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DEFINABLE SETS IN ORDERED STRUCTURES. I

ANAND PILLAY AND CHARLES STEINHORN1

Abstract. This paper introduces and begins the study of a well-behaved class of
linearly ordered structures, the ^-minimal structures. The definition of this class and
the corresponding class of theories, the strongly ©-minimal theories, is made in
analogy with the notions from stability theory of minimal structures and strongly
minimal theories. Theorems 2.1 and 2.3, respectively, provide characterizations of
C-minimal ordered groups and rings. Several other simple results are collected in §3.
The primary tool in the analysis of ¿¡-minimal structures is a strong analogue of
"forking symmetry," given by Theorem 4.2. This result states that any (parametri-
cally) definable unary function in an (5-minimal structure is piecewise either constant
or an order-preserving or reversing bijection of intervals. The results that follow
include the existence and uniqueness of prime models over sets (Theorem 5.1) and a
characterization of all N0-categorical ¿¡¡-minimal structures (Theorem 6.1).

1. Introduction. The class of linearly ordered structures has long been an im-
portant subject of concern to model theorists. Impressive results have been obtained
in the study of models of several particular theories that extend the theory of linear
order. Among those theories that have been approached successfully are Peano
arithmetic, the theory of ordered abelian groups, that of real-closed fields, and that
of linear order itself. Yet, very little has been done in the way of developing a
general model theory for ordered structures. In this paper, we develop the model
theory for a class of linearly ordered structures that we isolate by demanding that a
structure in this class satisfy a condition whose effect is that the linear ordering and
the algebraic part of the structure behave quite well with respect to one another.

Let L be a finitary first-order language, and M an L-structure. A set of «-tuples
A ç Jt" is said to be parametrically definable if there is some L-formula
<p(xl,...,xn,yl,...,yk) and bx,...,bk^J( so that A = {(ax,...,an): JC^
(p(ax,..., an, bx,..., bk)}. If A is definable without parameters, we simply say that
A is definable. Model theorists have enjoyed particular success in their efforts to
determine structural properties of models of first-order theories T by restricting
their considerations to those T for which the parametrically definable sets of
«-tuples in models of T satisfy certain conditions. We isolate the class of linearly
ordered structures with which we shall be concerned in this paper by requiring that
the parametrically definable subsets of an ordered structure in our class be of a
particular simple form, which we now describe.
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566 ANAND PILLAY AND CHARLES STEINHORN

For the remainder of this paper, unless otherwise stated, we assume that L
contains a binary relation symbol < that is interpreted as a linear ordering in all
structures that we consider. An open interval I in such a structure Jt is a
parametrically definable subset of Jt of the form I = {c = M: Jt' = a < c < b}
for some a, b = JtU {-00,00} with a < b. We sometimes shall represent open
intervals in Jt by (a, b)M. Similarly, we may define closed, half open-half closed,
etc., intervals in Jt'. By an interval in Jt we shall mean, ambiguously, any of the
above types of intervals in Jt'. An endpoint of an interval / in Jt will generally be
called a boundary point of /.

We now come to the crucial definition of this paper.
Definition 1.1. A linearly ordered structure Jt is said to be O-minimal if any

parametrically definable subset of Jt is a finite union of intervals in Jt. A
first-order theory T is said to be strongly O-minimal if every model of T is
C-minimal.

These definitions were directly inspired by the paper of van den Dries [3]. There
he studies expansions of (R, <) that, in our parlance, are 0-minimal.

The work of Baldwin and Lachlan [1] on strongly minimal theories serves as
another source of stimulation for our work. Recall that a theory T is strongly
minimal if all parametrically definable subsets in any model of T are either finite or
cofinite. That is, the parametrically definable subsets of a model of a strongly
minimal theory T are precisely those which must be there as long as the language L
contains equality. Similarly, bearing in mind that a boolean combination of intervals
in a structure Jt is also a union of intervals in Jt, we see that a structure is
0-minimal if its parametrically definable subsets are no more than those that must
be there in the presence of a linear ordering. Consequently, C^-minimal models are
those ordered structures whose parametrically definable subsets are as simple as
possible, and so perhaps from the class of ordered structures for which a general
model theory is most likely to be found.

C-minimal structures have several very nice properties that follow almost im-
mediately from the definitions. As a first illustration, let us call an ordered structure
Jt definably complete if any parametrically definable subset of Jt that is bounded
above (respectively, bounded below) in Jt has a least upper bound (resp., greatest
lower bound) in Jt. This definition, of course, is a definable analogue of the usual
Dedekind completeness that (R, <) enjoys. We then have

Proposition 1.2. Any O-minimal structure is definably complete.

We will invoke this useful property of (5-minimal structures freely in what follows.
Notice that the converse is not true, however. For example, the structure (Q, < , P),
where P is a unary predicate interpreted as P = {1/n: n < w}, is definably
complete but not (^-minimal. As a second illustration of those properties of ^-minimal
structures that are easy consequences of the definition, we observe that such
structures with discrete order type—i.e., such that every element except the last, if it
exists, has an immediate successor, and every element except the first, if it exists, has
an immediate predecessor—behave particularly well.
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DEFINABLE SETS IN ORDERED STRUCUTRES. I 567

Proposition 1.3. An O-minimal structure with a definable element, whose order
type is discrete, has definable Skolem functions.

Proof. Any interval in such a structure that is not the entire structure has a least
or greatest element. Since any parametrically definable subset of such a structure is a
finite union of intervals in the structure, it is now a routine matter to define Skolem
functions.    D

Several frequently encountered algebraic objects are C-minimal. We collect these
examples below.

Proposition 1.4. Any of the following structures is O-minimal:
(i) a discrete linear order with or without endpoints in the language L = {<},
(ii) a dense linear order with or without endpoints in the language L = { < },
(iii) a divisible ordered abelian group in the language L = ( +,0, < },
(iv) a real closed field in the language L = { +, •, 0,1, < }.

Proof. That each such structure is ¿P-minimal follows by elimination of quanti-
fiers. The quantifier elimination for (i) and (ii) is due to Langford [7]. Robinson [14]
proved quantifier elimination for the theory of divisible ordered abelian groups, and
Tarski [15] established it for the theory of real closed fields.

In §2, we will see that the only ordered groups that are (^-minimal are precisely the
divisible ordered abelian groups, and that the only (5-minimal ordered rings are the
real closed fields. Thus, the model-theoretic assumption of ^-minimality has real
algebraic consequences. The situation for c^-minimal linear orderings is, not unex-
pectedly, more complicated. Nonetheless, we are able to characterize the f-minimal
linear orderings (cf. §3).

This paper is organized into six sections, including this introduction. We will
briefly survey our results.

§2 contains the proofs of the converses to Proposition 1.4(iii) and (iv), mentioned
above, viz., that the only strongly 0-minimal theories of ordered groups and rings
are, respectively, the theories of divisible ordered abelian groups and real closed
fields.

§3 consists of several results that do not require particularly heavy machinery to
prove. The section contains two main results. The first, Theorem 3.4, generalizes to
all strongly c^-minimal theories the result of Erdös, Gillman and Henriksen [4] that
any two real closed fields whose order types are the same uncountable saturated
ordering are isomorphic. The second, Theorem 3.12, referred to above, characterizes
all 0- minimal linear orderings in the language L = {<}.

In §4 we prove the fundamental technical tool needed to obtain the deeper result
about C^-minimal models. This proposition, Theorem 4.2, asserts that any parametri-
cally definable unary function in an (P-minimal structure is piecewise monotone or
constant and continuous. Theorem 4.2 illustrates how the presence of a linear order
actually may enrich the structure that is possible in a model of a first-order theory.
Let us make this more precise. It happens that the primary technical lemma needed
for working with strongly minimal theories is the algebraic Exchange Lemma.
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568 ANAND PILLAY AND CHARLES STEINHORN

Strongly C-minimal theories do satisfy this lemma—cf. Theorem 4.1—but it is not
strong enough to yield the results that will be proved in §§5 and 6. In fact, Theorem
4.2 actually can be viewed as a strengthening of the Exchange Lemma, as we show in
the comments following the statement of Theorem 4.2.

We prove in §5 that for any substructure of a model of a strongly C-minimal
theory, there exists a model of the theory that is prime over the given substructure
and, moreover, is unique up to isomorphism over the substructure. This is Theorem
5.1. It may be viewed as a generalization of the basic algebraic proposition that any
ordered field is contained in a real closure that is unique up to isomorphism over the
given ordered field. We remark that Shelah [16] proved the analogous result for
co-stable theories, a class of theories that contains, but is much larger than, the
strongly minimal theories. The existence of prime models over arbitrary substruc-
tures follows quite easily from Lemma 3.1, which asserts that "the isolated types are
dense." The real difficulty in the proof of Theorem 5.1 lies rather in establishing the
uniqueness of the prime model over the given substructure. Let us note here,
however, that Theorem 5.1 seems to be quite tight. The mere existence of a model
prime over a substructure can fail even for a structure that is very "close" to being
0-minimal. For example, consider the structure Q* = (Q, < , P), where ? is a
unary predicate such that both P and Q\P are dense in Q. Although Q* "breaks
up" into two substructures, P and Q\P, which by themselves are Ci-minimal, it is
not difficult to see that there is no prime model over P.

In §6, we completely characterize the S 0-categorical strongly ^-minimal theories
and their countable models. This result, Theorem 6.1, also yields Corollary 6.2,
which says that any N „-categorical strongly (^-minimal theory is finitely axiomatiz-
able. In contrast to what may occur with an S 0-categorical strongly minimal theory,
the presence of a linear ordering actually forecloses the possibility of nontrivial
structure. Specifically, the unique countable model of an N 0-categorical strongly
0-minimal theory essentially is completely determined by the definable partial
functions of one variable that exist in the model. By contrast, "nontrivial" No-cate-
gorical strongly minimal theories are well known: infinite-dimensional affine or
projective space over a finite field, for example.

Most of the notation and terminology used in this paper is standard. Models will
be denoted by Jt, jV, ..., and their universes by M, N,..., respectively. Elements
of models will be denoted by the lowercase letters a,b,c,..., and subsets of models
are designated by the capital roman letters A, B, C,_Recall that a e Jt is said to
be algebraic over A ç Jt if there is some formula <p(x, yx,..., v„) and bx,..., b„ = A
so that

Jti=<p(a,bx,...,bn) A3<xx<p(x,bx,...,bn).

If, in addition, a is the unique element in Jt satisfying <p{x, by,.'.., b„), then a is
said to be definable over A. For A ç Jt, the algebraic closure of A in Jt, denoted
c\(A), is given by

{a e Jt : a is algebraic over A}.
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DEFINABLE SETS IN ORDERED STRUCUTRES. I 569

Similarly, the definable closure of A in Jt, written dc\(A), consists of those elements
in Jt that are definable over A. Notice that c\{c\(A)) = cl(A) and dcl(dcl(A)) =
dcl(v4). Also, if A, B ç Jt, then the algebraic closure of B over A in Jt, denoted
c\A(B), is just cl(yl U B), i.e., those elements in Jt that are algebraic over B in the
structure (Jt, a)a<£A. Similarly, the definable closure of B over A in Jt, dcl^ß), is
dcl(^ U B). Observe that c\a{A) = cl(A) and dcl0(^) = dcl(A).

Most of the results in this paper were announced in [10].
The authors wish to thank Professor M. Makkai of McGill University for his

hospitality and the stimulation he provided throughout our most pleasant stay at
McGill during the academic year 1982-83, when this work was done.

2. Algebraic results. Here we prove two theorems which demonstrate that the
assumption of strong 6f-minimality has tight structural consequences in algebraic
contexts. The work of Reineke [13] on minimal groups (in the ordinary sense),
Podewski [11] on minimal rings, and Macintyre [8] on to-stable fields indicate that
these theorems are to be expected.

Theorem 2.1. Let (S = (G, +,0, <) be an O-minimal ordered group. Then 'S is a
divisible ordered abelian group.

The crucial ingredient in the proof is the following lemma.

Lemma 2.2. Let 'S = (G, +,0, <) be an O-minimal group. Then the only parametri-
cally definable subgroups of 'S are {0} and S.

Proof. Suppose that 'S is nontrivial and Jf is a nontrivial parametrically
definable subgroup of ^ that is different from 'S. We shall obtain a contradiction.
Let JT be given by {« g G: S= <p(«, gx,..., g„)}.

Since y? is nontrivial, 3f is infinite, as the infinite set (««: n g u) is a subset of
H, for any « g H, h =£ 0. By C-minimality, Jf contains a nontrivial interval /. By
translation, it follows that 3^ contains a largest nontrivial interval J about 0, which
without loss of generality, we may assume is symmetric about 0. Since 3?% 'S, the
(9-minimality of 'S implies J must be of the form (-«, «) or [-«, «] for some A g G.
We prove that neither case can occur. First suppose, that J assumes the form
[-«, «]. If there is no «' g G \ H such that « < «' < 2«, then clearly [-2«, 2/i] ç H,
contrary to the maximality of J. But if h < «' < 2«, then 0 <«' — «< «, whence
«' — « g H. However, it then follows that («' — «) + « = «' g H, again contradict-
ing the maximality of J. So J cannot be of the form [-«, «].

Now assume that / = (-«, «). Since J ¥= 0, there is some «' g J so that «' > 0.
It then follows that 0 <«-«'< «, and so « - «' g H. But again this implies that
(« — «') + "' = «g//, which is impossible. The lemma thus is proved.    D

Proof of Theorem 2.1. Let us first establish that 'S is abelian. For g g G,
consider the parametrically definable subgroup C(g) = {h <e G: h + g = g + h}. It
is easy to see that C(g) = G for any g g G. Hence, G is abelian.

Similarly, to establish that G is divisible, one easily shows that the parametrically
definable subgroup «G = {ng: g g G} is all of G.   D
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Theorem 2.3. Let R = (R, +, -, 1, <) be an O-minimal ordered ring. Then R is a
real closed field.

For the proof of Theorem 2.3, we need two lemmas. The following is obvious.

Lemma 2.4. A parametrically definable convex substructure of an O-minimal struc-
ture also is O-minimal.   D

For the statement of the second lemma, we must recall a standard definition. An
ordered ring R is said to have the intermediate value property if for any polynomial
p(x) with coefficients in R and any a,b G R such that a < b and p(a) ■ p{b) < 0,
there is some cei so that a < c < b and p{c) = 0. The following lemma is
standard (cf. [2, §7.4], for example).

Lemma 2.5. An ordered field is real closed iff it has the intermediate value property.

Proof of Theorem 2.3. We first establish that R is an ordered field and then
show that it is real closed.

To show that R is a field, it is enough to show that the set of nonzero positive
elements of R, R+, forms an abelian group under multiplication. As a first step in
showing this, given r g R, r ± 0, notice that rR = {r ■ s: s & R} forms a non trivial
ordered subgroup of R under addition. Hence, by Lemma 2.2, rR = R. In particu-
lar, there is some jeu so that r ■ s = 1. If r > 0, the element s necessarily is
positive, whereupon R+ forms an ordered group under multiplication. Since R+ is
definable and convex in R, Lemma 2.4 implies that it must be ^-minimal. Conse-
quently, Lemma 2.2 implies that R+ is abelian, as desired.

It remains to see that R satisfies the intermediate value property. Let a,b G R,
a < b, and p(x) be a polynomial with coefficients in R such that p(a) • p(b) = 0.
Without loss, we may assume that p(a) > 0 and p(b) < 0. If there were no c g R,
a < c < b, satisfying p(c) = 0, then (a, b)R = P+U P~, where P+ and P~ are the
parametrically definable sets given by P+= {d = R: a < d < b&p(d)> 0} and
P~= {d g R: a < d < b&p(d) < 0}. Since it has been shown that R is a field,
(a,b)R must be a densely ordered set. Also, using the ordered field axioms one
easily may verify that polynomials with coefficients in R are continuous parametri-
cally definable functions in R under the topology given by the ordering.

Now, if P+= (a,b), then one may easily check that the continuity of p(x) is
violated at x = b. Likewise, it cannot be the case that (a, b) = P~. Thus, by the
C-minimality of R, there must be some c G (a, b) which is a boundary point
between P+ and P~. We show that c <£ P+U P~. Indeed, suppose that c g P+. But
any open interval / containing c must intersect both P+ and P~. Therefore,
p_1({¿ g R: p(c)/2 < d < 3p(c)/2}) does not contain any open interval, con-
tradicting the continuity of p. Similarly, c £ P~. But then (a, b) ¥= P+U P~, con-
trary to hypothesis, and the theorem is proved.   D

We mention that Theorems 2.1 and 2.3 rely only on the hypothesis that the
structure involved is (^minimal, which a priori is much weaker than the assumption
that the theory of the structure is strongly (9-minimal. It is well known, however, that
a minimal structure need not have a strongly minimal theory, and, in fact, the
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DEFINABLE SETS IN ORDERED STRUCUTRES. I 571

problem of determining whether or not a minimal field is algebraically closed
remains unsolved. Remarkably enough, though, if a linearly ordered structure is
C-minimal, its theory must be strongly (^-minimal.2

3. Basic theorems. In this section, some basic results about strongly ©-minimal
theories will be proved. Most of these will be used in subsequent sections.

Lemma 3.1. Let Jt be an O-minimal structure, and A ç Jt. Then for any formula
9(3c, a~) having parameters from A, there is a formula \p(x,a') also with parameters
from A so that

Jt t= Vx \p(x,a~') -* <p(x, a)

and for every formula 8(x,b) with parameters from A, exactly one of

Jt\= Vx(iP(x,ä') -» 6(x,b))

or

Jt\=Vx(xP(x,ä') -* -,e{x,b))

holds.
In other words, the isolated types of Th( Jt,a)aeA are dense. (I.e., any formula

with parameters from A is implied by a complete formula with parameters from A.)

Proof. We proceed by induction on the number of free variables in x. The
induction step here is trivial. Indeed, suppose that x = (xx,...,xn+x). Let
^(*i,..., x„) be complete for 3xn+x<p(xx,...,xn+x, â) and c = (cx,...,c„) in Jt
satisfy ^(X|,...,xa). Next, let 0(c,xn+x) be a formula with parameters from
A U { cx,..., cm} which is complete for <p(cx,..., c„, xn+x, ä). One then easily sees
that »H*!, • ■ •, x„) A 8(xx, ...,xn+x) is complete for <p(xx, ...,xn+x, a).

So it remains to prove the lemma in the case « = 1. By strong ©minimality, the
set $ that <p(x,ä) defines in Jt is a finite union of rational intervals. If any
endpoint of any of these rational intervals satisfies <p(x, a), then the definition of
that endpoint, using just the parameters a, yields a complete formula. Without loss
of generality then, we can assume that 4> consists of finitely many open rational
intervals. Let <p0(x, ä) be the formula satisfied in Jt by exactly the leftmost such
interval. If <p0(x, ä) is not already complete, then there is some formula xj/(x, 5')
with parameters from A so that

Jt\= 3x(<pQ(x, ä) A t//(3c, a')) A 3x(tp0(x, ä) A -^xp{x, 5')).

But then a boundary point of \p(x, ä') must lie inside the open rational interval
defined by <p0(x, a~) in Jt. But as this boundary point is definable via some formula
\p*(x, ä'), we thus can take this formula as the desired complete formula.   □

We next give a useful criterion for a subset of an ©-minimal model to be an
elementary submodel.

- This result will appear in a forthcoming paper by J. Knight, A. Pillay and C. Steinhorn.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



572 ANAND PILLAY AND CHARLES STEINHORN

Lemma 3.2. Let A c Jt, where Jt is O-minimal. Moreover, suppose that A —
dc\(A). Then A < Jt if and only if for every a,b G A U { + 00}, with a < b, whenever
Jt 1= 3x(a < x < b) then Jt \= a < c < b for some c G A.

Proof. The direction from left-to-right is trivial. For the other direction assume
the hypothesis and also that Jt 1= 3x<p(x, ä), where ä are parameters from A. We
must show that Jt \= <p(b, a) for some b g A. If the set that y(x, ä) defines in Jt
contains any of its boundary points, then we are done, since these are definable
using parameters from A and A = dcl(^). Consequently, suppose that the set that
<p(x, ä) defines in Jt is a union of finitely many open rational intervals. Let a0,
ax g A, a0 < ax, be the boundary points of the first such interval. But then, by
hypothesis, for some b G A, a0 < b < ax, and thus Jt 1= <¡p(¿>, ä), as required.   D

The following result provides a useful characterization of ©-strongly minimal
theories. Recall that a cut C in an ordered structure Jt is a maximal consistent set
of formulas with parameters from Jt of the form m < x or x < m, where m g Jt.

Theorem 3.3. Let Jt be a linearly ordered structure. Then Jt is O-minimal if and
only if for any cut C in Jt, there is a unique complete one-type with parameters from
J( which extends C.

Proof. The direction from left-to-right follows immediately from ©-minimality.
That is, any formula <p(x, m) with parameters from Jt partitions Jt into rational
intervals such that for any such interval /, either <p(x, m) holds or <p(x, m) holds for
all x g /. Then, since only one interval is consistent with C, the value of <p(x, m) in
any type extending C is determined.

Now, let us prove the reverse direction. Let Jt be a linearly ordered structure and
cp(x,m) a formula with parameters from Jt'. We must prove that {a ejt: Jt \=
<p(a,m)} is a finite union of rational intervals in Jt. Let 6x(x, v) be the formula
(Vm)(x < u < v -» <p(u, m)) and 82(x, y) be the formula (Vu)(x < u < y -»
-,<p(w, m)). Define an equivalence relation ~  on Jt by

x*y    iff    8x(x,y)v82(x,y).

Now, consider the structure Jt* for the language { < , Px, P2}, where Px and P2 are
unary predicates whose domain consists of the « -equivalence classes of Jt in
which < is induced by the ordering on Jt, and in which Px (resp. P2) holds just of
the dx (respectively, 82) classes in Jt*. Observe that if a,b=Jt*, a < b and
Jt* 1= Px(a) A Px(b) (resp. Jt* \= P2(a) A P2(b)), then there is some c &Jt*,
a < c < b, so that Jt* 1= P2(c) (resp. Jt* 1= Px(c)). Furthermore, notice that each
element of Jt* determines a convex set in Jt. We will show that Jt* must be
finite and that each interval in Jt determined by an element in Jt* must be
rational.

First, suppose that some element of Jt* either does not have an immediate
successor or predecessor. We show this is impossible. Without loss of generality, let
a eJt* have no immediate successor. Let / be the interval in Jt determined by a.
Then it is easily seen that both {<p(x, m)} U C and (-,<p(x, m)} U C are consistent,
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where C is the cut given by

( m «S x: (3v G/)w<y}u{x<«i: (Vy G I) y < m},

which is contrary to hypothesis.
Thus, Jt* must be discretely ordered. We now establish that Jt* cannot be

infinite. For if not, then Jt* contains either an infinite increasing or decreasing
sequence. Without loss of generality, suppose the former and let (a¡: i < <o> be such
a sequence, where ai < a if and only if / < j. Let the sequence of convex sets (K¡:
i < ío) in Jt correspond to (a¡: i < ío). We also may assume that for each i < to,
Jt* t= Px(a2i) A P2(a2i+i). But then it is clear that {<p(x, in)} U C and
{-,<jp(x, in)} U C are consistent, where

C = ( m < x: for some i < co, (3y G K^m < y}

U { x < m : for every /' < w, ( Vy G K¡)y < w}.

But this is impossible.
So ./#* must be finite. It then follows that the set defined by <jd(jc, m) in Jt

consists of finitely many convex sets, and it only remains to prove that these are
intervals. For a contradiction, suppose that some such convex set K has no
boundary point in Jt on the left (the proof is identical if K has no boundary point
in Jt on the right). In this case, the convex subset K' of the set defined by
-,<p(x, m) which is adjacent to K on the left must have no boundary point on the
right. But then it is easy to see that both {y(x, m)} UC and {-,<¡p(x, m)} U C are
consistent, where

C = {x < m: (3y G /) y < m} U {m < x: (3y g J)m < y).

This contradicts the hypothesis, and so the theorem is proved.   D
The next theorem establishes that a strongly ©-minimal theory T is categorical

relative to the class of uncountable saturated orders which are models of the theory
of linear order determined by T.

THEOREM 3.4. Let T be a strongly O-minimal theory. IfJt' r-= T and M \ {<} is an
uncountable model of T \ { < } which is saturated for quantifier-free formulas, then Jt
is a saturated model; i.e., up to isomorphism Jt is the unique model of T whose
underlying order is isomorphic to Jt [ {<}■

The following corollary first was proved by Erdös, Gillman and Henriksen in [4].
Recall than an va set is a dense linear ordering without endpoints of power Na in
which any cut given by fewer than Sa formulas is realized. The wa sets were
introduced by Hausdorff in [6].

Corollary 3.5. Any two real closed fields whose underlying order types are r/a sets
are isomorphic.

Proof of 3.5. By 1.4(iv), the theory of real closed fields is strongly ©-minimal.
The result then follows from Theorem 3.4.

Now we prove Theorem 3.4.
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Proof of 3.4. Let Jt be as given and A C Jt be of power less than Sa. We must
show that any complete one-type p with parameters from A is realized in Jt.
Enumerate p as {(pa(x,aa): a < k}, where k < \Jt\. We define a consistent set of
formulas = {ba < x: a < k} U {x < ca: a < k} with parameters from Jt with the
property that any d g Jt realizing C also realized p. This suffices, because by the
saturation of Jt { {<}, there is such a¿e Jt.

Let jV> Jt and d g JT realize p. For a < k, let /f u /f U ■ • • U/;^ be the
finite union of rational intervals equal to the set defined by <pa(x, aa) in JT. Suppose
that d g /" and that the endpoints of /" are bf < c?. Since T is strongly
©-minimal, Jt < Jf and the parameters of <pa are from A c Jt, we have that b",
c"1 g Jt. If we set ba = bf and ca = c", we clearly are done.   D

Corollary 3.6. Let T be strongly O-minimal, A <zJt*= T, and \A\ < k. If
T I { < } has a saturated model of power k, then, up to isomorphism over A, there is a
unique Jfï= T, A ç JT, such that Jf\ ( < ) is saturated for quantifier-free formulas.

Proof of 3.6. Since L' = LU{c; a g A}, the language obtained by adjoining
constants for the elements of A, has power less than k, the result follows im-
mediately from the proof of 3.4.    D

The following result, both in statement and proof, parallels the folklore fact that
the theory of any uncountable minimal model is strongly minimal. However,
whereas the reader easily may construct a countable minimal model whose theory is
not strongly minimal, this is not true in the case of ©-minimality.3

Theorem 3.7. Suppose that Jt is O-minimal and that Jt\ {<} is ux-saturated for
quantifier-free types. Then Th(^) is strongly O-minimal.

Proof. Let Jt be as in the hypothesis. By induction on « < co, we prove that for
any formula <p(x, y0,..., y„~x), possibly with parameters from Jt, there is an
w(<p) < <o such that for any a0,..., an_x g Jt, {c g Jt: Jt'•= <p(c, a0,..., an_x)}
consists of at most m(<p) intervals.

For « = 0, the assertion follows immediately from the ©-minimality of Jt. For the
induction step, let <p(x, y0,..., y„) be given. Since boundary points are definable, we
may suppose that for each a0,...,an g Jt, {c: <p(c, a0,..., an)} is finite. (I.e., just
modify <p to obtain <p* so that Jt t= <p*(c, a0,..., a„) if and only if c is a boundary
point of(ceJ: Jt t= <p(c, a0,...,an)}. Then, for notational simplicity, identify <p
with <p*.) Thus, we wish to prove that there is an w((p) < ío so that for all
a0,...,an=Jt, \{c: Jt = <p(c,a0,...,a„)}\ < m(<p).

By induction hypothesis, for each b g Jt there is m(<p, b) < <o so that for all
a0,...,a„_x =Jt,

\{c &Jt: Jt = <p(c,a0,...,an_x,b)} | < m(<p,b).

For a contradiction, assume that [m(<p,b): b g Jt} is unbounded. Let
8p(x) s (3x0) ••• (3x,_1)(3>'.y)«p(^,x0,...,xi>_1,x)

1 Cf., footnote 2 at the end of §2.
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with parameters from Jt. Clearly, for p < q, [b eJt: Jtt= 8q(b)} Q [b =Jt:
JC=8(b)}. Also, the assumption for a contradiction implies that for each p,
\{b ^Jt: Jt\= 8p(b)}\ > S0 and, hence, contains an interval. Without loss, then,
there are intervals Ip = (cp, dp) so that IpQ {b tJt: Jt\= 8p(b)} and Iq c Ip
whenever p < q. Now, the hypothesis on the saturation of Jt implies that the cut
C(x) = {cp < x: p < u) U {jc < dp: p < u} is realized in Jt by some element b.
But then,

[\{c <^Jt: Jt\= <p(c,a0,...,a„_x,b)}\: aQ,...,a„_x <aJt)

is bounded in u, which contradicts the induction hypothesis, and so establishes the
theorem.    □

Recall from §1, that a theory T is unstable if for some « < u and some formula
8(xx,...,xn,yx,...,yn) there exists a model Jt of T such that 8 linearly orders
some infinite collection of «-tuples from Jt. A crude measure of instability exists:
namely, whether or not a theory T has the independence property (cf. [9, Chapter 7]
for the definition and various basic results). That is, a theory T having the
independence property shares fewer properties with stable theories than a theory
that lacks it. We will show that all strongly ©-minimal theories do not have the
independence property. Our proof requires a further definition and a well-known
lemma that gives an alternative formulation of a theory having the independence
property.

Let Jt < Jf and Jt <z A Q Jf. A type q(xx,...,xm) over A is said to be a coheir
of a type p(xx,...,xm) over Jt if ¿? 2 p every formula <p(xx,...,xm) in q is
satisfied (in Jf) by some m-tuple from Jt. (Cf. [9, Chapter 1] for more about
coheirs.) The next lemma is due to B. Poizat, and a proof can be found in [9,
Chapter 7].

Lemma 3.8. A theory T has the independence property if and only if for any k > to,
there is Jt' 1= T of power k, Jf> Jt and type p(x) over Jt, \{q:q is a type over Jf
that is a coheir of p } | > 22".    D

We now prove

Theorem 3.9. Let T be strongly O-minimal, Jt\= T andp(x) a type over Jt. Then
for any Jf> Jt, p has at most two coheirs over Jf.

Corollary 3.10. No strongly O-minimal theory T has the independence property.
D

Proof of 3.9. Let p(x) be a complete type over Jt and let Jf> Jt. Let C(x) be
the cut over Jt determined by p(x), and let A Q Jf be the set of elements that
satisfy C(x). It is easy to see that if a cut C'(x) over Jf is to be included in a coheir
of p(x), then C\x) must contain either C+(x) = {a < x: a g A) or C~(x) =
[x < a: a g A) and, furthermore, that C'(x) is completely determined by C(x) U
C+(x) or C(x) u C~(x). Hence, there are at most two cuts that are included in any
coheir of p(x) over Jf. Therefore, by Theorem 3.3, p(x) has at most two coheirs
over Jf.    D
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The final result of this section completely characterizes those linear orderings in
the language L = {<} whose theories are strongly ©-minimal. We first recall some
standard notations and a lemma that will be of use. By Jt = „ Jf we shall mean that
the structures Jt and Jf (of the same similarity type) are equivalent for all
sentences of quantifier rank less than or equal to «. Also, if Jt and Jf are linear
orderings, then Jt + Jf will denote the ordered sum of Jt and Jf, and, more
generally, if / and Jt¡, i g /, are linear orderings, then £,e/-#, will denote the
ordered sum of the set (Jt¡: / g /}. Lastly, co*, as usual, represents the reverse
ordering on the natural numbers and Q the ordering of the rational numbers. The
following lemma, due to Feferman and Vaught [5], can also be proved using
Ehrenfeucht games.

Lemma 3.11. Let I be a linear ordering and [Jt¡: ¡e/) and {Jf{. i = 1} sets of
linear orderings indexed by I. Suppose also that ix,.. .,im G / and, for each i¡,
j = 1,..., m, that ay..., ay G Jt' ¡ and b\,..., by G Jft. Then, if for each j =
l,...,m,(Jtira'y..., ay) ='n (Jf^, b'{,..'., ft*/), it follows 'that

( I -#„ aiV • •, a'A * „ ( £ ■**„ b'{,..., b'A

We now can give our characterization of strongly ©-minimal linear orderings. Let
J57 be the set of all finite linear orderings, and <€ — J^U {co, co*, co + co*, co* + <o, Q}.
Also, let © be the collection of all ordered sums of the form C, + • • • +Cm, where
C, is elementarily equivalent to some member of ^ for each / < m, and for all
; < m, if C, does not have a last element, then C,+1 has a first element.

Theorem 3.12. Any model of a completely strongly O-minimal theory of linear order
in the language {<} is a member of 0, and conversely, the first-order theory of any
member of 0 is a strongly O-minimal theory of linear order.

The next lemma may be proved by induction on m by using observations such as
if C = to + co* and D = co, then C + D = co. Details are left to the reader.

Lemma 3.13. Suppose that Jt g © and Jt = Cx + ■ • ■ + Cm, where for each i < m,
C, g 'ë. If Jt has been written using the fewest possible summands from 'é', then each
summand is definable.   D

Proof of Theorem 3.12. First, suppose that Jt g 0. We must show that TY\(Jt)
is strongly ©-minimal. Suppose that Jt = Cx + ■ ■ ■ + Cm, where C, is elementarily
equivalent to some member of # for each / < m and m is minimal. Lemma 3.13
implies that if Jf= Th(Jt), Jf=Dx+ ■■■ + Dm, where D, = C, for each /' < m.
We must show that any parametrically definable subset of Jf is a finite union of
intervals in Jf. By standard arguments (cf. [12], for example) Th(C(), for each
/ «s m, admits elimination of quantifiers (in an augmented language, as in [12], for
the discrete parts). It then follows—see [12] again for details—that all parametri-
cally definable sets in the linear orderings D¡, for each / < m, are unions of finitely
many intervals. Let cp(x, y\,..., yp,..., yx,..., ypJ be a formula of quantifier rank
« in the language of linear orderings, a\,..., ap¡ g Dx, ..., ay,..., apm G Dm, and
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A = {a g Jf: Jf= cf(a, a\,..., a™ )}. If A is finite, there is nothing to prove, and
so without loss let us suppose that A is infinite. For a contradiction, assume also
that A is a discrete set. Without any further loss of generality, Ax = A D Dx may be
supposed to be infinite. Since there are only finitely many formulas of quantifier
rank less than or equal to n in px + 1 free variables, it follows that there is a
formula \p(x, yx,..., yPi) such that for b g Dx, Dx = \¡j(b, a\,..., a1^) if and only if
there is some c g Ax so that (Dx,a\,...,a1p¡,b) = n(Dx,a\,...,a1Pí,c). Clearly,
B = {b g Dx: Dx = *p(b, a\,..., a1 )} contains Ax, and because Ax is discrete and
B is a finite union of intervals, it must be the case that AX%B. But now, applying
Lemma 3.11, for any b g B, Jft= <p(¿>, a\,..., a™ ). The proper containment of Ax
in B then contradicts the definition of Ax, and so A could not have been discrete.

For the other direction of the proof, suppose that Jt is a model of a strongly
©-minimal theory of linear order. We show that Jt G ©. Let P = {a ^Jt: a has an
immediate predecessor in Jt) and S = {a g Jt: a has an immediate successor in
Jt). It is clear that both P and S are definable subsets of Jt. Next, we claim that
P \ S and S \ P both are finite. Indeed, were P \ S infinite, for example, then
strong ©-minimality would imply that it contains an infinite interval which obviously
is absurd. By strong ©minimality once again, P n S consists of finitely many
intervals in Jt, which we may assume are maximal in P n S. It is not difficult to see
then that the elements of PL)S\PC\S consist of endpoints of these intervals or
the endpoints of discrete intervals consisting of two elements. We thus have that
P U S consists of finitely many intervals in Jt, each of which, without difficulty, is
seen to be elementarily equivalent to some member of ^\ ( Q}. We now examine
Jt\P U S, those members of Jt that have neither an immediate predecessor nor an
immediate successor. Invoking strong ©-minimality once more, it follows that
Jt\P U 5 divides into finitely many intervals, which we suppose are maximal in
Jt\P U S. If such an interval is finite, then it readily is seen that it has to be
singleton, and if it is infinite, then it must be a dense linear order without endpoints.
In either case, the interval is elementarily equivalent to some member of #.

To complete the proof of the theorem, it remains to establish that, when Jt is
written as the ordered sum of rational intervals as obtained above, (3.12.1) is
satisfied. Suppose Jt = Cx + ■ ■ ■ +Cm when it is so written. It is clear that each C¡,
for /' = 1,..., m, is definable. Condition (3.12.1) then holds by strong ©-minimality.
D

4. Parametrically definable unary functions. The main result in this section is
Theorem 4.2, the assertion that every parametrically definable unary function in an
©-minimal model is piecewise strictly monotone or constant and continuous. This
theorem is the primary tool needed in the proofs of the structure theorem in
subsequent sections. As in the illustration of the techniques available under the
hypothesis of ©-minimality, we first prove the weaker Exchange Principle (cf. the
remarks following the statement of Theorem 4.2).

Theorem 4.1 (Exchange Principle for ©-minimal models). Let Jt be ©-
minimal. Let b, c,ax,...,a„ g Jt. If b is algebraic over c,ax,..., an and b is not
algebraic over ax,..., an, then c is algebraic over b,ax,..., an.
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Proof. Since Th(Jt, ax,..., an) is strongly ©-minimal, we may suppose for ease
of notation that {ax,...,an}= 0. Thus suppose that b is algebraic over c and not
algebraic over 0. Since being algebraic implies being definable, we may assume that
there is some parameter-free definable partial function / so that /(c) = b.

For a contradiction, suppose that c is not algebraic over b. Let A = {x ejt:
f(x) = b}. If c were a boundary point of one of the finitely many rational intervals
of which A consists, then c would be definable over b and we would be done.
Consequently, we may assume that there are dx, d2 g Jt U ( ± co} so that (dx, d2)
ç A and dx < c < d2. Moreover, if \(dx,d2)\ < N0, then again c would be defina-
ble over b. Thus, we also may suppose that \(dx, d2)\ > N0. Also, if dx = -co and
d2 = co, then b would be definable over 0 (as the unique y in Jt such that
Jt \= 3x f(x) = y) and hence algebraic over 0. So without loss of generality,
suppose that dx g Jt.

Let B be the definable set given by
B = [d^Jt: Jt\= ("3v< co")

[(3»z)(d<z<y)
A (Vzx)(Vz2)(d <zx<y Ad<z2<y^f(zx) = f(z2))
A-,(3;c)(3z)((jc <d<y^zVx*id<y<z)

A (\fzx)(\/z2)(x < zx < z A x < z2 < z -+ f(zx) = f(z2)))] ).
We immediately observe that:

(i) dx G B;
(ii) for every d G B there is a unique d' =JtU (co} which serves as y in the

above formula; and
(iii) if d, e g B and d',e' g Jt U {co} correspond to d, e as in (ii), then (d, d') n

(e,e') = 0.
Moreover, we claim that \B\ < S0. This follows from (iii) and the first conjunct of

the formula defining B, as otherwise B would be an infinite definable set not
containing an infinite interval.

Suppose that dx is the ith member of B in increasing order. But then b is
definable without parameters by the formula 8(y) asserting that "y is the value of /
in the interior of the interval determined by (ii) whose left endpoint is the ith
member of B." With this contradiction to the hypothesis that b is not algebraic, the
theorem is proved.    D

Theorem 4.2. Let Jt be O-minimal and A £ Jt. Suppose that f is a unary function
with domain (a, b)A', where possibly a = -co and b = + co, such that f is definable
with parameters from A, and a, b, if different from ± co, are elements of cl(^4). 77ie«
there are a0 = a, ax,..., a„_x, a„ = b = Jt U {±00} so that

(a) a0 < ax <  ■ ■ ■  < a„, and ax,...,an_x are definable from A;
(b) fis monotone or constant on each interval (a¡_x, af)A', i = 1,..., «;
(c) if f is not constant on (a/_1, a,-)"*, then f"(a¡_x, a¡) is an interval in Jt and

f C {a,_x, a¡y* is an order preserving or reversing bijection ontof"(a¡_x, a¡)^.

This theorem may be understood as a strengthening of Theorem 4.1. That is,
suppose that / is the parametrically definable partial function such that /(c) = b, as
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in the proof of Theorem 4.1. By Theorem 4.2, / is piecewise strictly monotone or
constant. The point c either is an endpoint of one of the intervals on which / is
monotone or constant, or it is in the interior of one such. In the former case, c is
definable over the parameters used to define /. Thus suppose that c is in the interior
of the /cth interval, Ik = (ak_x, ak) on which / is monotone or constant. Clearly, if
f\Ik is constant, then b would be definable over A, contrary to hypothesis.
However, if / is strictly monotone on Ik, then f\ Ik has an inverse, and the
following formula, which the reader can verify may be written in first order logic,
defines c over {b} U A :

uxGlk    and    x=f-l(b)".
Thus, the Exchange Principle surely follows from Theorem 4.2. The main ingredient
in the proof of Theorem 4.2 is the following.

Lemma 4.3. Let f be a parametrically definable unary function in an O-minimal
structure Jt with domain (a, b)~*, where a = -co, b = + co, or a and b are definable
from the parameters used to define f. Then, for any parametrically definable infinite
interval I C (a,b)M, there is an infinite I* c I on which f is either constant or strictly
monotone.

Proof. For ease of notation of language, we shall disregard the parameters used
to define / and I and simply speak of each as being definable. The argument will
proceed through a case-by-case analysis based on the formulas <p0,..., qp4 below. Let

«Po(x) = (3z)[(3v)(z <V<XAVG/AXG/)

A(Vv)(z< y <x-/(v) =/(*))]
V (3z)[(3y)(x <v<zAvG/AjcG/)

A(Vv)(x< f <z-/(v) =/(*))];

<px(x) = (3z)(3w)[(3u)(3v)(z <m<x<d<wAmG/Aí;G/)

a(Vm)(z < u < x -»/(«) </(x))

a(Vu)(x < v ^ w-*f(x) </(»))];
<p2(x) = (3z)(3h>)[(3«)(3i>)(z <u<r<t)<wAue/Mie/)

a(Vu)(z < u < x ->/(u) >/(x))

A(\tv)(x.<v<w -/(x) >/(»))]■;
y3(x) = (3z)(3w)[(3ti)(3u)(z ^u<x<v^wAu^lAv<=I)

A(Vti)(z *i u ^ w A u =£ x ^> f(u) > f(x))];
and,
cp4(x) = (3z)(3w)[(3tt)(3i;)(z ^u<x<v^wAu^lAveI)

a(Vm)(z ^u ^w A u* x -»/(«) </(^))]-

Using ©-minimality, it is evident that <p0,...,<p4 partition I into finitely many
rational intervals in the structure Jt. Thus one of <p0(Jt) = {a =Jt: Jt \= <p0(cz)},
<px(Jt), ...,<p4(Jt) must be infinite and hence must contain a definable interval
IiQl.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



580 ANAND PILLAY AND CHARLES STEINHORN

Case I. Ix cz tp0(Jt). Refining Ix, if necessary, we can assume that for every
x g 7j, there is z > x so that (x, z) ¥= 0 and / [ [x, z) is constant. We next assert
that

(4.3.1) For some infinite definable I2 ç /x and for every x G I2, there are
z < x < w so that [z, x) ¥= 0,(x,w]i= 0, and f\ [z,w] is constant.

To establish this, it suffices to prove D = {x g Ix: (4.3.1) does not hold for x) is
finite, as then IX\D would contain an infinite definable interval I2 as required. But
D easily is seen not to contain an infinite interval since D ç Ix and for any element
x of Ix, there is some z > x so that (x, z] # 0 and /f [x, z] is constant. Conse-
quently, by ©-minimality, D must be finite. It now follows that / is constant on I2.
For let </e/2 and C={xG/2: f(d) = f(x)}. If Cc/2, then, since C is
definable using d, the ©-minimality of Jt implies that I2 contains a boundary point
e of C. However, e does not satisfy (4.3.1), as is easily seen, and so / must be
constant on I2.

Case IL Ix ç <px(Jt) or Ix ç <p2(Jt). Since the argument is identical for either
alternative, we suppose that Ix ç <px(Jt). In this event, we claim that / is strictly
monotonically increasing on Ix. Suppose that a < b and a,b g Ix but f(a) > f(b).
Consider the nonempty parametrically definable set X = (y: yeIxAy>aA
f(a) > f(y)}. Since Ix Q <px(Jt), X + (a, co) D Ix. So let c be a boundary point in
Ix of X n Ix. Without loss of generality, suppose that c bounds X n 7X on the left.
But then if c e Ix C\ X, then c cannot satisfy <px(x), because for some interval / to
the left of c, if x g y, f(x) > /(a) > /(c). Likewise, if c Í /, n I, then since c
bounds an interval in In Ix, for some interval J to the right of c, if x g y, then
f(x)<f(c). Consequently c could not satisfy <px(x). In any event, X being
nonempty leads to an impossibility, and so / must be strictly monotonically
increasing, as claimed.

Case III. Ix <z <p3(Jt) or Ix Q c^^Jt). Again, the argument for either alternative
is the same, so we suppose that lx ç. cp3(j¡t). Without loss of generality we may
assume that Ix contains no subinterval—finite or infinite—on which / is constant.
That it contains no such infinite subinterval may be assumed since otherwise, the
argument would already be done. That it contains no such finite subinterval follows
because the ©-minimality of Jt implies that there can be at most finitely many finite
subintervals on which / is constant, and so, if necessary, Ix could be cut down.
Lastly, we may assume that Ix is a dense linear order without endpoints. The density
of Ix follows because no pair of points x0 and xx such that xx is the immediate
successor of x0 could both satisfy <p2(x). That is, it may be supposed that Ix does
not have endpoints is true, because if necessary Ix could be cut down definably so
that it does not include endpoints.

We next assert that without loss of generality we may assume that

(4.3.2) (Vx G Ix)(3y)(y G I, A y > x A f(x) > f(y))

and

(4.3.3) (Vx g Ix)(3y)(y g Ix a y < x A f(x) > f(y)).
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To show that we may assume that (4.3.2) holds, consider the definable set

X= (x:xg/1a(Vv)(vg/1Av>x-/(x)</(v))}.

If X is finite, then Ix can be refined appropriately. So now, assume that X is infinite
and hence contains an infinite definable interval J. However, since Ix contains no
intervals with at least two elements on which / is constant, it then is easy to prove
that / is strictly monotonically increasing on J, and so we would be done. The
argument needed to establish that (4.3.3) holds without loss, is exactly the same.

For any c g Ix, (c, co) n Ix can be partitioned into the following three sets:

X+= {x:x>cAxG/1 A/(x) > f(c)},

X== {x:x>cAxg/1 A/(x) =/(c)},

and

X~= (x:x > c A x g Ix A f(x) <f(c)}.

By ©-minimality, this partition consists of finitely many rational intervals in Jt. We
next claim that the rightmost interval, J, in this partition is a subset of X~. To
establish this, we assume that J Q X+ (J cannot be contained in X" since we have
assumed that Ix contains no interval on which / is constant) and show that this
cannot happen by a case-by-case analysis. Let d g Ix be the left-hand boundary
point of J.

Case A. d G J, and d G X~U X=. In this event, it is evident that d could not
satisfy (4.3.2), which is an hypothesis on all of Ix.

Case B. d £ J and d G X+. This clearly is impossible as then d would have to be
in J.

Case C. d g J and ./ ç X+. To the left of d there must be an interval in I"
(again recall Ix is dense and contains no interval on which / is constant). In either
case, cp3(x) again could not hold d, contrary to assumption.

Since the cases above exhaust the possibilities, we have shown that 7 ç I", as
asserted. Moreover, since Jt 1= q>3(d), it must be true that d g J.

Let

cp5(u) m (3z)(3w)[(3x)(3y)(z <x<u<y<w)

A(3t)[(Vi)(i ^ u A s < w -» f(s) < t)

a(Vj)(j « u A z < s -*f(s) > t)]].

If c g Ix and d is the left-hand boundary point of the rightmost interval in the
partition of (c, co) D Ix, as above, into X+, X= and X', then clearly Jt \= <p5(ci).
We now claim that <p5(Jt) must be infinite. For, if <p5(Jt) were finite, then we
could cut down to an infinite interval J Q Ix on which -,<p5(x) holds for each rei.
But then, choosing a point c g J and its corresponding "d" in /, as above, it would
follow that -,<p5(ct) would have to hold, which is impossible. Consequently let
I2 Q Ix be an infinite definable interval on which cp5(x) is satisfied by all x g I2.
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For any c g I2, the same argument as just given shows that there is some d' g I2,
d' < c and some interval /' ç (-co, c) with d' g J' and

(434) (Vx)(xe/'Ax <.*'-./(*)</(c))
A(Vx)(x ><*'A x GJ')-/(*) >/(c)).

However, it must be true that Jt \= ys(d') as well. Let t and J = (z,w) be as
guaranteed by <p5(c/') holding. We now consider the interval J* = J D J' about J'.
Without loss, we may assume that /(x) =£/(c) for all x g y*. Suppose first that
t >f(c). Then x g J* n (-co,ci"), /(x) > t since <p5(i/') holds. But since (4.3.4)
holds, for x g J* n (-cc,c/'), /(x) < /(c) < i, which is impossible. But now,
suppose that t < /(c). Then (4.3.4) implies that if x G /* n (d', co), then /(x) >
/(c). However, since <ps(d') holds, /(x) < í < /(c) for any x g y* n (ci', co). This
again is impossible, and so we have reached a contradiction under the assumption
that <p3(Jt) is infinite. This completes the proof of Lemma 4.3.   □

Now we can finish the proof of Theorem 4.2.
Proof of Theorem 4.2. Let 8(x) be the formula asserting that:

"On an interval of which x is the left endpoint, / is strictly
monotone or constant, and there is no interval extending this
interval on the left on which / is strictly monotone or constant."

It is an elementary exercise to write out 8(x) in first order logic. We now claim
that 8(Jt) must be finite. Indeed, were it infinite, it would contain an infinite
interval I. But by Lemma 4.3, there is an infinite interval I* ç I on which / is
strictly monotone or constant. However, any interior point of I* could not satisfy
8(x), whence we see that 8(Jt) must be finite.

Thus, let 8(Jt) = {bx,..., bk_x) be enumerated in increasing order, and let
b0 = -co and bk = co. We claim that / is strictly monotone or constant on each
(bj_x,bj) for j=l,...,k. Now bj_x, by virtue of satisfying 8{x), is the left
endpoint of an interval on which / is strictly monotone or constant. Let I ç (bj_x, bj)
be the largest such interval. If (bj_x,bj)\I i= 0 but is finite, then clearly some
member of (bt_x, bj)\I would satisfy 8(x), which is impossible. But if (bj_x, bj)\I
were infinite, then Lemma 4.3 would imply the existence of an infinite interval J Q
(b _x,bj)\I on which / is strictly monotone or constant. Again, however, this
would imply that 8(Jt) n (bj_x,bj) =¿ 0, which cannot be true. Therefore 1 =
(bj^x, bj), as claimed.

Suppose now that f\ (bj_x,bJ) is strictly monotone. The ©-minimality of Jt
implies that f"(bj_x,bj) is the union of finitely many intervals in Jt. Using the
strict montonicity of / on (bj_x, bj), we can subdivide (bj_x, bj) into finitely many
intervals with appropriately chosen endpoints bj_l= bJ0 < b{ < ■ ■ ■ < b{ = b¿ such
that /"(V-i> bf) is an interval and f\ (6/-i> bf) is an order preserving or reversing
bijection onto f"(bf x, bf) for r = 1,..., k}.
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Finally, if {a0,..., an} enumerates in increasing order all endpoints as obtained
as above, i.e.,

{a0,...,an} = {b0,...,bk} u\j{bJ0,...,bJki),       f\ (bj_x, bj) monotone,
j

we see that (a)-(c) in the conclusion of Theorem 4.2 are satisfied.   D

5. Existence and uniqueness of prime models. Throughout this section, we shall
adopt the convention that in any context in which a theory T has been fixed, all
models will be elementary submodels of some sufficiently saturated model of T.
Recall that if A Q Jt 1= T, then a model Jt \= T such that A ç. Jt is said to be
prime over A if for any Jt' \= T with A <zJt', there is an elementary mapping /:
Jt -» Jt' that is the identity on A. With T the theory of real closed fields, for
example, the real closure R of an ordered field F is prime over F. Moreover, in this
case, R also is unique up to isomorphism over F. We generalize the existence and
uniqueness of the real closure of an ordered field with the following theorem, whose
proof is the concern of this section.

Theorem 5.1. Let A QJt \= T, where T is a strongly O-minimal theory. Then there
is an Jt 1= T, A c Jt, that is prime over A, and is unique up to isomorphism over A.

The proof of Theorem 5.1 crucially depends on Lemma 5.2. We must make a
definition before stating the lemma. Let A, B ç Jt, where Jt is ©-minimal. The
Exchange Principle (Theorem 4.1) permits the definition of the dimension of B over
A, which we write as dimA(B), as the cardinality of any set of elements of B that is
maximal with respect to being algebraically independent over A.

Lemma 5.2. Let A ç Jf\= T, where T is strongly O-minimal, and a, b G cl(A) such
that the formula a < x < b isolates a complete type over A. Then there exists Jtt=T
such that A Q Jt and dirndl c G Jt: a<c<è})<X0.

The proof of Theorem 5.1 from Lemma 5.2 will be given now, and the proof of
Lemma 5.2 will be postponed until later in this section. We first will have to avail
ourselves of some preliminary definitions and lemmas.

Let A ç B c Jt. Then B is said to be atomic over A provided that for every
« < co, every «-tuple of elements from B realizes a principal type over A (in Jt).
Moreover, if B\A can be enumerated as a sequence (bß:ß < a), for some ordinal
a, so that each element bß realizes (in Jt) a principal type over A U {by:y < /?},
then B is said to be constructible over A. Observe that if B is constructible over A,
then B is atomic over A. The next lemma is well known.

Lemma 5.3. Let a complete theory T be given.
(a) Let A QJt\= T. Any model Jt that is constructible over A also is prime over A.
(b) Suppose that for any subset A of a model Jt of T and any formula <jp having

parameters from A, there is a complete formula with parameters from A which, relative
to Th( Jt, a)atEA, implies <p. Then, for any A ç Jt, there is a model Jt of T that is
constructible over A.
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(c) (Rcssayre, unpublished; see IX.4.12 in [0] for a proof.) Let A <zjt\= T. Then
any two models that are constructible over A are isomorphic over A.

By Lemma 3.1, it follows from Lemma 5.3(b) that there exists a constructible
model over any subset A of a model of strongly ©minimal theory T. By 5.3(a), any
such constructible model will be prime over A. Hence, by 5.3(c), we will have
established Theorem 5.1 once we prove the next lemma.

Lemma 5.4. Let Jt be a model of a strongly O-minimal theory T that is prime over a
subset A of a model of T. Then Jt is constructible over A.

We shall require two more lemmas for the proof of Lemma 5.4.

Lemma 5.5. Let T be strongly O-minimal, A <zjt\= T and a,b g cl(,4).
(a) Suppose that the formula "a < x < b" isolates a complete nonalgebraic type over

A. Then I = (c =Jt:a < c < b) either is a discrete linear order without endpoints,
or a dense linear order without endpoints.

(b) Suppose that I is as above, and I ' is any other open interval in Jt all of whose
elements satisfy the same nonalgebraic principal type over A. If for some b G I,
c\A({b}) n I' =£ 0, then there exists a monotone bijection g:I-*I' that is definable
with parameters from A. Moreover, any f:I ~* I that is definable over A must be a
monotone increasing bijection.

(c) Suppose that I andf: I -» I' are as in (b), and X ç I is atomic and algebraically
independent over A. Then f"(X) = {/(x):x G X) is an atomic and algebraically
independent subset of I'. Furthermore, if A is maximal, then so isf"(X).

(d) Let I and I' be as above, and {bx,...,bn+x} is an atomic and algebraically
independent subset of I. Suppose also that clA({bx,..., b„}) <~\ I' = 0, but
c\A({bx,..., ¿,I + 1}) n I' ¥= 0. Then there is a J ç I such that bn + x g J and every
element of J satisfies the same principal type of A U {bx,..., bn}, and a monotone
bijection g:J—>I'thatis definable from parameters in A U {bx,...,bn}.

Proof. Notice first that since a,b e cl(A), and so are definable over A, that the
formula "a < x < b" can be taken as a formula over A. The verification of (a), then,
is quite simple. Suppose that I is not discrete, and so some a g I has, without loss
of generality, no immediate successor in I. Then a cannot have an immediate
predecessor, since any predecessor b of a must satisfy the same type over A as a,
and thus could not have an immediate successor. Since every element of I satisfies
the same type over ^ as a, no element of I can have an immediate successor or
predessor and, consequently, / must be a dense linear order without endpoints.

Now we prove (b). Suppose then that <p(x, b) is an algebraic formula with
(suppressed) parameters from A such that for some c = I', Jt \= <p(c,b). Since
clA({b}) = dc\A({b}), we also may assume that

Jt\= (3!x)cp(x,6) A "x G /'."

Since the formula (3!x)cp(x, v) A "x g /'" has parameters from A, it follows that

Jt\= (3\x)cp(x,b') A "xg/"'
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for any b' g /. Let /:/-»/' be the function defined with parameters from A by
f(b) = c if and only if Jt 1= <p(c, b). We show that / must be a monotone bijection.
By Theorem 4.2, / must be piecewise monotone or constant. However, / cannot
change its behavior, because a boundary point of such a change would be an interior
point of I that is definable over A. Thus, / has to be monotone or constant. If /
were constant, though, the range of / would then be a point in /' definable over A,
whence / has to be monotone. Lastly, since the range of / is definable over A, it is
apparent that the range of / must be all of /'. We therefore have shown that / is a
monotone bijection, as desired. Lastly, it remains to show that g:I -» / must be a
monotonically increasing bijection. This follows simply because were / decreasing,
then both D+= {b g /:/(*>) > b} and D= {b g I:f(b) < b) would be non-
empty subsets of I that are definable over A and so would yield a boundary point in
/ that also would be definable over A.

Using (b), the proof of (c) becomes routine and will be left to the reader. So it
remains to establish (d). Since c\A({bx,...,b„})C\I'= 0, we conclude that every
element of I' satisfies the same nonalgebraic principal type over A U {bx,...,bn}.
Moreover, since {bx,...,bn+x} is atomic and independent over A, it follows that
there is some open J ç / so that b„+l g J and every element of J satisfies the same
nonalgebraic principal type over A U {bx,..., bn}. Applying (b) to J and /' then
yields the desired conclusion, completing the proof of 5.5.   D

A proof of the following lemma may be found in [17].

Lemma 5.6 (Harrington). Let Tbe a complete theory. For any subset A of a model
of T, suppose also that every formula with parameters from A is implied by a complete
formula with parameters from A. Then, if B ç C ç D all are submodels of a model of
T, D is atomic over B, and for any complete type over B, either all or none of its
realizations in D are in C, it follows that D is atomic over C.

Now we can proceed with the proof of Lemma 5.4. Here, we shall avail ourselves
of Lemma 5.2.

Proof of Lemma 5.4. Let Jt\= T be prime over A. Let (Ia:a < X) enumerate
all open intervals in Jt having the property that all elements in the interval satisfy
the same nonalgebraic principal type over A. Observe that Jt = cl(A) U Ua<x Ia-
Now, any such Ia consists of the set of elements in Jt satisfying the formula
"aa < x < ba", for some aa, ba g c\(A). By Lemma 5.2, there exists a model Na
containing A in which dim^c g Na: Na 1= aa < c < ba}) is countable. Since Jt is
prime over A, we can elementarily embed Jt into Na over A, from which it follows
that dimA(Ia) < N0. For each a < X, we now fix an enumeration Ca = (c" : « < co)
of a maximal algebraically independent and (since Jt is prime and hence atomic)
atomic subset of Ia. We now show that Jt is constructible.

We shall enumerate Jt\A as the concatenation of a recursively defined sequence
of sequences of elements of Jt, (Da:a < X), which will be seen to be a construc-
tion. Moreover, we will show, for each a < X, that

(5.4.1) /.CU^.
(5.4.2) (JßsiaDßU A is algebraically, and, hence, definably closed, and
(5.4.3) for each y < X, if / g Uß<aDp, then I  n\Jß^aDß= 0.
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We now build (Da : a < X).
First, we enumerate D0. Let cl(^)\^ = dcl(A)\A be enumerated as F0 = (/ : y

< ß0). It is obvious that F0 constitutes a construction over A. Notice that F0 n /„
= 0 for all a < X and thus that each element of any given /„ satisfies the same
principal type over A U F0. Since Jt is atomic over A, clearly Jt is atomic over
A U F0. Therefore, since the order type of C0 = (c°:n < co) is co, it is a routine
matter to verify that C0 is a construction over A U F0. Next, let E0 = {e°:v < S0)
enumerate clA(F0 U C0)\A Uf0U C0. Again, obviously E0 is a construction over
,4 U F0 U C0. Finally, let D0 = F0~ C0~ E0. Observe, first, by the maximality of C0,
that I0 Q D0. Furthermore, D0 U A is algebraically closed. Lastly, by Lemma 5.5(c),
(d), for any y < X, if Iy % D0, then IyC\D0 = 0. Hence (5.4.1)-(5.4.3) hold for
a = 0.

Next, suppose that (5.4.1)-(5.4.3) hold for all ß < a. We build Da so that they
continue to be satisfied. Observe that Uß<aDßD A is algebraically closed and also,
for each y < X, if Iy <£ \Jß<aDß, then Iy n U^<„ Dß = 0. For any y < X, it then
follows that either Iy c U^ < „ Dß or Iy n U^ < a Dß = 0, and in the latter event that
each member of I satisfies the same nonalgebraic principal type over A U U^ < a Dß
(recall that the endpoints of Iy are in cl(yl)). This fact, together with Lemma 3.1,
suffices to show that A ç A U\Jß<a DßczJt satisfy the hypothesis of Lemma 5.6.
Hence Jt is atomic over A U öß<a Dß. If Ia ç U/8<QD/3, then let Da = ( >, in
which case (5.4.1)—(5.4.3) trivally continue to hold. Thus assume that /„nU^,,^
= 0. Since Ca = (c° : n < co) has order type co, it of course is a construction over

A UÜß<aDß. Next, let Ea = «: v < Sa) enumerate clAQJß<aDß U Ca). Again,
Ea constitutes a construction over A U U^ < „ Dß. Finally, let Da = Ca~ Ea. Since Ca
is a maximal independent subset of Ia over A, we have that Ia ç U^ < a Dß, so that
(5.4.1) is satisfied. Nothing needs to be said about the continued satisfaction of
(5.4.2). Lastly, (5.4.3) continues to hold by virtue of Lemma 5.5(c), (d). This
completes the definition of (Da : a < X), which obviously serves as a construction of
Jt over A, and so finishes the proof of Lemma 5.4.    D

The proof of Theorem 5.1 therefore will be complete once Lemma 5.2 has been
proved. We shall need a lemma.

Lemma 5.7. Suppose that A Q Jf= T, where T is strongly O-minimal, a,b G cl(^4)
and that the formula "a < x < b" isolates a nonalgebraic complete type over A. Also
assume that X <z I = (a, b)^ and that c\A( X) Pi / is dense if I is dense, or discrete if I
is discrete {cf. Lemma 5.5(a)). Then, if Jt is atomic over c\A(X), it follows that
(a,b)^çzc\A(X).

Proof. Let c g (a, by. Then c satisfies an atomic type over cl/)(Ar). If this type
is algebraic, then clearly c ^ o\A(X). On the other hand the assumption that the
type that c satisfies over c\A(X) is nonalgebraic and thus of the form "ex < x < e2"
for some ex,e2 g cl^A") leads to a contradiction. Indeed, our hypothesis, in the
case that (ex, e2y is either dense or discrete (and infinite), implies that (ex, e2y C\
c\A{X) + 0. But then it cannot be the case that "ex < x < e2" isolates a complete
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type over c\A(X), contrary to what we supposed. The proof of the lemma now is
complete.    D

The conclusion of the proof of the following lemma is due to David Marker. It
greatly simplifies our original argument and is very much in the spirit of the kind of
argument that we had sought but were not successful in finding.

Lemma 5.2. Let A ç Jf\= T, where T is strongly O-minimal, and a, b G c\(A) such
that the formula a < x < b isolates a complete type over A. Then there exists Jt \= T
such that A ç Jt and dimA({c g Jt: cz<c<6})<N0.

Proof. By Lemmas 3.1 and 5.3(b), there exists a constructible model over any
subset of a model of T. Since any model that is constructible over A also is atomic
over A, by applying Lemma 5.7 to a model Jt that is constructed over cl(^4), we
shall be done once we have found some X ç (a, by so that c\A{X) is dense or
discrete if (a, by is and dim/4(Ar) < S0.

If (a, by is discrete, then simply let X be any singleton. We thus may assume
that (a, by is a dense linear order without endpoints. We construct X as the union
of an increasing chain of finite sets Xn, n < co. For notational convenience let
X_x= 0.

At stage « = 0, choose some x0 g (a, by and let X0 = {x0}. Also, let ^0
enumerate in some fixed order all nonalgebraic principal types over c\A(X0) with an
endpoint in X0 (e.g., formulas of the form "c < x < x0" or "x0 < x < c," where
cec\A(X0)).

Now suppose that we have the sets X¡, i < n, and ßt, i < n. The construction of
Xn now breaks up into cases:

Case 1. There is no member of U, < „,/) that is still isolated over cl^(U, < „ X¡). In
this case, let X„ » X„-i and Jn = < ).

Case 2. There is some member of U, < „ </¿ that is still isolated over cl^iU, < „ A",).
Let J be the least such member of the enumeration </0Ai/1A • • • A</,,_i, and choose
x„ g /. Then let Xn = Xn_x u {x„}, and let Jn be an enumeration of all nonalge-
braic principal types over o\A(Xn) that have an endpoint in Xn.

Setting X =\Jn<uXn, we now assert that c\A(X) U (a, by is dense. Indeed,
suppose that c, d g c\a(X) n (a, by, c < d, and let « be least such that c, d g
cl^A,,). Without loss of generality, we may assume that c g cl/4(A'n)\cl/)(Xrn_1),
and so Xn = XH_l U {x„}. Let the formula "ex < x < e2" isolate the complete type
over A U Xa_1 that x„ realizes. As usual, there exists a function / with domain
(ex, e2y that is definable from the parameters A U Xn_x such that /(x„) = c.

Since "ex < x < e2" isolates a complete type over A U Xn_x, f must be mono-
tone or constant on (ex,e2y. But since c ^ clA(Xn)\clA(Xn^x), f must be
monotone on (ex,e2y. Also, we may infer that R = f"((ex,e2y) must be an
interval in Jf, again because every element of (ex, e2y satisfies the same type over
A U X„_v Thus / is an order preserving or reversing bijection from (e1,e2)-/ronto
R = (e[, e'2y, and c is an interior point of (e'x, e'2y. Without loss of generality, we
suppose that / is increasing.
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If e2 < d, then since we would have c < e'2< d and e2 already is definable over
A U X„_ x, we would be done. Hence we further suppose that d < e'2. Therefore,

dA(x)o(c,dy* 0

^Idjbnix,,,/-1^))-"* 0    ifd<e'2,
\c\A(X)n(xn,e2y* 0 ifd=e'2.

If there is no nonalgebraic principal type over c\A(Xn) with left endpoint x„, then
obviously ciA(Xn)C\(c,dy¥= 0. On the other hand, suppose there exists such a
type given by the interval /. It follows that

IJ{xu,r\d))Jr   ifd<e'2,
\(x„,e2y ifd=e2,

and by some stage in the construction either / no longer is isolated, or a point
chosen from / is put into X. In either event, c\A(X) C\I + 0, whence the proof is
complete.   □

6. S „-categorical strongly ©minimal theories. Here, we prove the following theo-
rem, which completely characterizes those strongly ©-minimal theories that are
S 0-categorical.

Theorem 6.1. Lei T be an X ̂ -categorical strongly O-minimal theory, and let Jt be
its model (up to isomorphism) of power X0. Then there exist

(i) a finite C = { c0,...,c„} QJt (JtU {+ co}, if Jt does not have a first or last
element), consisting of all of the definable elements in Jt (with the possible exceptions
of ± co), such that Jtt= c, < c for all i <j < n and for each j = 1,..., «, either
Jt \= —,(3x)cj_x < x < Cj or I — {x G Jt:Jt 1= c¡_x < x < c } is a dense linear
order without endpoints and

(ii) an equivalence relation E ç ({_/:/. ^ 0 })2 such that for each (i, j) G E there
is a unique definable monotone bijection / , : /, -» I- so that / , = identity and fj k ° / y
= f^kforall(i,j),(j,k) = E,
so that T admits elimination of quantifiers down to the language {= , <} U {ç,:
i < n} U ( / : (i, j) G E}, where the c¡, i = 0,..., «, are interpreted in Jt by c,,4
andfj j by f¡ for (/', /) G E. Moreover to any ordering with distinguished elements as
in (i) and any suitable equivalence relation E as in (ii), there corresponds an
S ^-categorical strongly O-minimal theory as above.

As an immediate corollary, we have

Corollary 6.2. Any S ^-categorical strongly O-minimal theory in a finite language
is finitely axiomatizable.

"Adjustments must be made here if J( does not have a first or last element.
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The proof of the "moreover" clause in Theorem 6.1 is not difficult and is left to
the reader. The proof of the first part of Theorem 6.1 occupies the rest of this
section. The next lemma is standard.

Lemma 6.3. Any complete expansion by definitions or finitely many constants of an
N 0-categorical theory is again S ^-categorical.

For the remainder of this section, we fix an S „-categorical strongly ©-minimal
theory T and its unique, up to isomorphism, countable model Jt. We prove a
sequence of lemmas that will culminate in the proof of Theorem 6.1.

Lemma 6.4. The finite set C asserted to exist in (i) of 6.1 does exist.

Proof. Let C = {c ^Jt: c is definable in Jt}. By Ehrenfeucht's characteriza-
tion of S 0-categoricity, C must be finite. Let C (U{ ±00} if Jt does not have a first
or last element) be enumerated as (c0,...,c„}. Next, suppose that J = {x =Jt:
Jt 1= Cj_x < x < Cj) =£ 0. By strong ©-minimality, each element of Ij must satisfy
the same nonalgebraic principal type, and so, by Lemma 5.5(a), /■ must be either
dense or discrete without endpoints. However, were /, discrete, then the algebraic
closure of any point in I. would be infinite. This, however, would violate Lemma
6.3, applying Ehrenfeucht's characterization of S 0-categoricity once again. So /
must be dense without endpoints, completing the proof of the lemma.   D

For the remainder of the section, we now fix in Jt C = ( c0,..., c„} and the L's,
which we hence will call components, as guaranteed by 6.4. Let the collection of
nonempty /,'s be enumerated by {IJt,..., Ij }.

Lemma 6.5. For any L, and any m < co, every m-tuple of increasing elements in Ij
satisfies the same type.

Proof. For a contradiction, let m > 1 be such that every increasing m-tuple of
elements in /, satisfies the same type, but the same is not true for increasing
m + 1-tuples of elements in /.. Strong ©minimality then implies that for any
av...,am & Ij, (d({ax,...,am})nlJ)\{ax,...,am}*0. Let am+x g
(cl({ax,...,am})C\Ij)\{ax,...,am}. The uniqueness of the type of an increasing
m-tuple from /, and the Exchange Principle, Theorem 4.1, together imply that we
may assume ax<a2< •■■ < am + x and that there is some definable (partial)
function / so that f(ax,...,am) = am+x. We then can define an increasing sequence
of points am+J= /(a,,...,a,+m_i), for each /> 1, in /•. Clearly, for each j,
am + x g cl({ax,..., am}). However, this implies that c\({ax,..., am}) is infinite,
which cannot be, by Ehrenfeucht's characterization of S 0-categoricity, once again.
Having reached a contradiction, the lemma is proved.   D

We shall say that a subset {Ik,...,Ik} ç ( J,, ...,L } is weakly orthogonal if
every r-tuple (a,,..., ar) G Ik X ••• xlk satisfies the same type. Such a set
{Ik¡,...., Ik) will be said to be orthogonal if for every sequence («,,..., nr) G cor,
every properly ordered (nx + • • • +«r)-tuple

(a\,al...,ay,...,a1r,a^,...,ay) g (/,_)"' x-.-x(/J"'

satisfies the same type.
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Lemma 6.6. If {Ik ,..., Ik } is weakly orthogonal, then it is orthogonal.

Proof. The proof proceeds by induction on r > 1. The case r = 1 is a conse-
quence of Lemma 6.5. Suppose, then, that the lemma has been established for sets of
r  components,  and  we  show  that  it  is  true  for  sets  of  r + 1   components

[Ikl,...,IkrJ.
By weak orthogonality of {Ik,..., Ik }, any /--tuple (alt..., ar) e Jk X • ■ • Xlk

satisfies the same type in Jt. Furthermore, the weak orthogonality of ( Ik ,..., Ik }
ensures that for any such (ax,..., ar), Ik remains a component in the N0-categori-
cal structure (Jt, ax,..., ar) obtained by expanding Jt by constants for ax,..., ar.
Consequently, for any (ax,..., ar), (a'x,... ,n'r) € Ik X • ■ • X Tk, (Jt,ax,..., ar) is
isomorphic to (Jt, a[,..., a'r) via an isomorphism that maps Ik onto itself. Also,
by an application of Lemma 6.5 to (Jt, ax,..., ar), it follows that for any nr+ x < co,
every increasing «r+1-tuple from Ik   t satisfies the same type in (Jt,ax,...,ar).
Therefore, for any nr+x < co, (4+¿\\.,anrtf),((a\+l)'.(a^)') e (4r+1)"'+l,
and (ax, . . . , ar), (a{, . . . , a'r) g Ik x • ■ • X Ik , the (r + «r+1)-tuples
(a1,...,ar,a\+ltr..,a%*{) and ( a'x,..., a'r, (a].+ x )',..., «ft1)') satisfy the same
type in Jt. In particular, observe for any (a\+x,..., a"^*xl) g (Ik )"'+' that
[Ik,...,Ik } remains a set of weakly orthogonal components in (Jt, a\+,,..., a"r++{ )
and, hence by induction hypothesis applied to (Jt, a\+,,..., a"/++{), that
{Ik,...,Ik) is an orthogonal set of components in (Jt,alr+X,...,a"^x1). It then
easily follows that [Ik,...,Ik } is an orthogonal set of components in Jt, which
we were to prove.   D

Lemma 6.7. 77ie set of components (Ik , Ik } is weakly orthogonal if and only if
there is no definable monotone bijection f: Ik  -* Ik .

Proof. If {Ik , Ik } is weakly orthogonal, then for any a g Ik, strong ©-minimal-
ity implies that cl({a}) n Ikl= 0, and surely there can be no such /. On the other
hand, suppose that [Ik ,Ik } is not weakly orthogonal. Then, strong ©-minimality
implies that cl((a}) n fk + 0, and an application of Lemma 5.5(b) produces the
desired bijection.   D

Lemma 6.8. Suppose that Ik andIk are components in Jt andfx, f2:Ik -» Ik are
definable monotone bijections. Thenfx — f2.

Proof. For a contradiction, suppose not. Then, for any a g Ik fx(a) =£ f2(a).
However, this implies that f{1(f2(ay) g cl((a}) n Iki is different from a, which is
impossible by virtue of Lemma 6.5.   □

We now state and prove the most difficult lemma needed for the proof of
Theorem 6.1.

Lemma 6.9. Let Ik ,..., Ik be components of Jt such that for any i, j < r, i ¥= j,
{Ik , Ik } are weakly orthogonal. Then (Ik ,..., Ik } is an orthogonal set of compo-
nents.

Proof. From Lemma 6.6, it follows that we need only prove that [Ik¡, ...,Ik} is
weakly orthogonal. This will be done by induction on r > 2. For r = 2, this is just
the hypothesis of the lemma.
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Assume, then, that the conclusion of the lemma has been established for sets of r
components, and we proceed to prove it for sets of r + 1 components, {Ik...., /* }•
It clearly is enough to show that if ax g J¡¿ ..., ar_2 g Ikr 2, bx g Ik ^ b2 g Ik,
then c\({ax,...,ar_2,bx,b2})C\Ik = 0. For a contradiction, let us suppose that
there are such ax, . . . , ar^2, bx, b2, and some b3 g lk so that b3 g
ci({ax,..., ar^2, bx, b2}). For simplicity of notation, we work in the S „-categorical
structure Jt' = (Jt, ax,..., ar_2). Induction hypothesis guarantees that each of
Ik , Ik and Ik ' remains a component in Jt', and furthermore, that any pair from
{Ik , Ik, Ik } is a weakly orthogonal pair in Jt'. Again for simplicity of notation
for the remainder of the argument let us rename Ik , Ik and Ik + to be Ix, I2 and
73, respectively.

Let / be the definable (partial) function in Jt' such that f(bx, b2) = b3. By the
weak orthogonality of {Ix, I2), f must be a function from Ix X I2 to I3. The weak
orthogonality of both {Ix, I2} and ( Ix, I3} implies that for any ax g Ix, both I2 and
73 remain components in (Jt',ax). Therefore, by familiar arguments, for any
ax g Ix, the function fa :J2 -* 73 given by /fl (a2) = f(ax, a2) is a monotone bijec-
tion. Since 7j is a component in ^', it furthermore must be true that either for all
«! g /,, /„ is monotonically increasing, or, for all ax g Ix, fa is monotonically
decreasing. For the remainder of the argument, we suppose that the first alternative
holds; if the second should hold, the argument would be similar. Observe that the
same reasoning applies to the family of functions fa :7j -» I3 for a2 g I2, given by
faS^i) = f(<*i, a2).

Now let us fix cx g Ix, c2 g I2 and c3 g I3 so that f(cx, c2) = c3, and also let us
choose some c4 =£ c3 in I3. Let D = cl({cx,c2,c3,c4}) in ^#'. By the S„-categoricity
of Jt', D must be finite, again by Ehrenfeucht's characterization. Obviously, for
each ax g D n 7j (respectively, a2 = D C\ I2), f (respectively, /a ) is a bijection
from D n I2 (respectively, D n Ix) to D n I3. In particular \D n 7,| = |fln 72| =
|7) n 73| > 2. Let a g 7) n 7j and let è g D n 72 be the least element of D n 72.
Then, since it has been assumed that fa is monotonically increasing, we see that
c =f(a,b) = fa(b) must be the least element of D Pi 73. Now, let a' ¥= a be an
element of D n 7P Since fh:Ix -» 73 is bijective, f(a',b) = fh(a') > c. But then,
since /a- is monotonically increasing, and Z> is the least element in D n 72, it cannot
be true that fa, is a bijection from D n 72 to 7) n 73, a contradiction, completing
the induction and the proof of the lemma.   D

We finally are able to complete the proof of Theorem 6.1.
Proof of 6.1. First, Lemma 6.4 established that (i) has been satisfied. Let

E = {(GJ)'Ii* 0 A Ij. # 0 A ( 7,■, Ij} is not weakly orthogonal}.

Lemma 6.7 ensures that E is an equivalence relation, and Lemma 6.8 yields the
uniqueness and the compositionality assertions about the bijections in (ii). It remains
only to verify that T admits the stated elimination of quantifiers. We prove that the
complete type of any p-tuple, (ax,...,ap), of elements of Jt is implied by the
formula ty consisting of the conjunction of all instances and negated instances of
formulas of the form x = y, x < y, ç, < x, x < c¡, y = f¡ j(x), y < f¡ ¡(x) and
f¡j(x) < y, that hold of the coordinates of (ax,..., a ).
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To prove this, let us rewrite (ax,..., ap) as (a[, ...,a"l;...;a].,..., a"/) such that
for every / = 1,..., r the components of a),..., a"j all lie in the same L-equivalence
class (we may neglect any members in (ax,...,ap) that are in {cx,...,c„}, of
course). First, we claim that for any / = 1,..., r, if \pj consists of those conjuncts of
^ involving only a1,..., a"', then dj. implies the complete type of (a1,..., afi). This
follows easily as a consequence of Lemma 6.5, because if it were not true, then by
appropriate use of the /,,/s, there would exist two increasing «^-tuples of elements of
some component that satisfied different types. Secondly, the existence of two
p-tuples (a'x,..., a"r) and (b'x,...,b"r) both satisfying ^ but yet having different
types would imply, by the use of the f¡ ,'s once again, the existence of two such
p-tuples so that for every j = 1.r all coordinates of (a1,..., a"') and (b1,..., bp)
lie in the same component in addition to satisfying the same type. However, this
cannot be possible according to Lemma 6.9.   D
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