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DEFINABILITY IN THE MONADIC SECOND-ORDER 
THEORY OF SUCCESSOR* 

By J. Richard Buchi and Lawrence H. Landweber** 
Purdue University, Lafayette, Indiana 

1. INTRODUCTION. Let D = <D,Pj,P
2
,...> be a relational system whereby D 

is a non-empty set and P^ is an m^-ary relation on D. With D^ we 

associate the (weak) monadic second-order theory (VJ)MT[D] consisting of: 

the first-order predicate calculus with individual variables ranging over 

D; monadic predicate variables ranging over (finite) subsets of D; predi-

cate quantifiers; and constants corresponding to . We will 

often use (W)MT[D] ambiguously to mean also the set of true sentences 

of [W)MT[D]. 

In this note we study variants of the structure <N,'> where N 

is the set of natural numbers and
 1

 is the successor function on N. 

Our results are a consequence of McNaughton's [7] work on the w-behavior 

of finite automata and the decision procedure for MT [N,
1

] given in [1], 

The former is essential as we have been unable to obtain proofs which 

utilize only [1]
1

s characterization of w-beliavior. In [2] we discuss 

related results. 

Section 2 studies definability in MT[N,']. For every formula 

C(X) of MT[N,
1

] where X is a vector of unary predicate variables
l 
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the relation C(X) is arithmetic and, in fact, is in the Boolean algebra 

over In section 3, we investigate the existence of decision proced-

ures for 0V)MT[N,',Q] where Q is a subset of N. Such theories were 

previously studied by Elgot and Rabin [4]. For any recursive Q, the 

decision problem for MT[N,',Q] is in ^
 a

l s° define a 

recursive Q for which (WJMTfH/jQ] is undecidable. This provides a 

rather natural example of an undecidable theory which is still arithmetic. 

2. DEFINABILITY IN MT[N,']. 

In this section we study definability in MT[N,'] with respect to 

the arithmetic and classical Borel hierarchies. In particular we are 

interested in those relations definable by formulas C(X), X a vector 

of free set variables, of MT[N,']. The main result is that every such 

relation is in the Boolean algebra over (G
fi
) of the arithmetic (Borel) 

hierarchy where IT (G) arc the recursive (open) sets and C(X) e JI„ (G.) 
0 i . 0 

if it is representable as (V x)(3 y)M(x,y,X), M recursive (a denumerable 

intersection of open sets). In fact Lemma 1 below also gives this result 

for a wider class of C(X) than are definable in MT[N,']. In the fol-

lowing x,y,z,,., are individual variables ranging over N. 

A recursive operator (RO) Z = A(X) is an operator mapping 

w-sequences over a finite set I into id-sequences over a finite set S 

which can be presented in the form 



CD zt = *(x <Ht)) 

whereby Xt = XO,., Xt and $ and <J> are recursive functions from I* into 

S and N into N respectively. Sup Z is the set of members of S 

appearing infinitely often in the u-sec|uence Z — ZO^Zl,,.. 

LEMMA 1. Let Z = A(X) be a RO and U:;2
S

. Then the relation F(X) 

given by 

(2) ( 3 Z) [Z=A(X) sup Z e U] 

is in the Boolean algebra over fl̂  of the arithmetic hierarchy. 

PROOF. F(X) can be written as 

( ax)Cvy) [yix^cxKyjEBjA/V v * M ay) [y>x a *(X4>C>0)=s] 
BeU 'seB 

The relations given by [y>_x A <!>(X<j>(y) )=s] and [y>x 0<&(X4i (y)) eB] are 

recursive because and $ are recursive. Hence F(X) is a Boolean 

combination of formulas of the form ( V y ) ( g x ) M(X,x,y) where ii is 

recursive so F(X) is i
n

 the Boolean algebra over Jl^. Q.E.D, 

A finite automata operator (FAO) is a RO Z = A(X) which can be 

presented in the form 



ZO = c 

Zt
1

 = U[Xt,Zt] 

4. 

whereby Il:IxS-*-S and ceS. Let C(X) be a formula of M T [ ? V ] where 

X is an n-tuple of free set variables. The main definability results of 

[1] and [7] (see [2] for more details) state that from C we can effectively 

construct a presentation of a FAO Z=E(X) as in (3) (i.e., obtain H,S, and 

c) and a U -72® such that 

C(X) . =. (3 2) [Z=E(X)Asup ZEU] 

whereby I = {T,F)
n

. Hence by Lemma 1 we have 

Theorem 1. Every relation between subsets of N which is definable in 

MT[N,'] is arithmetical, and in fact occurs in the Boolean algebra over 

H . Furthermore, given a formula C(X,,...,X ) of i-tTfN,
1

] one can 
^ J- n 

construct an index of the relation C in the Boolean algebra over I^. 

In contrast, all relations R(y^,...,y
m
,X ,. . .,X^) appearing in the 

function-quantifier hierarchy over recursive relations are definable in 

MT[N,',2x] (see [8]). 

l\'e can also consider C(X) as defining a subset of the Cantor space 

of w-sequences over I, namely the set of 10-sequences over I which satisfy 

C, The open and closed sets of the usual totally disconnected topology on 

this space are of the form U u ... uU whereby w.el* = all words over I 



and U^ = {X|(3t)[Xt = w] ). If C is recursive, there is an effective 

procedure which decides whether C(X) or ^C(X) is true after being given 

some finite portion Xt = X0...Xt of X. Hence, if X is such that 
o 

X
Q
t = Xt, then C(X) = C(X

Q
). This implies that every recursive set of 

X's is open and closed. But every C(X) of MTfN,'] is a Boolean 

combination of expressions of the form ( V
 x

) C 3 y)''
!

(
x

jyjX) where for 

fixed x and y r!(x,y,X) is open and closed (since M is recursive). 

Tims by Theorem 1 we obtain, 

COROLLARY 1. If C(X) is a formula of MT[N,
1

], then the relation C(X) 

is in the Boolean algebra over G of the Borel hierarchy. 
6 

Vi'e conclude this section with an example of a C(X) of MT[N,'] 

which is neither a G . nor an F (and therefore neither a E„ nor a 
o o 2 

IT̂ ) - The following remark is observed in [3]. 

(1) A set C(X) is a Gg, if and only if, there is a set W of 

words over I such that C(X) holds, if and only if, w<X for 

infinitely many helv
1

. 

Here w<X (w is initial segment of X) stands for ( g t ) Xt = w. Now 

define C £ {T,F)
N

 by, 

[XO
 A
 ( V x) ( 3 y) [x<y A Xy] ] V l>XO At 3 x) ( V y) [x<y ^<^Xy]} 



Suppose C is a G . Then, by (1), there exists a W £ I * such that 

(3) C(X) .=. W ^{wJw<X> is infinite 

Define the sequence
 w

q»
w

]_»
w

2» ^y 

w_ = shortest v, velf A v of form FF^ 
( 4 )

 k 
w =shortest v, veV,

T

/\v of form w TFF 
n+l n 

By (2) F
w

 belongs to C, therefore by (3) w^ exists and F <_ w
Q
. \ssume 

inductively that exists and Then by (2) belongs to C, 

therefore by (3) w exists and F<w ,. Thus O ) really defines a 
n+l ~ n+l 

sequence of words, and clearly w^elv', ... • Thus, by (5) 

and (2), the sequence Y having all w^'s as initial segments belong to C. 

But this is contradictory, as Y starts with F and has infinitely many 

initial segments in W. Thus and similarly one shows ^C^G^. But 

x<y is definable in HTfN,'], and therefore C is. Consequently, (2) 

provides an example of a set C, definable in MTfM,'], but neither in 

G
f
 nor F . 
o a 

3. DECISION PROBLEMS FOR EXTENSIONS OF MT[N,
1

] 

Elgot and Rabin [8] have studied the existence of decision procedures 

for extensions of MT[N,']. In particular they have shown that MT[N,',Q] 

is decidable if Q is either of {x
k

|x£N},{k
x

|xeN} or {x!|xeN> where k 

is a fixed natural number. The results are obtained by reducing the 
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decision problem for MT[N,',Q] to that for MT[N,'] and then applying the 

procedure given in [1]. If Q = {(x,2x)|xeN}, then the corresponding weak 

monadic theory is undecidable [8], 

Let Q be a subset of N. If 1VMT[N,
1

 ,Q] is undecidable, then so is 

MT[N,',(}]. This follows fro:j the definability of 'X is a finite set' in 

MT[N,'], by the formula ( 3 x) ( V t) [t>x p^Xt] where t>x is an abbrevia-

tion, of {V Y) . Yt a C V w) [Yw» =» YwJ t»Yx. 

If Q is not recursive, then l#fr[N,',Q] is undecidable 

'... ' 

(e.g,, 0 """ eQ can not be effectively decided). If Q is recursive, 

the hierarchy result of section 2 can be applied to give an upper bound to 

the complexity of decision problems for MT[N,',Q]. 

Theorem 2: If Q is recursive then truth in f-rrfN.'.Q] is in E on,. 
J V 

Proof: Let V ^ Z ) be a universal predicate for all predicates P(Z) 

in jl
 t
 which is itself in JI2• By Theorem 1, there is a recursive func-

tion B which maps every formula $(Z) of MT[N,'] into a Boolean expres-

sion B , and a recursive function f which maps every formula 4(Z) of 

4> 

MT[N
>
'] into a finite sequence f^ = f^ > of numbers* such 

that for any Z « N , 

(1) *(Z) holds in MT[N,' ] . = . ^ Z ) . ¥(f^
n
,Z)] 

Let JC(e) stand for ^CejQ), and note that because f e and Q is 

recursive it follows that X e H . Furthermore, (1) may be restated as, 



(2) *(Q) holds in MT[N,' ,QJ . = . B [ X ( f ) X(f )] 

Note that the functions B,f are recursive, and all sentences of 

OT[N,'
f
Q] are of form $(Q) where is a formula of MT[N,']. It 

follows that (2) provides for a recursive reduction of {Ej£ true in MT[N,', 

to the set X (i.e. a Turing machine can be built which, given a sentence 

E of MT[N,',Q] and an oracle for membership in X , decides whether or 

not Z is true). Thus, truth in MT[N,',Q] is reducible to some X e n . 

It follows, by a wellknown result, that truth in MT[N,
1

,Q] belongs to 

£3 0 n
3
. Q.E.D. 

Theorem 2 shows that for no recursive Q is it possible to prove 

MT[N,
1

,Q] undecidable by the standard method of showing that all recursive 

relations are definable. 

If Q is the set of primes, then ( V x ) ( gy) [y>x A QCy) ̂ Q(y")] states 

the twin prime problem in MT[N,
1

,Q]. Indeed, this sentence is in the first 

order theory of <N,',<,Q>. Hence, the problem as to whether 

(W)MT[N,'.primes] is decidable, would seem very difficult. Namely, a 

positive answer would settle the twin prime problem, while on the negative 

side, the standard methods of proving theories undecidable is not available. 
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Theorem 3. There is a recursive Q such that WMTfN/jQ] is undecidable. * 

PROOF. Let R be a recursively enumerable set of primes which is not 

recursive. Let r ^ , ^ , . . . be a recursive enumeration of R and let 

Q
q
 = {r?p

i
|i=l,2,...}, whereby p^ is the ith prime. C^ is obviously 

recursive. To prove that NMT[N,*,Q ] is undecidable it is sufficient to 

show that the first order theory (FT) of <K
J
?I

1
,M

2
,...,Q

q
> is undecidable 

whereby M^ stands for the sot of multiples of k. Just note that each 

M^ is definable in WMT[U,',Q
q
] by the formula 

M
k
(w): ( V X ) . X w A ( V y ) [ X ( y + k ) ^ X y ] ^ X O ) . 

From the definition of R and Q
q
 we obtain 

(*) R(k) .5. m A(3y)[M „(y)AQ
n
(y)] 

k* 0 

Let Z
k
 be the sentence M l A ( 3 y ) [ M

 2
(y) A Q

0
(y)] • By (*) is true 

in FT[N jM j,M2
3
..-,Q

q
] if and only if kcR. But R is not recursive so 

there is no effective procedure for deciding truth in FT[N,M jM^*••«,Q
q
]• 

Q.E.D. 

PROBLEM 1. Is there an 'interesting' recursive Q such that (W)MT[N,',Q3 

is undecidable? How about Q = primes? 

•^Michael 0. Rabin has obtained a similar result (personal correspondence). 



Although WMT[N,',Q ] is undecidable, we have not classified its 
o 

decision problem in the arithmetic hierarchy. This suggests, 

PROBLEM 2. Is there a recursive Q such that the decision problem for 

O'OMTfN,' ,Q] is in E H 11̂  but not in the Boolean algebra over H
2
? 

Another interesting question is, 

PROBLEM 3. Is there a recursive Q such that M-iT[N,
1

,Q] is decidable 

but MT[N,
1

,Q] is undecidable? 

A negative answer to Problem 3 whould imply 

MT[N,'] as a consequence of the decidability of 

a negative answer might be quite difficult. 

the decidability of 

VJITT[N,
1

 ] (Q=<(i) . Hence, 
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