Purdue University

Purdue e-Pubs

Department of Computer Science Technical Reports

Department of Computer Science

1967

Definability in the Monadic Second-Order Theory of Successor

J. Richard Buchi

Lawrence H. Landweber

Report Number: 67-015

Buchi, J. Richard and Landweber, Lawrence H., "Definability in the Monadic Second-Order Theory of Successor" (1967). *Department of Computer Science Technical Reports*. Paper 96. https://docs.lib.purdue.edu/cstech/96

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.

Definability in the Honadic Second-Order Theory of Successor

J. Richard Büchi and Lawrence H. Landweber

September 1967

CSD TR 15

DEFINABILITY IN THE MONADIC SECOND-ORDER THEORY OF SUCCESSOR*

By J. Richard Buchi and Lawrence H. Landweber** Purdue University, Lafayette, Indiana

1. INTRODUCTION. Let $\underline{Q} = \langle D, P_1, P_2, \ldots \rangle$ be a relational system whereby D is a non-empty set and P_1 is an m_1 -ary relation on D. With \underline{D} we associate the (weak) monadic second-order theory (W)MT[\underline{D}] consisting of: the first-order predicate calculus with individual variables ranging over D; monadic predicate variables ranging over (finite) subsets of D; predicate quantifiers; and constants corresponding to P_1, P_2, \ldots . We will often use (W)MT[\underline{D}] ambiguously to mean also the set of true sentences of (W)MT[\underline{D}].

In this note we study variants of the structure $\langle N, ' \rangle$ where N is the set of natural numbers and ' is the successor function on N. Our results are a consequence of McNaughton's [7] work on the ω -behavior of finite automata and the decision procedure for MT [N,'] given in [1]. The former is essential as we have been unable to obtain proofs which utilize only [1]'s characterization of ω -behavior. In [2] we discuss related results.

Section 2 studies definability in MT[N, ']. For every formula C(X) of MT[N, '] where X is a vector of unary predicate variables,

^{*}This research was supported by the National Science Foundation (Contract 4730-50-595).

Presently at the University of Wisconsin, Madison, Wisconsin.

the relation C(X) is arithmetic and, in fact, is in the Boolean algebra over Π_2 . In section 3, we investigate the existence of decision procedures for (W)MT[N,',Q] where Q is a subset of N. Such theories were previously studied by Elgot and Rabin [4]. For any recursive Q, the decision problem for MT[N,',Q] is in $\Sigma_3 \cap \Pi_3$. We also define a recursive Q for which (W)MT[N,',Q] is undecidable. This provides a rather natural example of an undecidable theory which is still arithmetic.

2. DEFINABILITY IN MT[N,'].

In this section we study definability in MT[N,'] with respect to the arithmetic and classical Borel hierarchies. In particular we are interested in those relations definable by formulas C(X), X a vector of free set variables, of MT[N,']. The main result is that every such relation is in the Boolean algebra over Π_2 (G_{δ}) of the arithmetic (Borel) hierarchy where Π_0 (G) are the recursive (open) sets and C(X) $\in \Pi_2$ (G_{δ}) if it is representable as $(\forall x)(\exists y)M(x,y,X)$, M recursive (a denumerable intersection of open sets). In fact Lemma 1 below also gives this result for a wider class of C(X) than are definable in MT[N,']. In the following x,y,z,... are individual variables ranging over N.

A recursive operator (RO) Z = A(X) is an operator mapping w-sequences over a finite set I into w-sequences over a finite set S which can be presented in the form

(1)
$$Zt = \Phi(\overline{X} \phi(t))$$

whereby $\overline{X}t = XO_{p,n}$, Xt and ϕ and ϕ are recursive functions from I* into S and N into N respectively. Sup Z is the set of members of S appearing infinitely often in the ω -sequence Z = 20,21,...

LEMMA 1. Let 2 = A(X) be a RO and $U = 2^{5}$. Then the relation F(X) given by

(2)
$$(\exists Z) [Z=\Lambda(X) \land \sup Z \in U]$$

is in the Boolean algebra over Π_2 of the arithmetic hierarchy.

PROOF. F(X) can be written as

$$\bigvee_{B \in U} (\exists x) (\forall y) [y \ge x \supset \phi(\overline{X}\phi(y)) \in B] \land \bigwedge_{S \in B} (\forall x) (\exists y) [y \ge x \land \phi(\overline{X}\phi(y)) = s]$$

The relations given by $[y \ge x \land \psi(\overline{X}\phi(y)) = s]$ and $[y \ge x \supset \psi(\overline{X}\phi(y)) \in B]$ are recursive because ψ and ϕ are recursive. Hence F(X) is a Boolean combination of formulas of the form $(\forall y)(\exists x) \ M(X,x,y)$ where M is recursive so F(X) is in the Boolean algebra over Π_2 . Q.E.D.

A finite automata operator (FAO) is a RO Z = $\Lambda(X)$ which can be presented in the form

$$20 = c$$
(3)
$$Zt' \simeq H[Xt, Zt]$$

whereby $H: I \times S \to S$ and $c \in S$. Let C(X) be a formula of MT[N, '] where X is an n-tuple of free set variables. The main definability results of [1] and [7] (see [2] for more details) state that from C we can effectively construct a presentation of a FAO Z=E(X) as in (3) (i.e., obtain H,S, and c) and a $U \in 2^S$ such that

$$C(X) = . (\exists Z) [Z=E(X) \land sup Z \in U]$$

whereby $I = {T,F}^{n}$. Hence by Lemma 1 we have

<u>Theorem 1</u>. Every relation between subsets of N which is definable in MT[N, '] is arithmetical, and in fact occurs in the Boolean algebra over Π_2 . Furthermore, given a formula $C(X_1, \ldots, X_n)$ of MT[N, '] one can construct an index of the relation C in the Boolean algebra over Π_2 .

In contrast, all relations $R(y_1, \ldots, y_m, X_1, \ldots, X_n)$ appearing in the function-quantifier hierarchy over recursive relations are definable in MT[N, 1, 2x] (see [8]).

We can also consider C(X) as defining a subset of the Cantor space of ω -sequences over I, namely the set of ω -sequences over I which satisfy C. The open and closed sets of the usual totally disconnected topology on this space are of the form $\bigcup_{W_1} \cup \cdots \cup \bigcup_{W_n}$ whereby $w_1 \in I^* \approx$ all words over I and $U_{W} = \{X \mid (\exists t) \{ \overline{X}t = w \} \}$. If C is recursive, there is an effective procedure which decides whether C(X) or $\mathcal{N}C(X)$ is true after being given some finite portion $\overline{X}t = X0...Xt$ of X. Hence, if X_{0} is such that $\overline{X}_{0}t = \overline{X}t$, then $C(X) \equiv C(X_{0})$. This implies that every recursive set of X's is open and closed. But every C(X) of $\Im T[N, ']$ is a Boolean combination of expressions of the form $(\forall x)(\exists y)M(x,y,X)$ where for fixed x and y $\widehat{X} \Vdash (x,y,X)$ is open and closed (since M is recursive). Thus by Theorem 1 we obtain,

COROLLARY 1. If C(X) is a formula of MT[N, '], then the relation C(X) is in the Boolean algebra over G_{δ} of the Borel hierarchy.

We conclude this section with an example of a C(X) of MT[N,'] which is neither a G_{δ} nor an F_{σ} (and therefore neither a Σ_2 nor a Π_2). The following remark is observed in [3].

(1) A set C(X) is a G_{δ} , if and only if, there is a set W of words over I such that C(X) holds, if and only if, w<X for infinitely many weW.

Here w<X (w is initial segment of X) stands for $(gt) \overline{X}t = w$. Now define $C \subseteq \{T,F\}^N$ by,

(2) $[X \land (\forall x) (\exists y) [x \le y \land xy]] \lor [\nabla (\forall x) (\forall y) [x \le y \ge \nabla xy]]$

Suppose C is a G_{g} . Then, by (1), there exists a $W \subseteq I^*$ such that

(3) C(X) $. \equiv . W \cap \{w \mid w < X\}$ is infinite Define the sequence w_0, w_1, w_2, \ldots by

(4) $w_{0} = \text{shortest } v, \quad v \in \mathbb{W} \land v \text{ of form } \mathbb{PF}^{k}$ $w_{n+1} = \text{shortest } v, \quad v \in \mathbb{W} \land v \text{ of form } w_{n} \text{TFF}^{k}$

By (2) F^{ω} belongs to C, therefore by (3) w_0 exists and $F \leq w_0$. Assume inductively that w_n exists and $F \leq w_n$. Then by (2) $w_n TF^{\omega}$ belongs to C, therefore by (3) w_{n+1} exists and $F \leq w_{n+1}$. Thus (4) really defines a sequence of words, and clearly $w_1 \in W$, $F \leq w_0 \leq w_1 \leq w_2 \ldots$. Thus, by (3) and (2), the sequence Y having all w_1 's as initial segments belong to C. But this is contradictory, as Y starts with F and has infinitely many initial segments in W. Thus $C \notin G_{\delta}$, and similarly one shows $\nabla C \notin G_{\delta}$. But $x \leq y$ is definable in $\Im T[N, 1]$, and therefore C is. Consequently, (2) provides an example of a set C, definable in $\Im T[N, 1]$, but neither in G_{δ} nor F_0 .

3. DECISION PROBLEMS FOR EXTENSIONS OF MT[N,']

Elgot and Rabin [8] have studied the existence of decision procedures for extensions of MT[N,']. In particular they have shown that MT[N,',Q] is decidable if Q is either of $\{x^k | x \in N\}, \{k^x | x \in N\}$ or $\{x! | x \in N\}$ where k is a fixed natural number. The results are obtained by reducing the

б.

decision problem for MT[N,',Q] to that for MT[N,'] and then applying the procedure given in [1]. If $Q = \{(x,2x) | x \in N\}$, then the corresponding weak monadic theory is undecidable [8].

Let Q be a subset of N. If WMT[N,',Q] is undecidable, then so is MT[N,',Q]. This follows from the definability of 'X is a finite set' in MT[N,'], by the formula $(\exists x)(\forall t)[t \ge x \supset \forall Xt]$ where $t \ge x$ is an abbreviation of $(\forall Y)$. Yt $\land (\forall w)[Yw' \supset Yw] \supset Yx$.

If Q is not recursive, then WMT[N,',Q] is undecidable (e.g., $0'\cdots'\epsilon Q$ can not be effectively decided). If Q is recursive, the hierarchy result of section 2 can be applied to give an upper bound to the complexity of decision problems for MT[N,',Q].

<u>Theorem 2</u>: If Q is recursive then truth in MT[N, ', Q] is in $\Sigma_3 \cap \Pi_3$.

<u>Proof</u>: Let $\Psi(e,Z)$ be a universal predicate for all predicates P(Z)in Π_2 , which is itself in Π_2 . By Theorem 1, there is a recursive function B which maps every formula $\Phi(Z)$ of MT[N,'] into a Boolean expression B, and a recursive function f which maps every formula $\Phi(Z)$ of MT[N,'] into a finite sequence $f_{\phi} = \langle f_{\phi,1}, \dots, f_{\phi,n} \rangle$ of numbers, such that for any $Z \leq N$,

(1) $\phi(Z)$ holds in MT[N,'] $= B_{\phi}[\Psi(f_{\phi,1},Z), \dots, \Psi(f_{\phi,n},Z)]$

Let X(e) stand for $\Psi(e,Q)$, and note that because $\Psi \in \Pi_2$ and Q is recursive it follows that $X \in \Pi_2$. Furthermore, (1) may be restated as, (2) $\Phi(Q)$ holds in $MT[N, ', Q] := B_{\Phi}[X(f_{\Phi, 1}), \dots, X(f_{\Phi, n})]$

Note that the functions B,f are recursive, and all sentences of MT[N,',Q] are of form $\Phi(Q)$ where $\Phi(Z)$ is a formula of MT[N,']. It follows that (2) provides for a recursive reduction of $\{\Sigma\}\Sigma$ true in MT[N,',Q] $\}$ to the set X (i.e. a Turing machine can be built which, given a sentence Σ of MT[N,',Q] and an oracle for membership in X, decides whether or not Σ is true). Thus, truth in MT[N,',Q] is reducible to some X $\in \Pi_2$. It follows, by a wellknown result, that truth in MT[N,',Q] belongs to $\Sigma_3 \cap \Pi_3$. Q.E.D.

Theorem 2 shows that for no recursive Q is it possible to prove MT[N,',Q] undecidable by the standard method of showing that all recursive relations are definable.

If Q is the set of primes, then $(\forall x)(\exists y)[y > x \land Q(y) \land Q(y'')]$ states the twin prime problem in MT[N,',Q]. Indeed, this sentence is in the first order theory of $\langle N, ', \langle,Q \rangle$. Hence, the problem as to whether (W)MT[N,',primes] is decidable, would seem very difficult. Namely, a positive answer would settle the twin prime problem, while on the negative side, the standard methods of proving theories undecidable is not available.

Theorem 3. There is a recursive Q such that WMT[N,',Q] is undecidable.¹

PROOF. Let R be a recursively enumerable set of primes which is not recursive. Let r_1, r_2, \ldots be a recursive enumeration of R and let $Q_0 = \{r_i^2 p_i | i=1,2,\ldots\}$, whereby p_i is the ith prime. Q_0 is obviously recursive. To prove that WMT[N,',Q_0] is undecidable it is sufficient to show that the first order theory (FT) of $\langle N, N_1, M_2, \ldots, Q_0 \rangle$ is undecidable whereby M_k stands for the set of multiples of k. Just note that each M_k is definable in WMT[N,',Q_0] by the formula

$$M_{\mathbf{k}}(\mathbf{w}): (\forall X). X \mathbf{w} \land (\forall y) [X(y+k) \supset Xy] \supset X0).$$

From the definition of R and Q_0 we obtain

(*) R(k) .=.
$$k \neq 1 \land (\exists y) [N_{q}(y) \land Q_{q}(y)]$$

 k^{2}

Let Σ_k be the sentence $k \neq 1 \land (\exists y) [M_{k^2}(y) \land Q_0(y)]$. By (*) Σ_k is true in $FT[N, M_1, M_2, \dots, Q_0]$ if and only if keR. But R is not recursive so there is no effective procedure for deciding truth in $FT[N, M_1, M_2, \dots, Q_0]$. Q.E.D.

PROBLEM 1. Is there an 'interesting' recursive Q such that (W)MT[N,',Q] is undecidable? How about Q = primes?

Michael O. Rabin has obtained a similar result (personal correspondence).

Although WMT[N,',Q] is undecidable, we have not classified its decision problem in the arithmetic hierarchy. This suggests,

PROBLEM 2. Is there a recursive Q such that the decision problem for (W)MT[N,',Q] is in Σ_3 () Π_5 but not in the Boolean algebra over Π_2 ?

Another interesting question is,

PROBLEM 3. Is there a recursive Q such that WMT[N,',Q] is decidable but MT[N,',Q] is undecidable?

A negative answer to Problem 3 whould imply the decidability of MT[N,'] as a consequence of the decidability of WT[N,'] (Q= ϕ). Hence, a negative answer might be quite difficult.

BIBLIOGRAPHY

- J. R. Büchi, On a decision procedure in restricted second order arithmetic, Proc. Int. Cong. Logic, Method. and Philos. Sci. 1960, Stanford Univ. Press, Stanford, 1962.
- [2] J. R. Büchi and L. H. Landweber, Solving sequential conditions by finite state operators, Purdue Report CSD TR 14.
- [3] M. Davis, Infinite games of perfect information, Advances in Game Theory; Princeton Univ. Press, Princeton, 1964, 85-101.
- [4] C. C. Elgot and M. O. Rabin, Decidability and undecidability of extensions of second (first) order theories of (generalized) successor, J. Symbolic Logic 31(1966), 169-181.
- [5] S. C. Kleene, Introduction to metamathematics, New York, Van Nostrand, Amsterdam, North Holland and Groningem, Noordhoff, 1952.
- [6] S. C. Kleene, Hierarchies of number theoretic predicates, Bull. Amer. Math. Soc. 61(1955), 193-213.
- [7] R. McNaughton, Testing and generating infinite sequences by a finite automaton, Inf. and Control.9(1966), 521-530.
- [8] R. M. Robinson, Restricted set theoretical definitions in arithmetic, Proc. Am. Math. Soc. 9(1958), 238-242.

11.

1