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Defining a Link with Asthma
in Mice Congenitally Deficient

in Eosinophils
James J. Lee,1,2* Dawn Dimina,1,2 MiMi P. Macias,1,2†

Sergei I. Ochkur,1,2 Michael P. McGarry,1,2 Katie R. O’Neill,2,3

Cheryl Protheroe,2,3 Ralph Pero,2,3 Thanh Nguyen,1,2

Stephania A. Cormier,1,2‡ Elizabeth Lenkiewicz,1,2

Dana Colbert,2,3 Lisa Rinaldi,4 Steven J. Ackerman,5

Charles G. Irvin,4 Nancy A. Lee2,3*

Eosinophils are often dominant inflammatory cells present in the lungs of
asthma patients. Nonetheless, the role of these leukocytes remains poorly
understood. We have created a transgenic line of mice (PHIL) that are specif-
ically devoid of eosinophils, but otherwise have a full complement of hema-
topoietically derived cells. Allergen challenge of PHIL mice demonstrated that
eosinophils were required for pulmonary mucus accumulation and the airway
hyperresponsiveness associated with asthma. The development of an eosino-
phil-less mouse now permits an unambiguous assessment of a number of
human diseases that have been linked to this granulocyte, including allergic
diseases, parasite infections, and tumorigenesis.

The underlying features of asthma display a
marked heterogeneity (1, 2), yet the presence of
eosinophils in the airway lumen and lung tissue
has been recognized even in the earliest studies
(3) and is often regarded as a defining feature of
this disease (4, 5). Moreover, the recruitment of
eosinophils occurs in animal models of aller-
gen-mediated respiratory inflammation; in par-
ticular, mouse models have offered unique op-
portunities with which to examine detailed
pathologic features of this disease. However,

the availability of clinical studies and numerous
mouse models of asthma have not led to an
unambiguous description of eosinophil ef-
fector functions in asthma, and questions
remain as to the specific role(s), if any, of
these leukocytes (6).

A line of mice devoid of eosinophils was
created to test hypotheses that link eosinophils
and asthma-related pathogenesis. Transgenic
mice devoid of eosinophils were created by lin-
eage-specific expression of a cytocidal protein
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with a promoter fragment identified from studies
of secondary granule protein genes expressed in
mouse eosinophils (7–11). A candidate promoter
from the gene for eosinophil peroxidase (EPO)
was selected on the basis of transfection studies
with EPO promoter–luciferase reporter con-
structs in the eosinophilic cell line AML14.3D10

(12). These studies revealed that upstream se-
quences from the mouse EPO gene were capable
of supporting high-level expression that was
unique to eosinophil lineage–committed cells
(fig. S1). In addition to mouse EPO-derived
sequences, the transgenic construct developed
included the diphtheria toxin A (DTA) chain

open reading frame (13). The cytocidal charac-
ter of diphtheria toxin is mediated by the DTA
chain (the B chain provides entry into eukary-
otic cells) through the catalytic degradation of
elongation factor-2 and the subsequent col-
lapse of protein synthesis (14).

Assessment of circulating leukocytes (15) in
the resulting EPO-DTA transgenic (PHIL) mice
demonstrated that these animals were devoid of
eosinophils but otherwise have a full comple-
ment of hematopoietically derived cells (Fig.
1A). An examination of splenic lymphoid cells
(15) revealed normal numbers of B cells, T cells,
and the T lymphocyte CD4� and CD8� sub-
types (Fig. 1B). Assessments of lung sections
and peritoneal cavity exudates from PHIL mice
revealed wild-type levels of mast cells (fig. S2,
A and B). Moreover, circulating basophils were
identified in peripheral blood from PHIL mice
(fig. S2C), demonstrating that even a leukocyte
lineage sharing a direct common precursor with
the eosinophil lineage was unaffected. The spe-
cific ablation of eosinophils in PHIL mice also
occurred with no effects on either erythropoiesis
or the production of platelets (Fig. 1C). A nom-
inal elevation of total white blood cell counts
was consistently observed in PHIL mice relative
to negative littermates. This increase, however,
was not specific to any one cell type and did not
elevate circulating cell numbers beyond the nor-
mal observable range in wild-type mice.

The loss of eosinophils in PHIL mice was
nearly absolute, with only an occasional eosino-
phil identified in surveys of blood films from 1
of 20 animals examined. This eosinophil defi-
ciency is lifelong and a Mendelian inheritable
trait of the line. The specificity of the eosinophil
deficiency in PHIL mice was achieved through a
cross with interleukin (IL)–5 transgenic animals
(16). These IL-5 transgenic mice have circulat-
ing eosinophil levels that, in some cases, exceed
100,000 per mm3 of blood, representing �50%
of all white blood cells. Analyses of blood from
double transgenic animals (i.e., mice carrying
both the DTA and IL-5 transgenes) again revealed
a complete absence of eosinophils (Fig. 1D).

The eosinophil-deficient character of
PHIL mice was extended further by immu-
nohistochemistry with antibodies specific for
Major Basic Protein (MBP) (15, 17, 18).
Tissues with abundant resident populations of
eosinophils (i.e., bone marrow, uterus, small

1Division of Pulmonary Medicine, 2Department of
Biochemistry and Molecular Biology, 3Division of
Hematology/Oncology, Mayo Clinic Arizona,
Scottsdale, AZ 85259, USA. 4Vermont Lung Center,
Department of Medicine, University of Vermont,
Burlington, VT 05405, USA. 5Department of Bio-
chemistry and Molecular Biology, University of Il-
linois, College of Medicine, Chicago, IL 60612, USA.

*To whom correspondence should be addressed. E-mail:
jjlee@mayo.edu (J.J.L.) and nlee@mayo.edu (N.A.L.)
†Present address: The EAR Foundation of Arizona,
Phoenix, AZ 85008, USA.
‡Present address: Department of Biology, Louisiana
State University, Baton Rouge, LA 70803, USA.

Fig. 1. The eosinophil deficiency of PHIL mice is specific and definitive. (A) Peripheral blood of PHIL
mice is devoid of eosinophils without effects on the composition of other leukocytes (mean � SE,
n � 17 animals per group). (B) The targeted loss of eosinophils had no effects on lymphocyte
subtypes (n � 5 animals per group). (C) The specific ablation of eosinophil lineage–committed cells
had no additional effects on other hematopoietic parameters, although a nonspecific marginal
increase in the steady-state levels of total circulating white blood cells was observed. (D)
Fluorescence-activated cell sorting analyses demonstrated that the marked blood eosinophilia (i.e.,
the presence of CCR3� cells) of the IL-5 transgenic line NJ.1726 (16) was completely abolished in
NJ.1726/PHIL double transgenic mice. PE, phycoerythrin. (E) Immunohistochemistry (dark purple–
stained cells) with eosinophil-specific rabbit polyclonal antisera to MBP demonstrates that tissues
or organs with prominent resident populations of eosinophils at baseline in wild-type mice were
devoid of these granulocytes in PHIL mice. Scale bar, 100 �m.

R E P O R T S

17 SEPTEMBER 2004 VOL 305 SCIENCE www.sciencemag.org1774

D
ow

nloaded from
 https://w

w
w

.science.org at L
ouisiana State U

niversity on O
ctober 06, 2021



intestines, and thymus) in wild-type animals
were shown to be devoid of these granulo-
cytes in PHIL mice (Fig. 1E).

PHIL mice were subjected to an acute aller-
gen sensitization/aerosol challenge model of
asthma (15) to determine if the presence of
eosinophils was causatively linked to the devel-
opment of disease symptoms. Whereas wild-
type mice sensitized/aerosol challenged with
chicken ovalbumin (OVA) developed a signifi-
cant airway eosinophilia [�50% of bronchoal-
veolar lavage fluid (BAL) cells], PHIL mice
were essentially devoid of eosinophils, with only
trace numbers (�0.5%) of eosinophils identifi-
able in the BAL of one of four OVA-treated
animals (Fig. 2A). The loss of eosinophils from
the lungs of OVA-treated PHIL mice also ex-
tended to tissue-infiltrating cells. Specifically,
the lungs of OVA-treated PHIL mice were de-
void of eosinophils, unlike the significant tissue
eosinophilia that occurred in the areas surround-
ing the central airways (peribronchial) and the
vasculature (perivascular) of OVA-treated wild-
type animals (Fig. 2, B to D, and fig. S3).
Examination of blood films and bone marrow
smears from OVA-treated PHIL animals again
revealed only an occasional eosinophil in a
fraction of the animals examined.

The targeted ablation of eosinophils had sig-
nificant effects on allergen-induced pulmonary
pathology, suggesting a causative role for these
granulocytes. Overall, OVA-induced histopa-
thology in PHIL mice was attenuated relative to
OVA-treated wild-type littermates. This lack of
pathology was manifested by the reduced airway
epithelial hypertrophy in OVA-treated PHIL
mice (Fig. 2, B and C). In addition, assessment
of airway mucins by periodic acid–Schiff (PAS)
staining (15) demonstrated that OVA-induced
goblet cell metaplasia/mucus accumulation
(GM/MA) in PHIL mice was significantly re-
duced (Fig. 3, A to C). A quantitative assessment
of the staining in these tissue sections revealed a
68% reduction of PAS staining in PHIL mice
relative to OVA-treated wild-type animals (Fig.
3D). However, the GM/MA observed in OVA-
treated PHIL mice was still significant when
compared to allergen-naive animals. This obser-
vation suggests that eosinophils contribute to,
and are necessary for, the levels of pathology
observed in wild-type mice, but that they are not
alone sufficient to account for these wild-type
levels. That is, both eosinophil-dependent and
-independent mechanisms exist in the lung that
elicit GM/MA after allergen challenge.

The association between allergen-induced
pulmonary eosinophilia and the development of
lung dysfunction in both asthma patients and
mouse models has been, at best, a collection of
confusing and often contradictory observations.
The lack of symptom improvement in asthma
patients after administration of antibodies to IL-5
exemplifies the ambiguous character of clinical
studies that attempt to ablate eosinophils (6).
Mouse models purporting to ablate eosinophils

Fig. 2. The pulmonary eosinophilia associated with OVA sensitization/aerosol challenge was abolished
in PHIL mice. (A) OVA-induced eosinophilia of the airway lumen was lost (decreased by �99%) in PHIL
mice (mean � SE, n � 5 animals per group). *, P � 0.001. (B and C) Assessments of infiltrating
eosinophils in (B) wild-type and (C) PHIL mice by immunohistochemistry (dark purple–stained cells)
with rabbit polyclonal antisera to mouse MBP revealed that OVA-induced accumulation of eosinophils
was also extinguished in PHIL mice. Scale bar, 100 �m. (D) Quantitative assessments of the number of
eosinophils infiltrating peribronchial areas (i.e., eosinophils per mm2) demonstrated that OVA-treated
PHIL mice were devoid of tissue eosinophils (mean � SE, n � 5 animals per group). Ø indicates the
absence of eosinophils in any of the sections of any of the mice in the cohort examined.

Fig. 3. The specific loss of eosinophils in PHIL mice resulted in a significant reduction in OVA-induced
GM/MA. Representative lung sections after PAS staining are shown for (A) saline control and (B) OVA
sensitized/OVA aerosol challenged wild-type mice in comparison to (C) OVA sensitized/OVA aerosol
challenged PHIL mice. The sections of each panel show early-branching central conducting airways,
whereas the insets show smaller, more distal bronchioles. Scale bars, 100 �m. (D) Quantitative
assessments of airway epithelial mucus content showed a marked decrease (relative to wild type) in
PHIL mice (mean � SE, 5 to 10 animals per group). All evaluations of histopathology were performed
in duplicate as independent observer-blinded assessments. *, P � 0.05.
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are also ambiguous, as they either do not com-
pletely eliminate pulmonary eosinophils or they
elicit the loss of eosinophils by mechanisms that
do not differentiate between effects on eosino-
phils and other potentially important cellular
targets (19–22). However, measurements of lung
function after OVA sensitization/aerosol chal-
lenge of PHIL mice (15) showed that methacho-
line-induced airway hyperresponsiveness was
dependent on the presence of eosinophils (Fig.
4). Moreover, the specific loss of eosinophils
also led to improvement of other pulmonary
function parameters associated with the distal
regions of the lung (fig. S4).

The lack of observable phenotypes in knock-
out mice deficient for the abundant secondary
granule proteins MBP-1 (18) and EPO (17)
suggests that activities other than degranulation,
including antigen presentation (23), the release
of small molecule mediators of inflammation
[e.g., the synthesis and release of eicosanoid
mediators of inflammation (24)], and immune
regulation of the pulmonary microenvironment
through either modulations of T cell activities
(21) or eosinophil-derived cytokine and/or che-
mokine expression (25) are likely to be the
relevant effector functions. Eosinophil-derived
cytokine and/or chemokine expression, in partic-
ular, is noteworthy as it may account for the
chronic and seemingly self-sustaining character
of allergic pulmonary inflammation, which often
leads to lung remodeling events (26, 27). Signif-
icant decreases of Th2 cytokine levels in BAL of
OVA-treated PHIL mice (28) lend support to
this hypothesis and suggest that a prominent
eosinophil effector function in the lung is local-
ized immune regulation.

This study shows that eosinophil activities
are important contributory factors leading to

symptoms that are classically defined as hall-
mark features of asthma. More importantly,
these data provide validation of earlier studies
that independently concluded that a causative
link exists between eosinophils and allergic pul-
monary pathologies (22, 29). The dependency of
allergen-induced pulmonary pathologies on eo-
sinophils suggests that these granulocytes partic-
ipate at a significant level in underlying inflam-
matory responses. Regardless of the ultimate
definition of the causative activities mediated by
eosinophils, the challenge of future studies will
be to develop confirmatory clinical studies to
unambiguously define the role(s) and extent of
eosinophil effector functions in asthma patients.
The results of such studies will not only widen
our understanding of the principle causes of
asthma, but are also likely to lead to targeted
therapeutic approaches previously dismissed
and/or overlooked.
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A Critical Role for Eosinophils in
Allergic Airways Remodeling

Alison A. Humbles,1*† Clare M. Lloyd,2*† Sarah J. McMillan,2

Daniel S. Friend,3 Georgina Xanthou,2 Erin. E. McKenna,1 Sorina
Ghiran,1 Norma P. Gerard,1 Channing Yu,4 Stuart H. Orkin,5

Craig Gerard1

Features of chronic asthma include airway hyperresponsiveness, inflammatory
infiltrates, and structural changes in the airways, termed remodeling. The contri-
bution of eosinophils, cells associated with asthma and allergy, remains to be
established. We show that in mice with a total ablation of the eosinophil lineage,
increases in airway hyperresponsiveness and mucus secretion were similar to those
observed in wild-type mice, but eosinophil-deficient mice were significantly pro-
tected from peribronchiolar collagen deposition and increases in airway smooth
muscle. These data suggest that eosinophils contribute substantially to airway
remodeling but are not obligatory for allergen-induced lung dysfunction, and
support an important role for eosinophil-targeted therapies in chronic asthma.

Since its discovery by Paul Erlich in 1879,
there has been a wealth of information doc-
umenting the association between eosinophils
and parasitic or allergic diseases (1). The role
of eosinophils in allergic disease remains
controversial. Although T helper cell 2 (TH2)
lymphocytes are thought to drive asthmatic

responses, increasing evidence suggests that
eosinophils are associated with development
of lung dysfunction and subsequent immuno-
pathology (2–4).

Asthma is a chronic disease characterized
by airway hyperresponsiveness (AHR), air-
way inflammation, and reversible airway ob-

Fig. 4. In the absence of eosinophils, OVA-
induced airway hyperresponsiveness does not
develop. Lung function was assessed as airway
resistance (Rn) in response to aerosolized
methacholine, in saline-treated (WT/Saline)
and OVA sensitized/OVA aerosol challenged
(WT/OVA) wild-type mice in comparison to
saline-treated (PHIL/Saline) and OVA sensi-
tized/OVA aerosol challenged (PHIL/OVA) PHIL
mice (n � 5 to 10 animals per group). Asterisks
indicate a significant difference (P � 0.01) be-
tween WT/OVA and either WT/Saline, PHIL/
Saline, or PHIL/OVA mice.
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