}$. But $x \leq y$ is definable in $: \pi\left[N,{ }^{\top}\right]$, and therefore $C$ is. Consequently, (2) provides an example of a set $C$, definable in $\operatorname{Mr}\left[\mathrm{N},{ }^{1}\right]$, but neither in $G_{\delta}$ nor $F_{\sigma}$.

## 3. DECISION PROBLEMS FOR EXTENSIONS OF MT[ $N$,']

Elgot and Rabin [8] have studied the existence of decision procedures for extensions of $M T[N, ']$. In particular they have shown that $M T[N, 1,0]$ is decidable if $Q$ is either of $\left\{x^{k} \mid x \in N\right\},\left\{k^{x} \mid x \in N\right\}$ or $\{x!\mid x \in N\}$ where $k$ is a fixed natural number. The results are obtained by reducing the
decision problem for $M T\left[N,{ }^{\prime}, Q\right]$ to that for $M T[N, ']$ and then applying the procedure given in [1]. If $Q=\{(x, 2 x) \mid x \in N\}$, then the corresponding weak monadic theory is undecidable [8].

Let $Q$ be a subset of $N$. If $\operatorname{INTT}[N, 1, Q]$ is undecidable, then so is ITT [ $\left.N,{ }^{\prime}, Q\right]$. This follows frea the definability of ' X is a finite set' in :TT[N,'], by the formula $(\exists x)(\forall t)[t \geq x>\sim X t]$ where $t \geq x$ is an abbreviation of $(\forall Y) . \quad Y t \wedge(\forall w)\left[Y w^{\prime}=Y w\right] \rightarrow Y x$.

If $Q$ is not recursive, then $\operatorname{WMT}\left[N,{ }^{\prime}, Q\right]$ is undecidable (e.g., $0^{\prime} \cdots ' \varepsilon Q$ can not be effectively decided). If $Q$ is recursive, the hierarchy result of section 2 can be applied to give an upper bound to the complexity of decision problems for $\mathrm{i} T\left[\mathrm{~N},{ }^{1}, \mathrm{Q}\right]$.

Theorem 2: If $Q$ is recursive then truth in $: N T\left[N,{ }^{\prime}, Q\right]$ is in $\Sigma_{3} \cap \Pi_{3}$.

Proof: Let $\Psi(e, z)$ be a universal predicate for all predicates $P(Z)$ in $\Pi_{2}$, which is itself in $\Pi_{2}$. By Theorem 1 , there is a recursive function $B$ which maps every formula $\Phi(Z)$ of $\operatorname{MT}\left[N,{ }^{\prime}\right]$ into a Boolean expression $B_{\phi}$, and a recursive function $f$ which maps every formula $\phi(Z)$ of $M T\left[N_{\phi}{ }^{\prime}\right]$ into a finite sequence $f_{\phi}=\left\langle f_{\phi, 1}, \ldots, f_{\Phi, n}\right\rangle$ of numbers, such that for any $Z \leq N$,
(1) $\quad \Phi(Z)$ holds in $\operatorname{AT}\left[N_{1}, 1\right] . \equiv B_{\phi}\left[\Psi\left(f_{\Phi, 1}, 2\right), \ldots, \psi\left(f_{\Phi, n}, 2\right)\right]$

Let $X(e)$ stand for $\Psi(e, Q)$, and note that because $\Psi \varepsilon \Pi_{2}$ and $Q$ is recursive it follows that $X \in \Pi_{2}$. Furthermore, (1) may be restated as,

$$
\begin{equation*}
\Phi(Q) \text { holds in iUT[N,',Q].ミ, } B_{\Phi}\left[X\left(f_{\Phi, 1}\right), \ldots, X(f(n)]\right. \tag{2}
\end{equation*}
$$

Note that the functions $B, f$ are recursive, and all sentences of $\operatorname{MT}[N, ', Q]$ are of form $\Phi(Q)$ where $\Phi(Z)$ is a formula of $M T[N, ']$. It follows that (2) provides for a recursive reduction of $\{\Sigma\} \Sigma$ true in $\left.\operatorname{Mr}\left\{N,{ }^{\prime}, Q\right]\right\}$ to the set $\boldsymbol{x}$ (i.e. a Turing machine can be built which, given a sentence $\Sigma$ of MT[ $\left.N,{ }^{\prime}, Q\right]$ and an oracle for membership in $X$, decides whether or not $\Sigma$ is true). Thus, trutin in $M T\left[N,{ }^{\prime}, Q\right]$ is reducible to some $X \in \mathbb{K}_{2}$. It follows, by a wellknown result, that truth in $\mathbb{N T}\left[\mathrm{N}_{\mathrm{s}}{ }^{\prime}, \mathrm{Q}\right]$ belongs to $\varepsilon_{3} \cap n_{3}$. Q.E.D.

Theorem 2 shows that for no recursive $Q$ is it possible to prove $\mathrm{MT}\left[\mathrm{N},{ }^{\prime}, \mathrm{Q}\right]$ undecidable by the standard method of showing that all recursive relations are definable.

If $Q$ is the set of primes, then $(\forall x)(\exists y)\left[y>x \wedge Q(y) \wedge Q\left(y^{\prime \prime}\right)\right]$ states the twin prime problem in $a r\left[N,{ }^{\prime}, Q\right]$. Indeed, this sentence is in the first order theory of $\left\langle N,{ }^{\prime},\langle, Q\rangle\right.$. Hence, the problem as to whether (W)MT[ $N, '$, primes] is decidable, would seem very difficult. Namely, a positive answer would settle the twin prime problem, while on the negative side, the standard methods of proving theories undecidable is not available.

Theorem 3. There is a recursive $Q$ such that $\mathfrak{M T}\left[N,{ }^{\prime}, Q\right]$ is undecidable. ${ }^{1}$

PROOF. Let $\mathbb{R}$ be a recursively enumerable set of primes which is not recursive, Let $r_{1}, r_{2}, \ldots$ be a recursive enumeration of $R$ and let $Q_{0}=\left\{r_{i}^{2} p_{i} \mid i=1,2, \ldots\right\}$, whereby $p_{i}$ is the ith prime. $\delta_{0}$ is obviously recursive. To prove that $T \mathbb{W}\left[\mathrm{~N},{ }^{\prime}, \mathrm{Q}_{0}\right]$ is undecidable it is sufficient to show that the first order theory $\{\mathrm{FT}\}$ of $\left\langle N, \mathrm{H}_{1}, \mathrm{H}_{2}, \ldots, \mathrm{Q}_{0}\right\rangle$ is undecidable whereby $M_{k}$ stands for the sct of multiples of $k$. Just note that each $M_{k}$ is definable in $W M\left[N, Q_{0}\right]$ by the formula

$$
\left.M_{k}(w):(\forall X) \cdot X w \wedge(\forall y)[X(y+k)=X y] \curvearrowright X 0\right)
$$

From the definition of $R$ and $Q_{0}$ we obtain

$$
\begin{equation*}
R(k) . \equiv . k \neq 1 \wedge(\exists y)\left[M_{k^{2}}(y) \wedge Q_{0}(y)\right] \tag{*}
\end{equation*}
$$

Let $\Sigma_{k}$ be the sentence $k \neq 1 \wedge(\exists y)\left[M_{k^{2}}(y) \wedge Q_{o}(y)\right]$. By (*) $\Sigma_{k}$ is true in $F T\left[N_{1}, M_{1}, M_{2}, \ldots, Q_{0}\right]$ if and only if $k \in R$. But $R$ is not recursive so there is no effective procedure for deciding truts in $\operatorname{FT}\left[N, M_{1}, M_{2}, \ldots, Q_{0}\right]$. Q.E.D.

PROBLEM 1. Is there an 'interesting' recursive $Q$ such that (W) $\mathrm{NT}[\mathrm{N}, \mathrm{I}, \mathrm{Q}]$ is undecidable? How about $Q=$ primes?

[^2]Although WhT $\left[N, Q_{0}\right]$ is undecidable, we have not classified its decision problem in the arithmetic hierarchy. This suggests,

PROBLEM 2. Is there a recursive $Q$ such that the decision problem for (N)MT[N,,$Q]$ is in $\Sigma_{3}$, $\pi_{3}$ but not in the Boolean algebra over $\pi_{2}$ ?

Another interesting question is,

PROBLEM 3. Is there a recursive $Q$ such that $W T T[N, Q]$ is decidable but $\mathrm{MT}[\mathrm{N}, \mathrm{Q}, \mathrm{Q}]$ is undecidable?

A negative answer to Problem 3 whould imply the decidability of $M T[N, ']$ as a consequence of the decidability of $\operatorname{lif}\left[\mathrm{N},{ }^{2}\right](Q=\phi)$. Hence, a negative answer might be quite difficult.

## BIBLIOGRAPHY

[I] J. R. Büchi, On a decision procedure in restricted second order arithmetic, Proc. Int. Cong. Logic, Wethod. and Philos. Sci. 1960, Stanford Univ. Press, Stanford, 1962.
[2] J. R. Buichi and L. H. Landweber, Solving sequential conditions by finite state operators, Purdue Report CSD TR 14.
[3] M. Davis, Infinite ganes of perfect information, Advances in Game Theory; Princeton Univ. Press, Princeton, 1964, 85-101.
[4] C. C. Elgot and M. O. Rabin, Decidability and undecidability of extensions of second (first) order theories of (generalized) successor, J. Symbolic Logic 31 (1966), 169-181.
[5] S. C. Kleene, Introduction to metanathematics, New York, Van Nostrand, Ansterdam, North Holland and Groningem, Noordhoff, 1952.
[6] S. C. Kleene, Hierarchies of number theoretic predicates, Bull. Aner. Math. Soc. $61(1955)$, 193-213.
[7] R. McNaughton, Testing and generating infinite sequences by a finite automaton, Inf. and Control.9(1966), 521-530.
[8] R. M. Robinson, Restricted set theoretical definitions in arithmetic, Proc. Am. i.lath. Soc. $9(1958)$, 238-242.


[^0]:    *This research was supported by the National Science Foundation (Contract 4730-50-595).
    **Presently at the University of luisconsin, Madison, l!isconsin.

[^1]:    We can also consider $C(X)$ as defining a subset of the Cantor space of $w$-sequences over I, nanely the set of $\omega$-sequences over I which satisfy c. The open and closed sets of the usual totally disconnected topology on this space are of the form $U_{w_{1}} u \ldots U_{v_{n}}$ whereby $w_{i} \varepsilon I^{*}=$ all words over $I$

[^2]:    $\mathrm{l}_{\text {Michael }} 0$. Rabin has obtained a similar result (personal correspondence).

