
DEFINABILITY UNDER DUALITY

PANDELIS DODOS

Abstract. It is shown that if A is an analytic class of separable Banach

spaces with separable dual, then the set A∗ = {Y : ∃X ∈ A with Y ∼= X∗} is

analytic. The corresponding result for pre-duals is false.

1. Introduction

(A) All separable Banach spaces can be realized, up to isometry, as subspaces of

C(2N). Denoting by SB the set of all closed linear subspaces of C(2N) and endowing

SB with the relative Effros–Borel structure, the set SB becomes the standard Borel

space of all separable Banach spaces (see [AD, AGR, Bos, Ke]). By identifying any

class of separable Banach spaces with a subset of SB, the space SB provides the

appropriate frame for studying structural properties of classes of Banach spaces.

This identification is ultimately related to universality problems in Banach space

theory. This is justified by a number of results (see, e.g., [AD, DF, D, DLo]) of

which the following one, taken from [DF], is a sample.

If A is an analytic subset of SB such that every X ∈ A is reflexive, then there exists

a reflexive Banach space Y , with a Schauder basis, that contains isomorphic copies

of every X ∈ A.

To see how such a result is used, let us consider the set UC consisting of all X ∈ SB

which are uniformly convex. It is a classical fact (see, e.g., [LT]) that UC contains

only reflexive spaces. Moreover, it is easily checked that UC is a Borel subset of SB.

Applying the above result, we recover a recent result of Odell and Schlumprecht

[OS] asserting the existence of a separable reflexive space R containing an isomor-

phic copy of every separable uniformly convex Banach space. The problem of the

existence of such a space was posed by Jean Bourgain [Bou2].

(B) As we have already indicated, in applications one has to decide whether a given

class of separable Banach spaces is analytic or not. Sometimes this is straight-

forward to check invoking, simply, the definition of the class. There are classes,

however, which are defined implicitly using a certain Banach space operation. In

these cases, usually, deeper arguments are involved.
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This note is concerned with the question whether analyticity is preserved under

duality, a very basic operation encountered in Banach space theory. Precisely, the

following two questions are naturally asked in such a context.

(Q1) If A is an analytic class of separable dual Banach spaces, then is the set

A∗ := {X ∈ SB : ∃Y ∈ A with X∗ ∼= Y } analytic?

(Q2) If A is an analytic class of separable Banach spaces with separable dual,

then is the set A∗ := {Y ∈ SB : ∃X ∈ A with Y ∼= X∗} analytic?

Question (Q1) has a negative answer and a counterexample is the set A = {Y ∈

SB : Y ∼= ℓ1}, that is, the isomorphic class of ℓ1 (a more detailed explanation will

be given later on). However, for question (Q2) we do have a positive result.

Theorem 1. Let A be an analytic class of separable Banach spaces with separable

dual. Then the set A∗ = {Y ∈ SB : ∃X ∈ A with Y ∼= X∗} is analytic.

The proof of Theorem 1 is based on a selection result which is perhaps of in-

dependent interest. To state it, let H = [−1, 1]N be equipped with the product

topology. That is, H is the closed unit ball of ℓ∞ with the weak* topology. A

subset S of H will be called norm separable if it is separable with respect to the

metric induced by the supremum norm ‖ · ‖∞. The selection result we need is the

following.

Proposition 2. Let Z be a standard Borel space and let A ⊆ Z ×H be Borel such

that the following hold.

(1) For every z ∈ Z the section Az is nonempty and compact.

(2) For every z ∈ Z the section Az is norm separable.

Then there exists a sequence (fn) of Borel selectors of A such that for every z ∈ Z

the sequence
(

fn(z)
)

is norm dense in Az.

As usual, a map f : Z → H is said to be a Borel selector of A if f is a Borel map

such that
(

z, f(z)
)

∈ A for every z ∈ Z. The proof of Proposition 2 is based on a

Szlenk type index defined on all norm-separable compact subsets of H. Actually,

what we use is the fact that this index has nice definability properties (it is a

co-analytic rank) and it satisfies boundedness.

We remark that the use of boundedness in selection theorems is common in

descriptive set theory (it is used, for instance, in the proof of the strategic uni-

formization theorem—see [Ke, Theorem 35.32]). Also we notice that the transfinite

manipulations used in the proof of Proposition 2 are similar to the ones in the se-

lection theorems of Jayne and Rogers [JR], and Ghoussoub, Maurey and Schacher-

mayer [GMS]. We point out, however, that the crucial definability considerations

in the proof of Proposition 2 do not appear in [JR, GMS].

1.1. Notation. By N = {0, 1, 2, . . . } we denote the natural numbers. For every

Polish space X by K(X) we denote the set of all compact subsets of X (the empty
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set is included). We equipK(X) with the Vietoris topology τV , that is, the topology

generated by the sets

{K ∈ K(X) : K ∩ U 6= ∅} and {K ∈ K(X) : K ⊆ U}

where U ranges over all nonempty open subsets of X. It is well-known (see, e.g.,

[Ke]) that the space (K(X), τV ) is Polish. A map D : K(X) → K(X) is said to be

a derivative on K(X) provided that D(K) ⊆ K and D(K1) ⊆ D(K2) if K1 ⊆ K2.

For every K ∈ K(X) by transfinite recursion one defines the iterated derivatives

D(ξ)(K) of K by the rule

D(0)(K) = K, D(ξ+1)(K) = D
(

D(ξ)(K)
)

and D(λ) =
⋂

ξ<λ

D(ξ)(K) if λ is limit.

The D-rank of K is the least ordinal ξ for which D(ξ)(K) = D(ξ+1)(K). It is

denoted by |K|D. Moreover, set D(∞)(K) := D|K|D (K). If X,Y are sets and

A ⊆ X × Y , then for every x ∈ X by Ax we denote the section of A at x, that is,

the set {y : (x, y) ∈ A}. All the other pieces of notation we use are standard (see,

for instance, [Ke, LT]).

1.2. The counterexample to question (Q1). We have already mentioned that

the counterexample is the isomorphic class of ℓ1, that is, the set A = {Y : Y ∼= ℓ1}.

Since the equivalence relation of isomorphism ∼= is analytic in SB× SB (see [Bos]),

the set A is analytic. We will show that the set

A∗ := {X : ∃Y ∈ A with X∗ ∼= Y } = {X : X∗ ∼= ℓ1}

is not analytic. The argument below goes back to the fundamental work of Bourgain

on C(K) spaces, with K countable compact (see [Bou1]). Specifically, there exists

a Borel map Φ: K(2N) → SB such that for every K ∈ K(2N) the space Φ(K) is

isomorphic to C(K) (see [Ke, page 263]). Denote by Kω(2
N) the set of all countable

compact subsets of 2N. It follows that

K ∈ Kω(2
N) ⇔ C(K)∗ ∼= ℓ1 ⇔ Φ(K) ∈ A∗.

Therefore, Kω(2
N) = Φ−1(A∗). By a classical result of Hurewicz (see [Ke, Theorem

27.5]), the set Kω(2
N) is co-analytic non-Borel and so the set A∗ is not analytic (for

if not, we would have that Kω(2
N) is analytic). In descriptive set-theoretic terms,

the above argument shows that the set A∗ is Borel Π1
1-hard.

2. Proof of Proposition 2

In what follows, by H we shall denote the set [−1, 1]N equipped with the product

topology. We recall the following well-known topological lemma (see, e.g., [GM, Ro]

and the references therein). For the sake of completeness we include a proof.

Lemma 3. Let K ⊆ H be nonempty and compact. If K is norm separable, then

for every ε > 0 there exists an open subset U of H such that K ∩ U 6= ∅ and

‖ · ‖∞ − diam(K ∩ U) 6 ε.
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Proof. We fix a compatible metric ρ for H with ρ − diam(H) 6 1 (notice that

such a metric ρ is necessarily complete). Assume, towards a contradiction, that

the lemma is false. Hence, we can construct a family (Vt) (t ∈ 2<N) of nonempty

relatively open subsets of K such that the following are satisfied.

(a) For every t ∈ 2<N we have V ta0 ∩ V ta1 = ∅,
(

V ta0 ∪ V ta1

)

⊆ Vt and

ρ− diam(Vt) 6 2−|t|.

(b) For every n ∈ N with n > 1, every t, s ∈ 2n with t 6= s and every pair

(f, g) ∈ Vt × Vs we have ‖f − g‖∞ > ε.

We set P :=
⋃

σ∈2N
⋂

n∈N
Vσ|n. By (a) above, we see that P is a perfect subset of K.

On the other hand, by (b), we have that ‖f−g‖∞ > ε for every f, g ∈ P with f 6= g.

That is, K is not norm separable, a contradiction. The proof is completed. �

Lemma 3 suggests a canonical derivative operation on compact subsets of H,

similar to the derivative operation appearing in Szlenk’s analysis of separable dual

spaces [Sz]. Actually, our interest on it stems from the fact that it has the right

definability properties.

To define this derivative, let (Un) be an enumeration of a countable basis of H

(we will assume that every Un is nonempty). This basis will be fixed. Let ε > 0 be

arbitrary. Define Dn,ε : K(H) → K(H) by

Dn,ε(K) =







K \ Un if K ∩ Un 6= ∅ and ‖ · ‖∞ − diam(K ∩ Un) 6 ε,

K otherwise.

Notice that Dn,ε is a derivative on K(H). Now define Dε : K(H) → K(H) by

Dε(K) =
⋂

n Dn,ε(K). That is,

Dε(K) = K \
⋃

{Un : K ∩ Un 6= ∅ and ‖ · ‖∞ − diam(K ∩ Un) 6 ε}.

Clearly Dε is derivative on K(H) too.

Lemma 4. Let ε > 0. Then the following hold.

(i) For every n ∈ N the map Dn,ε is Borel.

(ii) The map Dε is a Borel derivative.

Proof. (i) Fix n ∈ N and set

An := {K ∈ K(H) : K ∩ Un 6= ∅ and ‖ · ‖∞ − diam(K ∩ Un) 6 ε}.

Then An is Borel (actually it is the complement of a Kσ set) in K(H), since

K /∈ An ⇔ (K ∩ Un = ∅) or
(

∃f, g ∈ K ∩ Un

∃l ∈ N ∃m ∈ N with |f(l)− g(l)| > ε+
1

m+ 1

)

.

Now observe that Dn,ε(K) = K if K /∈ An and Dn,ε(K) = K \Un if K ∈ An. This

easily implies that Dn,ε is Borel.



DEFINABILITY UNDER DUALITY 5

(ii) Consider the map F : K(H)N → K(H)N defined by

F
(

(Kn)
)

=
(

Dn,ε(Kn)
)

.

By part (i), we have that F is Borel. Moreover, by [Ke, Lemma 34.11], the map
⋂

: K(H)N → K(H) defined by
⋂
(

(Kn)
)

=
⋂

n Kn is Borel too. Finally, let

I : K(H) → K(H)N be defined by I(K) = (Kn) with Kn = K for every n. Clearly

I is continuous. Noticing that Dε(K) =
⋂
(

F (I(K))
)

, the result follows. �

We will need the following well-known result concerning sets in product spaces

with compact sections (see [Ke, Theorem 28.8]).

Theorem 5. Let Z be a standard Borel space, let H be a Polish space and let

A ⊆ Z ×H with compact sections. Let ΦA : Z → K(H) be defined by ΦA(z) = Az

for every z ∈ Z. Then A is Borel in Z ×H if and only if ΦA is a Borel map.

Now let B ⊆ H and ε > 0. We say that a subset S of B is norm ε-dense in B if

for every g ∈ B there exists f ∈ S with ‖f − g‖∞ 6 ε.

Lemma 6. Let Z and A be as in Proposition 2. Also let ε > 0 and let Ã ⊆ Z×H be

Borel with Ã ⊆ A and such that for every z ∈ Z the section Ãz is a (possibly empty)

compact set. Then there exists a sequence (fn) of Borel selectors of A such that for

every z ∈ Z if the section Ãz is nonempty, then the set {fn(z) : fn(z) ∈ Ãz\Dε(Ãz)}

is nonempty and norm ε-dense in Ãz \ Dε(Ãz).

Proof. Let n ∈ N. By Theorem 5, the map ΦÃ is Borel. Set

Zn := {z ∈ Z : Ãz ∩ Un 6= ∅ and ‖ · ‖∞ − diam(Ãz ∩ Un) 6 ε}.

Then Zn is Borel in Z. To see this, notice that Zn = Φ−1

Ã
(An) where An is defined

in the proof of part (i) of Lemma 4. Now let Ãn ⊆ Z ×H be defined by the rule

(z, f) ∈ Ãn ⇔
(

z ∈ Zn and f ∈ Un and (z, f) ∈ Ã
)

or
(

z /∈ Zn and (z, f) ∈ A
)

.

It is easy to see that for every n ∈ N the set Ãn is a Borel set with nonempty

σ-compact sections. By the Arsenin–Kunugui theorem (see [Ke, Theorem 35.46]),

there exists a Borel map fn : Z → H such that
(

z, fn(z)
)

∈ Ãn for every z ∈ Z. We

claim that the sequence (fn) is the desired one. Clearly it is a sequence of Borel

selectors of A. What remains is to check that it has the desired property. So, let

z ∈ Z such that Ãz is nonempty and let f ∈ Ãz \Dε(Ãz). It follows readily by the

definition of Dε that there exists n0 ∈ N such that z ∈ Zn0
and (z, f) ∈ Ãn0

. The

definition of Ãn0
yields that the set {h : (z, h) ∈ Ãn0

} has norm diameter less or

equal to ε. Since (z, fn0
(z)) ∈ Ãn0

, we conclude that ‖f − fn0
(z)‖∞ 6 ε and the

proof is completed. �
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Before we proceed to the proof of Proposition 2, we need the following facts

about the derivative operation Dε described above. By Lemma 4, the map Dε is a

Borel derivative on K(H). By [Ke, Theorem 34.10], it follows that the set

ΩDε
:= {K ∈ K(H) : D(∞)

ε (K) = ∅}

is co-analytic and that the map K → |K|Dε
is a co-analytic rank on ΩDε

(a Π1
1-rank

in the technical logical jargon—see [Ke] for the definition and the properties of co-

analytic ranks). We are particulary interested in the following important property

which is shared by all co-analytic ranks (see [Ke, Theorem 35.22]): if S is an

analytic subset of ΩDε
, then

sup{|K|Dε
: K ∈ S} < ω1.

(This property is known as boundedness.) We are now ready to give the proof of

Proposition 2.

Proof of Proposition 2. Let A ⊆ Z ×H be as in the statement of the proposition.

By Theorem 5, the map ΦA : Z → K(H) defined by ΦA(z) = Az is Borel, and so,

the set {Az : z ∈ Z} is an analytic subset of K(H).

Now, let ε > 0 be arbitrary and consider the derivative operation Dε. By our

assumptions on A and Lemma 3, we see that for every z ∈ Z and every ξ < ω1 if

D
(ξ)
ε (Az) 6= ∅, then D

(ξ+1)
ε (Az)  D

(ξ)
ε (Az). It follows that the transfinite sequence

(

D
(ξ)
ε (Az)

)

(ξ < ω1) must be stabilized at ∅, and so, {Az : z ∈ Z} ⊆ ΩDε
. Hence,

by boundedness, we obtain that

sup
{

|Az|Dε
: z ∈ Z

}

= ξε < ω1.

For every ξ < ξε we define recursively Aξ ⊆ Z×H as follows. First we set A0 := A.

If ξ = ζ + 1 is a successor ordinal, then define Aξ by the rule

(z, f) ∈ Aξ ⇔ f ∈ Dε

(

(Aζ)z
)

where (Aζ)z is the section {f : (z, f) ∈ Aζ} of Aζ . If ξ is limit, then set

(z, f) ∈ Aξ ⇔ (z, f) ∈
⋂

ζ<ξ

Aζ .

Claim. The following hold.

(1) For every ξ < ξε the set Aξ is a Borel subset of A with compact sections.

(2) For every (z, f) ∈ Z×H with (z, f) ∈ A there exists a unique ordinal ξ < ξε

such that (z, f) ∈ Aξ \Aξ+1, equivalently, f ∈ (Aξ)z \ Dε

(

(Aξ)z
)

.

Proof of the claim. (1) By induction on all ordinals less than ξε. For ξ = 0 it is

straightforward. If ξ = ζ+1 is a successor ordinal, then, by our inductive hypothesis

and Theorem 5, the map z 7→ (Aζ)z is Borel. By part (ii) of Lemma 4, the map

z 7→ Dε

(

(Aζ)z
)

is Borel too. By the definition of Aξ = Aζ+1 and invoking Theorem

5 once more, we conclude that Aξ is a Borel subset of A with compact sections. If
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ξ is limit, then this is an immediate consequence of our inductive hypothesis and

the definition of Aξ.

(2) For every z ∈ Z let ξz = |Az|Dε
6 ξε. Notice that Az is partitioned into the

disjoint sets D
(ξ)
ε (Az) \D

(ξ+1)
ε (Az) with ξ < ξz. By transfinite induction, one easily

shows that (Aξ)z = D
(ξ)
ε (Az) for every ξ < ξz. It follows that

D(ξ)
ε (Az) \ D

(ξ+1)
ε (Az) = (Aξ)z \ (A

ξ+1)z = (Aξ)z \ Dε

(

(Aξ)z
)

.

The claim is proved. �

By part (1) of the claim, for every ξ < ξε we may apply Lemma 6 for the set Aξ,

and we obtain for every ξ < ξε a sequence (fξ
n) of Borel selectors of A as described

in Lemma 6. Enumerate the sequence (fξ
n) (ξ < ξε, n ∈ N) in a single sequence, say

as (fn). Clearly the sequence (fn) is a sequence of Borel selectors of A. Moreover,

by part (2) of the above claim and the properties of the sequence obtained by

Lemma 6, we see that for every z ∈ Z the set {fn(z) : n ∈ N} is norm ε-dense

in Az. Applying the above for ε = (m+ 1)−1 with m ∈ N, the result follows. �

3. Proof of Theorem 1

Before we embark into the proof, we need to discuss some standard facts (see, e.g.,

[Ke, page 264]). First we notice that, by the Kuratowski–Ryll-Nardzewski selection

theorem (see [Ke, Theorem 12.13]), there exists a sequence dn : SB → C(2N) (n ∈ N)

of Borel functions such that for every X ∈ SB the sequence
(

dn(X)
)

is dense in X

and closed under rational linear combinations.

Using this, for every X ∈ SB we can identify the closed unit ball B1(X
∗) of X∗

with a compact subset KX∗ of H = [−1, 1]N. In particular, we view every element

x∗ ∈ B1(X
∗) as an element f ∈ H by identifying it with the sequence n 7→ x∗(dn(X))

‖dn(X)‖

(if dn(X) = 0, then we define this ratio to be 0). There are two crucial properties

established with this identification.

(P1) The set D ⊆ SB×H defined by

(X, f) ∈ D ⇔ f ∈ KX∗

is Borel. Indeed, notice that

(X, f) ∈ D ⇔ ∀n,m, k ∈ N ∀p, q ∈ Q we have
[

p · dn(X) + q · dm(X) = dk(X) ⇒

p · ‖dn(X)‖ · f(n) + q · ‖dm(X)‖ · f(m) = ‖dk(X)‖ · f(k)
]

.
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(P2) If f0, . . . , fk ∈ KX∗ and x∗
0, . . . , x

∗
k denote the corresponding elements in

B1(X
∗), then for every a0, . . . , ak ∈ R we have

∥

∥

k
∑

i=0

aix
∗
i

∥

∥ = sup
{
∣

∣

∣

k
∑

i=0

ai
x∗
i (dn(X))

‖dn(X)‖

∣

∣

∣
: dn(X) 6= 0

}

= sup
{ ∣

∣

∣

k
∑

i=0

aifi(n)
∣

∣

∣
: n ∈ N

}

=
∥

∥

k
∑

i=0

aifi
∥

∥

∞
.

In other words, this identification of B1(X
∗) with KX∗ is isometric.

We proceed to the proof of Theorem 1.

Proof of Theorem 1. Let A be an analytic subset of SB such that every X ∈ A has

separable dual. Denote by SD the set of all X ∈ SB with separable dual. It is

co-analytic (see, e.g., [Ke, Theorem 33.24]). Hence, by Lusin’s separation theorem

(see [Ke, Theorem 14.7]), there exists Z ⊆ SD Borel with A ⊆ Z. Define G ⊆ Z×H

by the rule

(X, f) ∈ G ⇔ f ∈ KX∗ .

By property (P1) above, it follows that G is a Borel set such that for every X ∈ Z

the section GX of G at X is nonempty, compact and norm-separable. We apply

Proposition 2 and we obtain a sequence fn : Z → H (n ∈ N) of Borel selectors of

G such that for every X ∈ Z the sequence
(

fn(X)
)

is norm dense in GX = KX∗ .

Notice that, by property (P2) above, for every Y ∈ SB and every X ∈ Z we have

Y ∼= X∗ ⇔ ∃(yn) ∈ Y N ∃k > 1 with span{yn : n ∈ N} = Y

and (yn)
k
∼

(

fn(X)
)

where (yn)
k
∼

(

fn(X)
)

if for every m ∈ N and every a0, . . . , am ∈ R we have

1

k

∥

∥

m
∑

n=0

anyn
∥

∥ 6
∥

∥

m
∑

n=0

anfn(X)
∥

∥

∞
6 k

∥

∥

m
∑

n=0

anyn
∥

∥.

For every k ∈ N with k > 1 consider the relation Ek in C(2N)N ×HN defined by

(

(yn), (hn)
)

∈ Ek ⇔ (yn)
k
∼ (hn).

Then Ek is Borel since

(yn)
k
∼ (hn) ⇔ ∀m ∀a0, . . . , am ∈ Q

(

∀l
∣

∣

m
∑

n=0

anhn(l)
∣

∣ 6 k
∥

∥

m
∑

n=0

anyn
∥

∥

)

and
(

∀p ∃i
1

k

∥

∥

m
∑

n=0

anyn
∥

∥−
1

p+ 1
6

∣

∣

m
∑

n=0

anhn(i)
∣

∣

)

.

The sequence (fn) consists of Borel functions, and so, the relation Ik in C(2N)N×Z

defined by the rule
(

(yn), X
)

∈ Ik ⇔
(

(yn), (fn(X))
)

∈ Ek
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is Borel. Finally, the relation S in SB× C(2N)N defined by
(

Y, (yn)
)

∈ S ⇔ (∀n yn ∈ Y ) and span{yn : n ∈ N} = Y

is Borel (see [Bos, Lemma 2.6]). Now set A∗ = {Y ∈ SB : ∃X ∈ A with X∗ ∼= Y }.

By the above discussion, it follows that

Y ∈ A∗ ⇔ ∃X ∈ A ∃(yn) ∈ C(2N)N ∃k > 1 with
(

Y, (yn)
)

∈ S

and
(

(yn), X
)

∈ Ik.

Clearly the above formula gives an analytic definition of A∗, as desired. �

4. Further Consequences

The following proposition is a second application of Proposition 2. It implies

that, although question (Q1) stated in the introduction is false, its relativized

version to any analytic subset of SD is true. Specifically, we have the following

proposition.

Proposition 7. Let A be an analytic class of separable dual spaces. Also let B be

an analytic subset of SD. Then the set A∗(B) := {X ∈ B : ∃Y ∈ A with X∗ ∼= Y }

is analytic.

Proof. Arguing as in the proof of Theorem 1, we select a Borel subset Z of SD such

that B ⊆ Z. Define G ⊆ Z × H by setting (X, f) ∈ G if and only if f ∈ KX∗ .

Then G is Borel. Let fn : Z → H (n ∈ N) be the sequence of Borel selectors of G

obtained by Proposition 2. Also let Ik (k ∈ N) and S be the relations defined in

the proof of Theorem 1. Now observe that

X ∈ A∗(B) ⇔ (X ∈ B) and
[

∃Y ∈ A ∃(yn) ∈ C(2N)N ∃k > 1 with
(

Y, (yn)
)

∈ S and
(

(yn), X
)

∈ Ik
]

.

Therefore, the set A∗(B) is analytic, as desired. �

Remark 1. Related to Proposition 7 the following question is open to us. Let φ be

a co-analytic rank on SD. Also let A be an analytic class of separable dual spaces

such that for every Y ∈ A there exists ξY < ω1 with sup{φ(X) : X∗ ∼= Y } < ξY . Is,

in this case, the set A∗ = {X ∈ SB : ∃Y ∈ A with X∗ ∼= Y } analytic? If this is true,

then the counterexample to question (Q1), presented in the introduction, is (in a

sense) unique. We notice that if we further assume that sup{ξY : Y ∈ A} < ω1,

then Proposition 7 implies that the answer is positive.

For every Banach space X denote by Sz(X) the Szlenk index of X (see [Sz]).

Let ξ be a countable ordinal and consider the class

Sξ :=
{

X ∈ SB : max{Sz(X), Sz(X∗)} 6 ξ
}

.

By Theorem 1 and Proposition 7, we have the following corollary.

Corollary 8. For every countable ordinal ξ the class Sξ is analytic.
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Proof. We fix a countable ordinal ξ. As in the proof of Theorem 1, consider the

subset SD of SB consisting of all Banach spaces with separable dual. We set

B := {X ∈ SD : Sz(X) 6 ξ} and A := B ∩B∗. Notice that

A =
{

Y ∈ SB : Sz(Y ) 6 ξ and (∃X ∈ SB with Sz(X) 6 ξ and Y ∼= X∗)
}

.

By [Bos, Theorem 4.11], the map X 7→ Sz(X) is a co-analytic rank on SD. It

follows that the set B is analytic (in fact Borel—see [Ke]). By Theorem 1, so is the

set A. By Proposition 7, we see that the set A∗(B) is analytic. Since A∗(B) = Sξ,

the result follows. �

Let REFL be the subset of SD consisting of all separable reflexive spaces. Re-

cently, Odell, Schlumprecht and Zsák have shown [OSZ, Theorem D] that for every

countable ordinal ξ the class

Cξ :=
{

X ∈ REFL : max{Sz(X), Sz(X∗)} 6 ξ
}

is also analytic. Their proof is based on Corollary 8 above, as well as, on a deep

refinement of Zippin’s embedding theorem [Z] and on a sharp universality result

concerning the classes {Cωξ·ω : ξ < ω1} (see [OSZ, Theorems B and C]).
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