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ABSTRACT

This paper describes the definition of a typical next-generation space-based weak gravitational

lensing experiment. We first adopt a set of top-level science requirements from the literature,

based on the scale and depth of the galaxy sample, and the avoidance of systematic effects in

the measurements which would bias the derived shear values. We then identify and categorize

the contributing factors to the systematic effects, combining them with the correct weighting,

in such a way as to fit within the top-level requirements. We present techniques which permit

the performance to be evaluated and explore the limits at which the contributing factors can

be managed. Besides the modelling biases resulting from the use of weighted moments, the

main contributing factors are the reconstruction of the instrument point spread function, which

is derived from the stellar images on the image, and the correction of the charge transfer

inefficiency in the CCD detectors caused by radiation damage.

Key words: gravitational lensing: weak – methods: statistical – space vehicles: instruments –

cosmological parameters – cosmology: observations.

1 IN T RO D U C T I O N

In the current ‘Concordance Model’ of cosmology, approximately

three quarters of the energy density of the Universe consists of

dark energy, and one fifth of dark matter. If this model is correct,

the implications are significant, because the nature of both these

dark components is unknown. If some other explanation for the

appearance of the Universe is to be sought, then the implications

are also momentous for our current understanding of physics and

cosmology.

Dark energy is a relatively new entity in our understanding of

cosmology. It has been known since the 1920s that the typical sep-

aration between galaxies is growing with time – the Universe is

expanding. But it might be supposed that in a Universe made up of

only matter, this expansion is decelerating: the galaxies will move

apart at a decreasing rate owing to their mutual gravitational in-

⋆ E-mail: m.cropper@ucl.ac.uk

teraction. However, a little more than a decade ago, observations

comparing different distance measures for supernovae (Riess et al.

1998; Perlmutter et al. 1999) revealed that this is not the case, and

the expansion is in fact speeding up. The cause of this accelera-

tion is unseen, but has the characteristics of an extra energy density

in the Universe; hence we label the entity as ‘dark energy’. The

importance of dark energy can scarcely be exaggerated. Most im-

mediately, it represents the largest source of energy density in the

Universe, ∼75 per cent. It is expected to dominate the future dy-

namics of the Universe, so the origins and nature of the Universe

cannot be understood without some assessment of what dark energy

is and what its physical characteristics are.

The next most significant constituent of the Universe, dark matter,

exceeds the normal baryonic matter in a ratio of four or five to

one. As dark matter structures form under gravitational collapse,

baryonic matter follows. Hence, the dark matter drives the formation

and evolution of the structures we observe directly, because the

behaviour of stars, galaxies and gas depends on the underlying

gravitational potential created by it. While dark matter apparently

C© 2013 The Authors
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interacts gravitationally in the same way that normal baryonic matter

does, it seems not to interact through the electromagnetic force.

Observations must therefore rely on inferring its presence through

the gravitational effect it has on light or baryonic matter, by which

means it has been inferred on a range of scales, galactic and larger.

That it is critical to achieve an understanding of the nature of

dark energy and of dark matter, and of the examining and testing

the alternative conceptual structures for the observed characteris-

tics of the Universe, has been recognized for some time. Summaries

are available in the Dark Energy Task Force and ESA/ESO reports

(Albrecht et al. 2006; Peacock et al. 2006), the ASTRONET Infras-

tructure Roadmap (Bode, Cruz & Molster 2009) and most recently

by the US Decadal Survey report (Blandford et al. 2010).

Initiatives are under way to further the accuracy and precision of

the observations in order to address these questions, using facili-

ties on ground (for example, BOSS – Schlegel, White & Eisenstein

2009; BigBOSS – Schlegel et al. 2011; KiDS – de Jong et al. 2012;

DES – DES Collaboration 2005, HSC,1 LSST – Tyson et al. 2003

and SKA – Blake et al. 2007) and in space (Euclid– Laureijs et al.

2011 and WFIRST – Green et al. 2012). These employ a combi-

nation of techniques, including weak gravitational lensing, galaxy

clustering (which incorporates baryonic acoustic oscillations) and

supernovae, among others, both to distinguish between possible

cosmologies and to ensure that systematic effects in the measure-

ments are identified and quantified at the required level of accuracy.

Control of systematic effects is critical. Because of the inherently

stable conditions that can be achieved, space missions provide the

best opportunities for controlling systematics, and payloads can be

designed also to include the capability to make observations using

several techniques.

Weak gravitational lensing uses statistical measurements of the

distortions of galaxy shapes to study the clustering of matter in the

Universe. Early studies were made by Wittman et al. (2000), van

Waerbeke et al. (2000), Mellier et al. (2000), Bacon, Réfrégier &

Ellis (2000) and Kaiser, Wilson & Luppino (2000). Reviews can be

found in Hoekstra & Jain (2008) and Munshi et al. (2008), while

more recent work includes that by Schrabback et al. (2010) and

Heymans et al. (2012). The rate at which the large-scale structure

has grown depends on the expansion rate of the Universe, so the

nature of the acceleration can be characterized by making these

shear measurements at different redshifts, looking back in time

(Hu 1999).

In this paper, we develop a framework by which weak lensing

measurements in particular can be realized in a space mission, and

its likely performance anticipated (many of these considerations ap-

ply also to ground-based weak lensing surveys). The formalism for

the critical systematic effects has been developed in a series of pa-

pers (Vale et al. 2004; Mandelbaum et al. 2005; Huterer et al. 2006;

Stabenau et al. 2007; Amara & Réfrégier 2007, 2008; Kitching,

Taylor & Heavens 2008a; Paulin-Henriksson et al. 2008; Amara,

Réfrégier & Paulin-Henriksson 2010) with the most contemporary

development given in Massey et al. (2013, hereafter MHK13), and

we use these here as a basis.

The work was carried out in the framework of the Euclid mission,2

under the auspices of the European Space Agency Cosmic Vision

programme. An overview of its capabilities can be found in the

Euclid Red Book (Laureijs et al. 2011; this a consolidated summary

of the mission at the end of the Definition Phase) and Amendola

1 http://anela.mtk.nao.ac.jp/hypersuprime/proposal/hs050626.pdf
2 http://www.euclid-ec.org

et al. (2012). With respect to its weak lensing capabilities, Euclid

can be considered an example of a next-generation cosmic shear

survey mission. Euclid is designed to carry out both weak lensing

and galaxy clustering cosmological measurements, using a payload

comprising a visible imager, with which the weak lensing mea-

surements are made, and a near-infrared spectrograph-imager. For

visible measurements, CCD detectors are the currently leading tech-

nology for large focal planes, and they are assumed for this paper.

However, the methodology by which we address the realization of a

successful experiment is general, and although we will sometimes

use Euclid as an example, the purpose of this paper is to set out the

applicable principles.

Section 2 of this paper sets the requirements and describes how

an allocation can be made to the main factors contributing to the

performance degradations. Section 3 briefly describes simulations

and data processing. How the weak lensing performances may be

evaluated is set out in Section 4.

2 SE T T I N G T H E R E QU I R E M E N T S

2.1 Mission driving parameters

The power of a weak lensing survey depends on five main factors:

(i) the size of the survey;

(ii) the limiting magnitude of the survey;

(iii) the size and shape of the instrument point spread function

(PSF);

(iv) how well this PSF is known and

(v) how well we can correct for the sources of systematics.

Parameters (i) and (ii) set the total number of galaxies that may

be available for the weak lensing shear measurements, and their

range in redshift. Hence, they set the maximum achievable statistical

precision. This drives the area of the sky that should be observed, and

consequently the field of view of the instrument, and the mission

duration. A wide survey is required to ensure the measurements

are representative of the observable Universe. A deeper limiting

magnitude, by providing increased signal-to-noise ratios on each

individual galaxy measurement, also determines the size of the

sample, and enables higher redshifts to be accessed. Given that

most of the cosmic acceleration has taken place in more recent

epochs, the emphasis of most lensing surveys is on galaxies with

redshifts z � 2 which makes them sensitive to structure at z ∼ 0.5–

1, halfway between source and observer. Mitigating the confusing

effects of intrinsic alignments between galaxies (resulting from the

flows of material during the formation of structure in the Universe)

also requires a sufficient survey depth (Joachimi & Bridle 2010).

Because the lensing signal is cumulative along a line of sight, the

more distant sources contain information about dark energy at low

redshift as well as the information about the growth of structure at

high redshift. More distant galaxies generally are, however, fainter

and smaller, which makes the measurement of their shear from the

weak gravitational lensing more difficult for a given instrumental

PSF. Measuring their redshift is, in addition, more difficult.

The depth of the survey drives the collecting aperture of the

telescope, its throughput, the width of the observational bandpass,

and the sensitivity of the detectors. Achieving a desirable size and

shape of the PSF drives all of these contributors: a larger telescope

reduces the size of the PSF, the optical design drives its shape, the

stability of the satellite pointing modifies the PSF and the need for

adequate sampling of the PSF drives the detector pixellization to be
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small. This, in combination with the need for a large field of view,

requires a large detector matrix.

The overall ‘system’ PSF is a combination of PSFs produced by

the optical system, satellite pointing stability, detector pixellization

and detector effects. The detector effects arise as a result of the phys-

ical realization of the detectors (for example, charge spreading in

the pixel grid) and because of damage effects in space, particularly

radiation damage (Holland et al. 1990). The first three contributions

to the total PSF can be modelled by convolutions, while the fourth,

generated by the detector, generally has a combination of charac-

teristics, only some of which can be modelled by a convolution.

Limitations on the number of detector pixels may drive the ob-

serving strategy, for example, requiring multiple exposures to re-

cover spatial resolution from undersampled images (Section 4.2.1).

This also has the benefits of allowing cosmic rays to be detected and

removed in the data processing. If there are small displacements

between the different exposures, then additionally, the impact of

cosmetic defects in the detectors can be minimized, and the gaps

between the individual detectors can be filled in. Because of the

detector gaps, some galaxies will have more exposures than others,

and the effect of this on the best-fitting cosmological parameters

requires evaluation. With somewhat larger displacements, perhaps

up to half of a detector, a further benefit is obtained in that the ra-

diation damage effects (Section 3.5), which increase with distance

from the CCD readout node, are formally separable from the cos-

mic shear. Typically, therefore, more than one exposure is taken of

each field, and these will be combined to reach the depth required

for the survey. The multiple exposures, however, impact operational

considerations negatively, require more fuel for the spacecraft re-

pointing and require more telemetry bandwidth.

For a typical advanced weak lensing survey (such as that dis-

cussed in Laureijs et al. 2011), ∼2π sr will be covered to a depth

AB ∼25 at 10σ , yielding ∼30 galaxies arcmin−2 with suitable char-

acteristics for the survey – a total exceeding 109 galaxies. The survey

will generally be limited to Galactic latitudes |l| � 30◦, and will

concentrate at least initially on regions furthest from the ecliptic

plane, in order to minimize the Zodiacal background light. The pat-

tern with which the fields are exposed will generally be constrained

in order to maintain stable conditions within the payload.

The survey and instrumentation must also be planned to minimize

the systematic biases in the weak lensing measurements. Factors (iii)

and (iv) strongly impact these systematic biases, and therefore on

the accuracy (as opposed to the precision) of the measurements. The

size and shape of the PSF influence which fraction of the observed

galaxies may be useful for shear measurements. The PSF blurs

images: the shape of galaxies with smaller sizes relative to the PSF

will be measurable with reduced accuracy and hence smaller PSFs

are desirable. For a given encircled energy width, a PSF with broad

wings and narrow core will have a different effect on the shape

measurement from one with narrower wings and a broader core. In

addition, the detection limit of the survey will depend on the PSF,

which influences the sample to some extent.

Within these general constraints, the typical PSFs normally

achieved with standard astronomical instrumentation in space-borne

observatories will be acceptable (and certainly smaller and more

stable than through a turbulent atmosphere). The particular and

stringent aspect of the weak lensing measurements is contained in

the fourth and fifth main factors: the knowledge of this PSF, and

how the biases can be corrected. The ultimate power of the weak

lensing measurements will depend on the level with which the PSF

is known, and future generation weak lensing surveys such as those

considered in MHK13 require this to be known to an unprecedented

level of accuracy. Included in this knowledge is the way the PSF

will change with time, with position on the focal plane and with

source galaxy characteristics.

MHK13 provides the top-level context for this investigation,

while this paper provides a more detailed examination of the mul-

tiple contributing effects for each bias, and how they might be

combined in a practical experiment.

2.2 Quantifying the biases

In a typical future generation weak lensing survey from space (for

example, Laureijs et al. 2011), with observations of >109 galaxies,

the errors on the linearly varying dark energy equation of state

(Chevallier & Polarski 2001; Linder 2003) w(z) = wp + wa(z −
zp)/[(1 + zp)(1 + z)] are wp � 0.05 and wa � 0.2, to give a figure

of merit (FoM) 1/[�wp�wa] � 100 from lensing only (zp is the

redshift at which the error on w(z) minimizes).3 As the precision

increases as a result of combining such large samples of galaxies, the

control of the systematic effects becomes more and more important.

Effective control of the systematic effects requires first an under-

standing of what effects may be present, and how they combine with

each other to introduce biases. Then it is important to understand

how significant each effect may be in the overall performance. Some

effects can be minimized by better design of the instrument and sur-

vey, and by better calibrations, others by alternative approaches in

the data processing and analysis. Each of these carries implications

for the viability of the experiment and for the cost and duration of

the mission. For example, improved control of some biases may be

achieved through newer technologies which carry more risk. Al-

ternatively, more conventional technologies could be used and the

gains sought in the data analysis algorithms.

In this section, we first summarize how the biases affect the de-

rived cosmological parameters. Then, we identify the factors which

contribute to these biases and quantify their relative importance.

Each factor generally has contributions from other sources. We

organize these into a structure which allow the effect of each to

be assessed; this attempts also to clarify the relationships of the

contributing factors. In respect of each lowest level factor, an ini-

tial analysis may suggest that a certain level of knowledge can be

reached, but these may require revision in order to remain below

the permitted total bias, which will lead to further more detailed

analyses. The purpose of this section is not to identify the values

of the factors for any particular experiment, but to rather illustrate

a structure by which the performance of an experiment in terms of

the control of systematic effects can be assessed, and the effects

of changes in any aspect can be propagated to the top level. This

allows the optimization of the experiment to be achieved.

The procedure for quantifying the biases is as follows. MHK13

and references therein consider that the true shear γ of a galaxy will

differ from that actually measured, γ̂ , by additive and multiplicative

biases c and m (in the survey, instrument and measurement process)

as

γ̂ = (1 + m)γ + c. (1)

3 It should be recalled that the FoM is only one of the measures used for the

effectiveness of dark energy investigations and the linear parametrization

in w also is limiting. The form of the structure growth factor (Laureijs

et al. 2011) and other measures to be tested for the cosmology are also

relevant. However, the FoM is a standard generally used for the comparison

of surveys.
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The two-point ellipticity correlation function is

ξij (θ ) ≡
∑

A,B

γ A
i γ B

j (θ ) =
〈
γ A

i γ B
j

〉
(θ )

, (2)

where θ is the angular scale and i, j refer to redshift bin pairs

averaged over all pairs of galaxies A, B. This can be used (Hu

1999) to constrain a set of cosmological parameters usually through

the corresponding Fourier transform power spectrum Cij(ℓ) in the

spherical harmonic ℓ ≡ 2π/θ . As a consequence of the biases c and

m in equation (1), Cij(ℓ) will be modified (Kitching et al. 2012) by

additive A and multiplicative M biases into an observed

Ĉij (ℓ) = (1 + M(ℓ))Cij (ℓ) + A(ℓ). (3)

Kitching et al. (2012) and MHK13 find that

A(ℓ) = 〈c〉2
(ℓ) usually written σ 2[|c|]

M(ℓ) = 2 〈m〉(ℓ) + 〈m〉2
(ℓ) , (4)

where the angular brackets 〈 〉(ℓ) are the Fourier transform of the

ensemble average in real space over galaxy pairs separated by angle

θ in equation (2):

〈f 〉(ℓ) =
∫

〈f 〉(θ ) eiℓθ dθ. (5)

The subscripts are usually suppressed for brevity. We will include

them here explicitly to ensure clarity.

Non-zero A and M lead to a bias in the maximum likelihood

values of measured cosmological parameters (see MHK13) and

a decrease in the FoM (through an increase in the covariance).

As noted above, the contributors to σ [|c|] and m must be derived

through a careful process of identifying all of the biases, including

the imperfections in the galaxy modelling and other effects.

We adopt the formulation in section 3.3 of MHK13, based on that

in Paulin-Henriksson et al. (2008), Paulin-Henriksson, Réfrégier &

Amara (2009):

A(ℓ) =
1

P 2
γ P 2

RP 2
εC

〈
R4

C

R4
gal

〉
σ 2[|ε

C
|]

+
1

P 2
γ P 2

εNC

〈
1 +

2

PR

R2
C

R2
gal

+
1

P 2
R

R4
C

R4
gal

〉
σ 2[|ε

NC
|]

+
〈|ε

C
|2〉

P 2
γ P 2

RP 2
εC

〈
R4

C

R4
gal

〉 (〈
δ(R2

C
)
〉2

〈
R4

C

〉 +
σ 2[R2

C
]

R4
C

)

+ 4
〈|ε

C
|2〉

P 2
γ P 2

RP 2
εC

〈
R4

C

R4
gal

〉 (〈
δ(R

NC
)
〉2

〈
R2

NC

〉 +
σ 2[R

NC
]

R2
NC

)

+
〈|ε

C
|2〉

P 2
γ P 2

RP 2
εC

〈
R4

C

R4
gal

〉
α2, (6)

where

α2 =
〈
δ(R2

obs)
〉2

〈
R4

obs

〉

+

〈
R4

gal

R4
C

〉 〈(
PRR2

gal

PRR2
gal + R2

C

)2〉
〈δPR〉2

〈
P 2

R

〉 (7)

and then also

M(ℓ) =
2

PR

〈
R2

C

R2
gal

〉 ⎧
⎨

⎩

〈
δ(R2

C
)
〉

〈
R2

C

〉 + 2

〈
δR

NC

〉

〈Robs〉

⎫
⎬

⎭

+
1

P 2
R

〈
R4

C

R4
gal

〉 ⎧
⎨

⎩
σ 2[R2

C
]

〈R4
C
〉

+ 4
σ 2[R

NC
]

〈R2
obs〉

⎫
⎬

⎭

+
2

PR

〈
R2

C

R2
gal

〉
μ, (8)

where

μ = −

〈
δ(R2

obs)

Robs(Robs − R
NC

)

〉

− PR

〈
R2

gal

R2
C

〉 {〈
δPγ

Pγ

〉
+

〈
R2

gal

PRR2
gal + R2

C

δPR

PR

〉}
. (9)

R refers to the size of the PSF or galaxy image and the ε to

the polarization, generally referred to as the ‘ellipticity’, defined

in terms of the unweighted second-order moments in the image

of the galaxy (Bonnet & Mellier 1995; Seitz & Schneider 1995).

Explicitly, for a PSF �(xi, xj) and a weight function w(xi, xj) these

moments are

Qij =
∫∫

�(xi, xj )w(xi, xj )(xi − x̄i)(xj − x̄j )dxidxj∫∫
�(xi, xj )w(xi, xj )dxidxj

. (10)

Then, size

R2 = Q11 + Q22 (11)

and, ellipticity

ε = [ε1, ε2] =
[

Q11 − Q22

R2
,
Q12 + Q21

R2

]
;

|ε| =
√

ε2
1 + ε2

2 . (12)

Returning to equations (6) and (8), the subscript C refers to those

components of the PSF which can be combined by convolution, and

NC to those that cannot. MHK13 use the subscript PSF rather than

C, but we use C to distinguish the convolutive part of the system

PSF clearly, and as a reminder that we consider the term PSF here

to refer to the end-to-end system PSF. The system PSF properties

change with wavelength, the spectral energy distribution (SED) f (λ)

and the transmission as a function of wavelength T(λ). Taking into

consideration the integrated flux in the band of measurement, the

size and ellipticity of the convolutive components of the PSF are

given by

R2

C
=

1

ftot

∫
dλT (λ)λf (λ)R2

C
(λ) (13)

and

ε
C

=
1

ftot

∫
dλT (λ)λf (λ)ε

C
(λ), (14)

where ftot =
∫

dλT (λ)λf (λ) is the total number of photons. Note

the extra factor λ converts from energy to photons.

Rgal and Robs refer to the original and observed size of the galaxy,

relating as (MHK13)

Robs ≡
√

(R2
gal + R2

C
) + R

NC
. (15)
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The ‘shear polarizability’

Pγ = 2 − 〈|ε2|〉 (16)

relates the ellipticity to the shear in the galaxy image caused by the

weak lensing, and, although to some extent dependent on the galaxy

sample and wavelength range used for the survey, when aggregated

over galaxy samples out to z > 2 is found to be approximately a

constant factor 1.86 (Leauthaud et al. 2007).

The quantities PR, PεC
and PεNC

are compensations for the ne-

cessity of using weighted quadrupole measurements rather than the

unweighted moments that would be ideal in theory (see MHK13 for

details). The weighting function w(xi, xj) is introduced inside the

integrals in equation (10) to control the increasing noise fraction

as the integration moves outwards from the centre of the galaxy or

star image. Indeed, the use of weighted moments is the origin of the

additional α2 and μ terms in equations (6) and (8) by comparison

with equation (4). We define

R2
unweighted = PRR2

weighted

εunweightedC
= PεC

εweightedC

εunweightedNC
= PεNC

εweightedNC
. (17)

In general PεC
and PεNC

≃ 1 while PR is larger (in the Euclid case,

PR ≃ 2).

In equations (6) and (8), 〈|δ|2〉 terms have been decomposed into

a systematic bias of a model value away from the truth 〈δ〉2, and

uncertainties σ 2 in this. To elaborate this important point, many bi-

ases in the measurements will be corrected by detailed modelling:

an example may be the change in the size of the PSF resulting from

out-of-band leakage, which may be calculated from the measured

characteristics of the bandpass and the SED of the particular source.

This model calculation will not, of course, produce exactly the true

value. From uncertainties in the inputs to the modelling (in the

example above this might include the uncertainties in the transmis-

sion at each wavelength), and inadequacies in the physical model

(again in this example, this might arise from codes used to predict

a stellar spectrum), the modelling will produce a slightly incorrect

prediction 〈δ〉, and an associated uncertainty on this prediction σ .

We can write equations (6) and (8) as follows:

A(ℓ) = a1

(〈
δε

C

〉2 + σ 2
[
|ε

C
|
])

+ a2

(〈
δε

NC

〉2 + σ 2
[
|ε

NC
|
])

+ a3

(〈
δ(R2

C
)
〉2

〈
R4

C

〉 +
σ 2[R2

C
]

R4
C

)

+ a4

(〈
δ(R

NC
)
〉2

〈
R2

NC

〉 +
σ 2[R

NC
]

R2
NC

)

+ a5

(
〈δ(α)〉2 + σ 2[α]

)
(18)

and

M(ℓ) = m1

〈
δ(R2

C
)
〉

〈
R2

C

〉

+ m2

〈
δ(R

NC
)
〉

〈
R

NC

〉

+ m3

σ 2[R2
C
]

R4
C

+ m4

σ 2[R
NC

]

R2
NC

+ m5 (〈δ(μ)〉 + σ [μ]) . (19)

To reiterate, the last terms of equations (6) and (8) relate to

the modelling error for the galaxies resulting from the fact that

weighted, rather than unweighted quadrupole moments are used in

practice. We have swept up all of the additive galaxy modelling

errors in equation (6) into a model error α, split into bias and

knowledge errors 〈δ(α)〉2 and σ 2[α]. We have done the same for the

multiplicative errors in equation (8), with the model error μ split

into 〈δ(μ)〉 and σ [μ], so that
〈
α2

〉
→ 〈δ(α)〉2 + σ 2[α]

and

〈μ〉 → 〈δ(μ)〉 + σ [μ]. (20)

In practice, the σ terms in equation (20) can be reduced to insignif-

icant levels by ever-larger simulations, but these are ineffective in

correcting for the δ terms. Hence, we will ignore the σ 2[α] and

σ [μ] terms in carrying forward any allocations for imperfections in

the modelling.

Also, we should note at this point that the first term in equation

(9)
〈

δPγ

Pγ

〉
→ 0

for a sufficiently large survey. The third term captures the error

which will arise from the use of the weighting function in the

quadrupole moment integral (equation 10) as a result of the absence

of perfect knowledge of higher order multipoles, while the second

term is a knowledge error arising from imperfect measurements,

and hence is dependent on signal-to-noise ratios.

Note also that equation (18) differs slightly from equation (6)

to the extent that we introduce δ terms in the first two lines. This

accommodates the biases that will, in practice, occur in a weak

lensing experiment which employs the use of bright stars to define

the PSF used for faint galaxies, with the associated non-linearity

and wavelength mismatching.

So, equations (18) and (19) contain terms for knowledge bias 〈δ〉2

and knowledge uncertainties σ 2 in the following categories: con-

volutive, and non-convolutive errors in the PSF sizes; convolutive,

and non-convolutive errors in the ellipticities; and bias errors α and

μ on the transformation from ellipticity to shear resulting from the

fact that we use weighted moments of the PSF. The coefficients ai

and mi are now seen to be weighting factors, whose values depend

on the characteristics of the instrument and the galaxies being mea-

sured. Equations (18) and (19) provide the prescription by which

these contributing effects can be combined.

We are now in a position to quantify the impact on the cosmology

from systematic effects in the weak lensing measurements given

the knowledge biases 〈δ〉, knowledge uncertainties σ and weighting

functions ai and mi.

2.3 Quantifying requirements

To simplify the requirements for a practical experiment, and to make

them less dependent on the assumption of a cosmological model,

we will integrate over the range of spatial scales of interest taking

into account the density of the sampling of the modes available from

the survey to recover the discrete nature of the summation over the
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modes sampled by it. Under the assumption of isotropy, an integral

over two dimensional spatial scales reduces to a single dimension,

ℓ, as
∫

ℓ(ℓ + 1)ρsurvey2πℓdℓ. (21)

The sampling is set by the largest angular scale �θ in the survey,

and this gives the density of modes ρsurvey = (�θ/2π)2. Factors of

2π partially cancel. The factor �θ2 is effectively the solid angle for

the survey and is by convention subsumed into the definition of the

Cij(ℓ) (see for example Kitching, Heavens & Miller 2011, equation

A6) and therefore all of the following is conditional on the assumed

area of the fiducial survey. We then construct integrated quantities

over ℓ2d ln ℓ because

1

2π

∫
ℓ2(ℓ + 1)dℓ ≃

1

2π

∫
ℓ3dℓ →

1

2π

∫
ℓ2d ln ℓ.

Using this formalism, we redefine (again) the angular brackets

〈 〉 as expectation values over such integrals, for example

〈f 〉(
∫
ℓ) =

1

2π

∫
〈f 〉(ℓ) ℓ

2d ln ℓ. (22)

Then, the integrals of each of the terms on the right-hand sides of

the requirements equations (i.e. equations 6 to 9) will contribute to

an integral over the systematic contribution of the power spectrum

Ĉij (ℓ) − Cij (ℓ) (equation 3). And now we also need to integrate

the left-hand side of the ℓ-dependent equations consistently. For the

additive term (setting M(ℓ) = 0), this gives

1

Nij

∑

ij

1

2π

∫
[Ĉij (ℓ) − Cij (ℓ)]ℓ2d ln ℓ

=
1

Nij

∑

ij

1

2π

∫
A(ℓ)ℓ2d ln ℓ

≡
1

Nij

∑

ij

A
′, (23)

where Nij is the number of redshift bin pairs ij. Similarly, for the

multiplicative term (setting A(ℓ) = 0):

1

Nij

∑

ij

1

2π

∫
[Ĉij (ℓ) − Cij (ℓ)]ℓ2d ln ℓ

=
1

Nij

∑

ij

1

2π

∫
M(ℓ)Cij (ℓ)ℓ2d ln ℓ

≡
1

Nij

∑

ij

M
′. (24)

The next step is to assign values for A and M by which the

impact on Ĉi,j (ℓ) (equation 3) remains within acceptable values.

From the definition of Ā in MHK13, but considering it per redshift

bin, we see that

A
′ = Ā

1

2π

∫
ℓ2d ln ℓ ≤ 2.6 × 10−7, (25)

where the requirement on Ā from MHK13 of 1.8 × 10−12 has been

multiplied by its denominator
∫

ℓ2d ln ℓ/2π which has a value of

1.43 × 105 for the range 10 ≤ ℓ ≤ 5000, a fiducial survey of 15 000

square degrees and 30 galaxies per square arcminute. This is per

redshift bin pair, and there are 55 power spectra used in setting the

requirements in MHK13; an integrated requirement over all power

spectra would further multiply the above value by 55. Next, from

MHK13

M̄ =
1

2π

∫
M(ℓ)ℓ2d ln ℓ

1
2π

∫
ℓ2d ln ℓ

where again we consider it per redshift bin pair. Consequently

(MHK13 appendix B)

M
′ =

1

2π

∫
M(ℓ)C(ℓ)ℓ2d ln ℓ ≃ M̄

1

2π

∫
C(ℓ)ℓ2d ln ℓ. (26)

Substituting, the mean-weighted power spectrum C̄

C̄ =
∫

C(ℓ)ℓ2d ln ℓ∫
ℓ2d ln ℓ

, (27)

then

M
′ = M̄C̄

1

2π

∫
ℓ2d ln ℓ � 1.4 × 10−2, (28)

where the requirement on M̄ of 4.0 × 10−3 from MHK13 has

been multiplied by C̄
∫

ℓ2d ln ℓ/2π ≃ 3.58 (this value is somewhat

cosmology dependent) for the range 10 ≤ ℓ ≤ 5000.4

MHK13 calculated these requirements over scales 10 ≤ ℓ ≤ 5000

in order to avoid non-linear scales that may be potentially difficult

to model as a result of non-linear effects (e.g. Smith et al. 2003) or

baryon feedback (e.g. Semboloni et al. 2013). This is the main factor

in the relaxation of the requirement values in MHK13 compared to

those in the previous analyses by Amara & Réfrégier (2008) and

Kitching et al. (2008a), which extended to ℓ ≤ 20 000. In order

to allow for a future potential increase of scope in the use of the

non-linear modes, in this paper we will retain the more stringent

requirements of A′ ≤ 1 × 10−7 and M′ ≤ 4 × 10−3 from Amara

& Réfrégier (2008) and Kitching et al. (2008a), respectively.

In a practical experiment, we will be working with angular mea-

sures θ rather than the Fourier transform variable ℓ. We therefore

take the Fourier transform of both sides of equations (6)–(9) in-

tegrated over ℓ (equations 23 and 24), replacing A′ and M′ with

A and M to indicate this. In the interests of clarity, we retain the

notation on the right-hand side of these equations, noting that now

these values are effectively integrated over θ and that they still relate

redshift pairs (ij) (equation 2). Angular brackets now refer to the

Fourier transforms in equations (23) and (24) which are constants:

〈f 〉
F(

∫
ℓ) =

1

2π

∫
〈f 〉(

∫
ℓ) e−iℓθ dℓ =

〈f 〉(
∫
ℓ)

2π

∫
e−iℓθ dℓ

= 〈f 〉(
∫
ℓ) . (30)

4 Alternatively, adapting the definition ofM̄ from MHK13 so that it includes

Cij(ℓ):

M̄ =
∫
M(ℓ)C(ℓ)ℓ2d ln ℓ∫

C(ℓ)ℓ2d ln ℓ
,

where again we consider M̄ per redshift bin pair. Then,

M
′ = M̄

1

2π

∫
C(ℓ)ℓ2d ln ℓ ≃ 1.4 × 10−1, (29)

where the requirement on M̄ of 3.9 × 10−2 (recalculated for this definition

of M̄ as in MHK13) has been multiplied by
∫

C(ℓ)ℓ2d ln ℓ/2π ≃ 3.58 for

the range 10 ≤ ℓ ≤ 5000. Note that this is a factor of 10 larger than the

calculation in equation (29). Comparing to the GREAT10 results, as is done

in MHK13 section 5.1, these updates result in previous statements on the

performance of methods relative to the requirement to be improved by a

factor of 10 in the case of M. In GREAT10 the best methods achieved

Ā = 7.4 × 10−11 and M̄ = 5.6 × 10−3 at S/N = 10.
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Hence, the values used for the requirements in equation (31) are

unaffected, and now refer equally also to A and M. We will therefore

use

A
′ = A ≤ 10−7 ⇒ σ 2[|c|] ≤ 10−7

M
′ = M ≤ 4.0 × 10−3 ⇒ 2 〈m〉 ≃ 4.0 × 10−3. (31)

2.4 A hierarchical structure by which systematic effects

may be identified, evaluated and controlled

We start by identifying lower level contributing factors which might

contribute to the knowledge biases and uncertainties. These may be

grouped into categories, such as the imperfect knowledge of the

source characteristics, calibration errors, residual effects in correct-

ing for detector effects and the imperfect modelling of the PSF itself.

Some categories will pertain to the instrument design and others to

the data processing. In order to minimize the interconnectedness

of the different factors, and hence to maximize the visibility and

control of the bias effects introduced by each, some thought is re-

quired as to this categorization of factors, and to the organizational

hierarchy relating the categories.

Within each of these categories there are several factors to be

considered: for example, within the PSF modelling there are fun-

damental imperfections of the model, and then inaccuracies in the

parameters derived for the model resulting from photon statistics

and pixelization effects (which need to take account of multiple

exposures, if these are used). In the category of calibrations, an

example may be imperfect subtraction of the electronic reference

level, an allowance for the effect of imperfect identification of cos-

mic rays and so on. In the category of detector effects, an example

may be the imperfect correction for radiation damage effects or

detection chain non-linearity. This process must be continued to

lower levels: in the last example, the further contributing factors

may include the output node linearity of the CCD, the linearity of

the analogue electronics associated with that node, the characteris-

tics of the analogue-to-digital conversion and so on. In addition, it

may be necessary to consider the stability of these different parts,

and the accuracy with which any factor can be established – this is

also connected to the calibrations.

As the level of accuracy required from the experiment increases,

more and more factors must be considered, each of which will

contribute to a degradation in performance. At some level, however,

the factors become negligible, or can be made so by design or

through operational strategies. For example, the flat fielding of the

detector can be made unimportant by combining a large number

of flat-field calibration exposures. In practice, these less significant

effects may not be fully evaluated, at least in the early stages of a

programme.

We must now quantify the weighting functions ai and mi. The first

thing to notice is that we will want to calculate these in real space,

because directly measured values will be used for Rgal, R
C
, etc. To

relate these to the limits derived in Fourier space, the simple scal-

ing from A′ → A = σ 2[|c|] and M′ → M = 2 〈m〉 using equation

(31) is used. The ai weighting functions will remain unchanged,

while the mi can simply be halved. We will therefore make this

adjustment, and from this point work in real space, using primes to

designate the real space a′
i = ai and m′

i = mi/2.

If we assume a limiting magnitude mAB = 24.5, then we can

adopt Rgal = 0.20 arcsec (MHK13). The value for R
C

and R
NC

will depend on the experiment: here we will use R
C

= 0.22 and

R
NC

= 0.05 arcsec as in the Euclid mission. Then, Rgal/RC
= 0.91

and Robs/RC
= 1.6. If we further set |ε

C
| < 0.1, which is gen-

erally achievable in practice, then 〈|ε
C
|2〉1/2 < 0.1. We will use

〈|ε
C
|2〉1/2 = 0.1 and fix Pγ = 1.86, PR = 2.0 and PεC

= PεNC
= 1.0.

We can now calculate the ai and mi:

a′
1 =

1

P 2
γ P 2

RP 2
εC

〈
R4

C

R4
gal

〉
= 0.10

a′
2 =

1

P 2
γ P 2

εNC

〈
1 +

2

PR

R2
C

R2
gal

+
1

P 2
R

R4
C

R4
gal

〉
= 0.74

a′
3 =

〈|ε
C
|2〉

P 2
γ P 2

RP 2
εC

〈
R4

C

R4
gal

〉
= 1.0 × 10−3

a′
4 = 4a′

3 = 4.2 × 10−3

a′
5 = a′

3 = 1.0 × 10−3

and

m′
1 =

1

PR

〈
R2

C

R2
gal

〉
= 0.60

m′
2 =

2

PR

〈
R2

C

R2
gal

〉 〈
R

NC

Robs

〉
= 0.17

m′
3 = m′2

1 /4 = 9.0 × 10−2

m′
4 = m′2

2 /4 = 7.5 × 10−3

m′
5 = m′

1 = 0.60.

It is evident that the dominant weighting factors to σ [|c|] are a′
1 and

a′
2, and these act through the PSF ellipticity. The lower values of a′

3

and a′
4 allow the knowledge error of the PSF size to be more relaxed

than the knowledge error of the ellipticity. For 〈m〉, m′
1, acting

through the PSF size, and m′
5 are dominant, with a contribution

from m′
2. Hence, for the additive bias, the ellipticity error will need

the closest attention, while for the multiplicative bias, the size is

more important.

Having identified contributing factors and a way of organizing

them, together with their combinatorial rules and weightings, val-

ues must now be assigned to these terms in equations (18) and

(19) in order to quantify their effects and to identify which are

the more significant. Initially, any values can be assigned in order

to verify the combinatorial rules in the hierarchical structure. The

next step is then to include reasonable values for the factors. Many

different considerations will bear on the values adopted for each fac-

tor, including the mission and instrument design, cost, calibration

strategies, data analysis techniques, risk, organizational resources

and many others. Once an approach is identified, the factor values

will typically be established though calculations and simulations. In

some cases, the tools may not be available to realize a value directly

and a judgement must be made on the basis of experience as to what

reasonable allocations should be made for each factor, until at some

later stage the value can be established more quantitatively. These

calculations may indicate that some factors have disproportionate

effects, while others are easily realized. This generally leads to a

rebalancing with measures introduced to address the disproportion-

ate effects (for example, by a change in the technology used) and

to simplify the approach in respect of those factors that are easily

realized, until a viable functioning point is achieved.

In order to illustrate this process with an example, we have pro-

vided a hierarchical structure in Table 1. This identifies how the

terms in equations (18) and (19) could be related to a model of

instrumental or data-processing biases and uncertainties. Table 1

contains numerical factors for most of the categories (we provide

example values from the Euclid case).
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Table 1. Potential contributors to the knowledge error terms in equations (18) and (19). Where the allocations are preceded by Q

they are added quadratically to generate the next level up and where they are preceded by L they are added linearly. In the higher

levels (if there are no Q or L designators) they are weighted as in equations (18), (19), (32) and (33) to provide final values for√
A′ and M′/2. See the text for details. Certain entries contain references to figures in later sections, where there is an evaluation

of their feasibility.

There are three broad categories in Table 1 reflecting those in

equations (18) and (19): convolutive contributions, non-convolutive

contributions and model bias knowledge, with a final direct contri-

bution of the residual spatial distortion. Horizontal lines indicate

that there is no allocation in this category in this example, though in

general an allocation should be made. Their indentation in the table

indicates the organization of the contributing terms. The penulti-

mate of the broad categories contains the allocations within α and

μ of method errors, reflecting the final lines in equations (18) and

(19). However, we have not included bias error allocations σ 2[α]
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and σ [μ] as these can be minimized by simulations. The simulations

will not reflect reality at some level, so there are residual knowl-

edge biases, the remaining terms 〈δ(α)〉2 and 〈δ(μ)〉, for which an

allocation is assigned.

It is easiest to follow the combination rules in Table 1 by starting

from the rightmost values. In the absence of any other information,

the factors can be combined to calculate the next value in the hier-

archy: quadratically if they are independent, or linearly if they are

not. They have therefore been prefixed with a Q or an L. Moving

leftwards, eventually the combinations will lead to a row labelled

as a δ or a σ , depending on whether categories of knowledge bias or

knowledge uncertainty have been combined. Now these knowledge

errors must be combined with the weighting factors a′
i and m′

i in

equations (18) and (19), so the σ and δ values are multiplied by

their corresponding a′
i and m′

i to produce the values in the second

column. These are then added, as prescribed in equations (18) and

(19), together with the residual distortion after correction factor, to

provide the final values for σ [|c|] and 〈m〉. Note that because the

values are in real space, the total multiplicative bias is halved in

converting from 〈m〉 to M′, as prescribed by equation (31), and

also that because the table propagates σ rather than σ 2, due regard

is required in calculating A′.

We will evaluate the values in Table 1 in the subsequent sections

of this paper to examine whether they are reasonable to use as

a basis for the knowledge bias and knowledge uncertainties that

may be achievable in a practical experiment. The values assigned

to the different factors will be different for different experiments,

and we emphasize that the purpose of Table 1 is not directly to

prescribe any values in particular, nor primarily to justify the values

used, but rather to provide a conceptual structure for a weak lensing

experiment in space.

2.5 Absolute characteristics of the PSF and further

breakdown within subsystems

Recall that the PSF characteristics [factor (iii) in the discussion in

Section 2.1] must be suitable. In particular, this applies to the PSF

size in R2 terms, and its ellipticity ε. In addition to R, F, the full width

half-maximum (FWHM) is also often used to provide an additional

constraint on the PSF, specifying the width of its core. This is

primarily to guard against PSFs which might be problematic in some

characteristics while nevertheless conforming with the requirement

on R (for example annular PSFs, resulting from an out-of-focus

condition). The PSFs can be evaluated using standard procedures

to examine whether they meet the requirements. The only non-

standard component in the breakdown is the contribution of the

detector radiation damage effects to size and ellipticity, as these are

not generally rendered in size and ellipticity terms. However, they

can be calculated using equations (10)–(12).

When further breaking down contributions within the system, for

example, to constrain the individual contributors of different sub-

systems within the experiment to the overall system PSF, care is

required in their combination. In particular, the ellipticities must be

weighted taking into account the values of the FWHM Fi for that

particular contribution to the PSF: this is because a contributing fac-

tor may be intrinsically strongly elliptical, but with small associated

Fi it will be relatively unimportant. A reasonable approximation by

which to combine the ellipticities is as

εtot =
∑

i

(
F 2

i /F 2
tot

)
εi (34)

for the terms that can be represented by a convolution and

εtot =
∑

j

εj (35)

for those that cannot. The knowledge residuals in Table 1 should be

similarly combined

σ 2[εtot] =
∑

i

(
F 2

i /F 2
total

)2
σ 2[εi] (36)

for the terms that can be represented by a convolution and

σ 2[εtot] =
∑

j

σ 2[εj ] (37)

for those that cannot. While all εi in equations (34) and (35) have

equivalent Fi categories, this may not be the case for the σ [εi]

ellipticity knowledge residuals in equations (36) and (37). In this

case, an appropriate mapping must be assigned, possibly through

experience.

2.6 Recapitulation

To recap, the area covered by the survey, and its limiting magnitude,

together with the overall characteristics of the PSF, will set the num-

ber of galaxies that can be used for the weak lensing measurements.

This will provide a level of random error. In order to achieve a sys-

tematic error which is some moderate fraction of this random error

set by the Poisson noise, a requirement then arises for the control

of systematic effects. This can be apportioned between additive and

multiplicative effects, the impact of each of which depends on lower

level uncertainties – the weighted individual knowledge bias 〈δ〉 and

knowledge uncertainties σ of the convolutive, non-convolutive and

model error size and ellipticity.

For the practical experiment, an evaluation must be carried out

for these individual component factors, to establish whether they are

achievable using techniques at hand, or from reasonable projections

of what techniques may become available in the timeframe of the

mission. The most significant factors must be quantified through

an appropriately detailed assessment, for which Table 1 may be

used as a starting point. The evaluation is likely to entail large-scale

simulations and evaluations. These will establish whether the value

assigned to the different factors can be reached in any concrete

design or procedure. If not, the values can be adjusted to relax the

constraint on any one contributing factor, but then others must be

tightened accordingly, in order to remain within the required levels

of A′ and M′. In this way, a balance may or may not be achieved,

depending on the characteristics of the mission, with implications

for its feasibility.

So far we have provided the rationale by which the systematic

biases can be identified, organized and their combined effects eval-

uated, and provided an example hierarchical structure in Table 1.

Table 1 contains example numerical values for the different factors,

derived from the Euclid programme. We will examine in Section 4

and beyond some of the methods by which these values can be

calculated, with the aim of illustrating the process, rather than pro-

viding a justification for any particular case. To do this, we first

need to create simulated data, and process these in a representative

manner, so we discuss briefly how these may be done, concentrating

on aspects of particular importance to a weak lensing experiment.
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3 SI M U L AT I O N S A N D DATA P RO C E S S I N G

3.1 Procedure

To quantify the impact of biases, we must create simulated data

with the appropriate level of fidelity, incorporating information from

laboratory and prototype tests. The simulations typically proceed

as follows.

(i) The telescope optical model is used to produce many differ-

ent instances of the optical PSF at different locations on the field

of view and at different wavelengths (to explore the wavelength de-

pendence). The PSFs should be supersampled by a sufficient factor

compared to the detector grid. The imperfections in the alignments

of the optical elements and also the manufacturing errors for the

optical elements are generally included via perturbations to the op-

tical model: these can be generated by Monte Carlo sampling over

the likely range of the misalignments and manufacturing errors. For

part of the field of view, a finer sampling of field-of-view points

may be used to explore variations on smaller spatial scales until no

further variation is found. The aim is to sample the instrument states

and the spatial and spectral variation of the PSF at many points on

the field of view in a representative fashion.

(ii) Photons incident on a pixel will generally be recorded in that

pixel, but there is a finite possibility that they will be recorded in

an adjacent pixel owing to charge spreading within the CCD. This

effect is characterized from laboratory measurements as a function

of wavelength, using an optical spot which is as small a fraction of

the pixel size as possible. The charge spreading is then added as a

convolution to the PSF for each wavelength.

(iii) The pointing of the satellite will not be completely stable,

blurring the PSF slightly. A sequence of optical PSFs are displaced

slightly in the focal plane according to a time series of simulated

pointings from the satellite attitude control system, and then inte-

grated over the exposure duration. This completes the generation of

the system PSF at any point in the field of view, for any particular

pointing displacement time series and for each wavelength.

(iv) These system PSFs represent stellar images, and they are

then pixelized on to the detector grid with the appropriate intensity,

spectral and positional distribution according to real-sky data (or an

appropriate Galactic model) and the expected instrumental through-

put. If real-sky data are used for the simulations, then the optical

distortion map should be applied, and the star positions displaced

to take account of the individual CCD positions and rotations in the

focal plane (as derived from simulations or engineering measure-

ments).

(v) Galaxy images are produced using galaxy models, or from

real data from deep field observations, and then scaled and rotated

individually and with a number distribution consistent with ob-

served number counts. Weak lensing shears are also added at this

stage if required. Each image is convolved with the system PSF de-

rived from the steps above, again taking account of the instrument

throughput. They should be distorted using the telescope optical

model. These images are also pixelized on to the detector grid.

(vi) The internal and external (cosmic) background, and the CCD

thermal (dark) noise are modelled and added. Poisson noise is added

to the accumulated signals and backgrounds for each pixel. The

pixel–pixel non-uniformity is then applied through multiplication

by the flat-field map. Detector cosmetic effects (hot and dead pixels)

are then included. Saturation ceilings appropriate to the full-well

capacity of the CCD are applied and the associated pixel bleeding

calculated.

(vii) CCD radiation damage models are then applied to reproduce

the radiation damage effects, again using representative laboratory

data from radiation testing to ensure their fidelity. Readout noise for

each CCD readout node is finally added, together with its electronic

bias level.

Some aspects of the performance evaluation may not require all of

these stages, and, in particular, subfields of view are often sufficient

to examine many effects.

The survey strategy may also require simulation to impose the

correct displacements between successive exposures and to ensure

that the anticipated mission samples the sky adequately to allow the

information about the galaxy shears to be recovered to the required

level of accuracy.

3.2 Radiation damage effects

While most of the procedures above are relatively standard, the

modelling of the radiation damage effects in the CCDs requires

particular attention, as this is where most of the non-convolutive

effects in the system arise.

The radiation environment above the Earth’s atmosphere will

gradually degrade the performance of all electronics. The principal

impact for a CCD-based weak lensing experiment will be changes

to image shapes as a result of radiation-induced lattice damage in

the CCDs. This will introduce inefficiencies in the charge transfer

during readout (charge transfer inefficiency; CTI). As electrons are

transferred to an amplifier at the edge of the device, they can be

temporarily captured by lattice defects (traps) and released only

after a time delay (e.g. Holland et al. 1990). These electrons then

appear in pixels subsequently read out, as a spurious trail behind

the image in both the column (parallel) and row (serial) directions.

The degradation is negligible in pixels adjacent to the readout node,

because electrons undergo few transfers before being read out, and

worst at the positions furthest from a node. The effect will modify

the size and introduce a spurious elongation of galaxies (Massey

et al. 2010), dependent on flux and its position on the CCD, directly

modifying the cosmological weak lensing signal if not accounted

for. CTI trailing is particularly troublesome because the trailed flux

is a non-linear function of the total flux (signal plus sky background)

and of the size and shape of a source, and therefore contributes as a

non-convolutive effect.

There are two main types of CTI models used in the simulations.

In the first, the charge transfer process is modelled statistically

in detail, including the interactions between the charge cloud and

the electric field structure within the pixels, by Monte Carlo tech-

niques (e.g. Seabroke, Holland & Cropper 2008; Prod’Homme et al.

2011). These potentially offer the highest fidelity description of the

radiation damage effects. However, because the parameters in the

model (mainly the capture and release times, and the capture cross-

sections) are determined by iterative fitting to laboratory data, these

parameters are in practice not well constrained, as the models are

computationally intensive. The other approach is to capture as well

as possible in a simplified model the essential physical interactions

while modelling the statistical effects: this enables rapid iterative

parameter fitting at the cost of a reduced fidelity. Examples include

the model developed for the Hubble Space Telescope (HST) Ad-

vanced Camera for Surveys (Massey et al. 2010) and the Charge

Distortion Model (CDM03) (Short et al. 2010) used in the Gaia pro-

gramme, both of which have variants explicitly tailored for weak

lensing surveys. Unfortunately, the approaches are currently suf-

ficiently different that some of the parameters determined in the
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second approach are not yet directly useful for the Monte Carlo

approach.

The radiation environment to be experienced by the detectors is

mainly parametrized by the mission duration, as well as the flu-

ence and energy spectrum at the orbital location. All laboratory test

data should be as representative of the flight condition as possible.

Because lattice damage effects are different at ambient and cold

temperatures, irradiations of test devices should be made at oper-

ational temperature, and the devices should be maintained at that

temperature for the subsequent characterization: this is logistically

difficult. The main operational dependences are the temperature and

the CCD parallel and serial transfer rates, and these will be the main

parameter space to be explored in the testing. Both are affected by

the shape of and voltage levels used in the actual waveforms to read

out the device, and generally this will be explored beforehand and

should be agreed and standardized for all further tests, to permit the

intercomparison of results. The results will also be different for dif-

ferent device types, because of the different physical pixel structure,

manufacturing procedures and raw Si characteristics. In particular,

different doping regimes will lead to different trap populations.

Once the parameters are determined by fitting to laboratory test

data, the models are used to include the radiation effects in the sim-

ulated images in step (vii) above. Generally, the test data improve as

the programme proceeds, partly because actual flight-design CCDs

may not initially be available. Consequently, these simulations will

evolve.

3.3 Cosmic rays

The effect of high-energy ionizing particle fluxes (electrons, protons

and ions) on the detectors in terms of induced transient tracks on the

images must be included in the simulations because they effectively

reduce survey area when they are excised, or the local exposure

duration if there are multiple exposures of each field. There is also

an allocation made to any systematic effects this may induce in

Table 1. The fluxes can be simulated using Monte Carlo codes

such as the STARDUST code (Rolland et al. 2007). These are able to

compute realistic samples of images and the statistical properties

of the induced particle tracks. They incorporate solutions of the

diffusion equation and take into account the nuclear reactions, the

shield anisotropy description, the propagation of energetic electrons

and the generation of delta electrons.

The main input data are the information about the detector struc-

ture, the environment particle spectra and a thickness table describ-

ing the shield around the detector. Generally, a particle travelling

inside the detector is assumed to lose energy along its trajectory

according to the continuous slowing down approximation or via the

production of delta electrons or by nuclear reactions (for the protons

and the ions). The number of deposited electron–hole pairs can be

obtained by dividing the deposited energy by the energy necessary

to create a thermalized electron–hole pair (3.6 eV in Si). Charges,

primary or secondary, deposited in depleted zones must be directly

collected; otherwise, they are subject to diffusion.

3.4 Normal processing steps

The raw data from a weak lensing experiment are not used directly.

A data processing sequence is carried out to reach the required data

quality from which the galaxy shears can be measured. This incor-

porates external information (such as parameters from laboratory

tests, or astrometric source parameters) and internal calibration data.

The information can be used either directly, or through a model. This

adds to the information content of the data, but very great care must

be taken in the quality of the external information, and in the ac-

quisition of the calibration data to ensure that these are taken in a

representative manner. At the extreme level of accuracy required

for the weak lensing measurements, this incorporation procedure

will always, at some level, introduce bias effects feeding into A′

and M′, and this is reflected in the need for an allocation for in-

correct values in Table 1. Other calibrations of, for example, dense

star fields can potentially be used to examine PSF spatial variability

on small scales, if these exposures can be considered sufficiently

representative in order not to introduce spurious biases. Wherever

possible, the calibration information should be from within the data

frames themselves.

The processing follows a process of electrical bias (zero light

level) subtraction, correction for linearity, correction for CTI ef-

fects, flat-fielding, correction for detector cosmetic defects, cosmic

ray subtraction and astrometric correction. Scattered light contribu-

tions may be removed and the background modelled. Because the

knowledge of the PSF is one of the most critical aspects in a weak

lensing experiment, the steps requiring the most attention are those

that impact the PSF.

3.5 Correction for radiation damage

The absolute density of charge traps will gradually increase dur-

ing the mission as radiation damage accumulates. Laboratory tests

indicate that there are different species of charge traps. While all

of these species contribute to the total CTI, not all of the species

equally degrade weak lensing measurements. Following Rhodes

et al. (2010), charge traps with a characteristic release time much

shorter than the charge transfer speed at which rows and columns of

pixels are read out move electrons by at most one pixel, and hence

affect astrometry. Charge traps with long characteristic release times

remove electrons entirely from a source, and degrade photometry.

As shown by Massey et al. (in preparation), charge traps with char-

acteristic release times a few times the charge transfer speed move

electrons from the core of an astrophysical source into its wings,

and primarily affect its size and ellipticity, and these have the most

negative effects on the weak lensing measurements.

As noted above, one of the early steps in the data processing is to

minimize as far as possible the radiation damage CTI effects in the

data. This is a critical step, as the residuals from this process will be

the largest non-convolutive knowledge contributor in Table 1: the

effects modify the magnitude, ellipticity and position of the object

in a intensity- and size-dependent manner. In this respect, the CTI

also creates non-linearity which is in addition to that caused by the

detection chain (Section 4.4.1).

Ideally, the trailed electrons should be returned back to the pixel

to which they belong. Fortunately, the trailing is typically a small

perturbation around the true image, so an inverse operation can be

achieved via a rapidly converging iteration of the forward algorithm

(Bristow & Alexov 2002; Massey et al. 2010). This is done by tak-

ing the real data, passing them through the best model available for

CTI effects – generally those used in the simulations in Section 3.2

– to create double and higher multiples of the damage. Linear com-

binations of these images are subtracted from the original data to

remove the effects to the required level. The procedure is shown in

table 1 of Massey et al. (2010).

The level of correction that is possible depends upon the accu-

racy of the CCD CTI model and the level of readout noise. Readout

noise places a fundamental, hardware limit on the correction ac-

curacy because it is added to an image after the charge transfer,
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and is therefore not trailed (Anderson & Bedin 2010; Massey et al.,

in preparation). This effect leads to correlated noise in the final

corrected image.

Note that during charge transfer, charge capture and release are

stochastic events, the exact location of each trailed electron cannot

be accurately predicted. Individual galaxies on individual expo-

sures may not be perfectly corrected, but statistical measurements

of an ensemble galaxy population can be corrected to an unbiased

level (Rhodes et al. 2007; Massey et al., in preparation). However,

with advanced calibration techniques known as pocket-pumping in

which an image is shifted forwards and backwards by a small num-

ber of pixels, the location and characteristics of each trap may be

ascertained (Janesick 2001).

4 MODELLING THE SYSTEM PSF

4.1 Overview

After the data processing, including the calibrations and the CTI

correction, a set of optimized images containing stars and galaxies

is available for each part of the sky. We are now in a position to

calculate the shear maps to determine the cosmological parameters.

In order to reach the accurate measurement of galaxy shape

needed for reconstructing the shear maps, classical deconvolution

approaches do not deal adequately with the effects of noise and finite

sampling by the detector. There has been continuous progress over

the past decade in the accuracy with which shear can be measured

(for example, Heymans et al. 2006; Massey et al. 2007; Bridle et al.

2010; Kitching et al. 2010, 2012). In one approach, for each particu-

lar galaxy shape measurement, a galaxy model is constructed from

a combination of intensity profiles. These profiles are convolved

with the model PSF, and compared in a model-fitting process to

the observed galaxy, the true image of which has been convolved

with the true (but not fully known) instrument PSF (for example,

Miller et al. 2007, 2012; Kitching et al. 2008b). In another, the ellip-

ticity is computed more directly using the quadrupole moments as

in equation (12) (for example, Kaiser, Squires & Broadhurst 1995;

Luppino & Kaiser 1997; Hoekstra et al. 1998).

An allocation for the uncertainty in this model-fitting process is

in the model bias knowledge 〈δ(α)〉2 and 〈δ(μ)〉 lines of Table 1 and

some of these aspects are discussed briefly further in Section 4.4.

We continue in this section with the error arising from the fact

that the instrument PSF is not fully known: calculated or estimated

values are in the lines of Table 1. Stars provide measures of the

PSF at different points on the field of view, which will enable the

PSF for any particular galaxy to be calculated. Each exposure will

also have been taken under slightly (perhaps minutely) different

conditions, for example, changed payload temperatures resulting

in different optical alignments. The PSF model for each galaxy

must be reconstructed from the stellar PSFs in the field of view,

and the task is to model the PSF to reach a level of fidelity to the

true PSF such that the biases in the shear measurements must be

within the levels in equation (31) for the cosmological goals to be

met.

As already related in respect of Table 1, this modelling process

has several categories. Some are related to the amount of infor-

mation that is available to reconstruct the PSF for any particular

galaxy. For example, the spatial sampling must be adequate (Sec-

tion 4.2.1). Another is the precision available in the calibrating PSFs

simply from their photon shot noise. Other categories include the

mathematical form of the model used to characterize the PSF, the

accuracy with which the coefficients of the model can be derived in

order to construct any particular PSF and the accuracy with which

calibrations can be transferred to the particular stellar PSF being

modelled.

We now examine the main categories of convolutive effects, non-

convolutive effects and galaxy modelling in Table 1 in sequence.

4.2 Convolutive effects in the PSF modelling

4.2.1 Sampling issues

Assuming a central wavelength of λ for the instrument bandpass and

a primary mirror of diameter D, all images are fundamentally band

limited at a spatial frequency of umax = D/λ even in the presence of

spatial blurring in the remainder of the instrument. The telescope

PSF can contain no modes at higher frequency than this value, and

thus no higher frequency signal remains in images after convolution

with this PSF. A band-limited image can fully be recovered as

a continuous function, without loss of information or accuracy,

using Sinc function interpolation between a discrete set of samples,

provided these samples are spaced at a greater spatial frequency than

the critical sampling rate, or Nyquist rate, 2umax. An output image

must therefore be constructed at a resolution of <1/(2umax) radian

per sample in order to be fully sampled and allow full reconstruction

of the sky.

In general, for a given optical system, and number of pixels in

the focal plane, there is a tradeoff between maximizing the survey

area (more arcseconds per pixel) and maximizing the PSF sampling

(fewer). If the system PSF is fully sampled by the detector pixel

grid, then it is not degraded by the sampling. If on the other hand

some compromise is made to enlarge the field of view, with the

expectation that some spatial resolution can be regained through

multiple exposures, which are often required for other reasons in

any case, then an analysis of the effect of this undersampling is

required. Furthermore, while undersampling is an important con-

sideration in the modelling of the PSF, aliasing also affects galaxy

shape measurement for methods which do not directly fit parametric

models to the data.

We start by examining the effect of moderate undersampling

with three or four exposures, as such a sequence may be typical to

recover gaps in the detector matrix. The full system PSF should be

used to test the sampling characteristics and these sampled on the

detector pixel grid, with successive exposures offset to mimic the

multi-exposure survey strategy. We use an optical PSF based on the

Euclid example with an input focal plane sampled at 0.688 of the

Nyquist rate. We then convolved this PSF with an additional circular

Gaussian of standard deviation 0.196/(2umax), to approximate the

dispersive effects of charge diffusion within the CCD pixels. Finally,

we add an additional jitter component to the combined PSF using a

time series of 216 jitters of displacement 0.145/(2umax) (Gaussian

rms).

We use the optimal linear image combination formalism of Rowe

et al. (2011), sampling the output at the Nyquist rate. This formalism

aims to minimize two contributions to imperfect image reconstruc-

tion: the leakage objective Uρ and the output noise variance �ρρ .

The former measures the fidelity of the output image to the target

PSF: in this test, a low value for Uρ indicates that unwanted changes

to the PSF from the linear combination process have been small.

To set an absolute tolerance on this quantity, it is useful to consider

the normalized leakage objective Uρ/Cρ , where Cρ is a measure of

the integrated PSF autocorrelation (see Rowe et al. 2011). A tol-

erance value for a normalized leakage objective of Uρ/Cρ < 10−8

approximately corresponds to controlling unwanted changes to the
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Figure 1. Maps of normalized output leakage objective Uρ/Cρ (left-hand column) and noise variance �ρρ (relative to a unit input variance; right-hand

column) after linear image combination from single realizations of a four (upper row) and three (lower row) random dither configuration. These output maps

are taken from the central regions of large images, showing the central regions of primary interest (see Rowe, Hirata & Rhodes 2011).

PSF to better than one part in 104 and ensures that such changes are

a minimal contribution to the PSF uncertainty budget in Table 1.

The output noise variance �ρρ is specified in units of the variance

of noise in the input images. An output �ρρ < 1 therefore demon-

strates that the noise variance in the output pixels is reduced relative

to the noise in the inputs, and this can be taken as an indication of

stable control of noise in the reconstructed, fully sampled output

image. Following the methodology of Rowe et al. (2011), we can

test to see whether the PSF and multiple-exposure strategies will

allow linear combination of input images to generate output images

that are unbiased at the Uρ/Cρ < 10−8 level while simultaneously

keeping output noise to an acceptable level.

In the upper panels of Fig. 1, we show maps of normalized Uρ/Cρ

and �ρρ (given in units of the input noise variance) for a single

realization of a four randomly offset exposure system (dithers) in

which the sampling is 0.688 of the Nyquist rate. This realization

was one of 30 realizations tested, and results were typical. Uρ/Cρ

is found to be <10−8 everywhere. The output maps shown come

from the central regions of the input images, where data coverage is

good and edge effects do not impair results. As discussed in Rowe

et al. (2011), the effects in edge regions can be mitigated in real data

by tessellating many small regions of reconstructed output such as

those shown.

For the ensemble of 30 realizations tested, the average Uρ/Cρ in

the reconstructed output was 9.95 × 10−9, in the very centre of the

specified tolerance range, demonstrating a desired level of control

over unwanted distortions in the output image. The average noise

variance �ρρ in the reconstructed output was 0.663 (in units of the

input variance). Because there is no background in the images, this

variance will be an upper limit with respect to real-sky exposures.

This demonstrates that for a PSF sampled at 0.688 of Nyquist, with

four input exposures, a linear combination of images can be used to

generate fully sampled output while maintaining acceptable levels

of noise in the output.
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Figure 2. Histograms of normalized leakage objective Uρ/Cρ (left-hand

panel) and noise variance �ρρ (in units of input variance; right-hand panel)

for a total of 38 880 output pixels from 30 realizations of the three input

exposure scenario.

The lower panels of Fig. 1 show the normalized Uρ/Cρ and �ρρ

for a single realization of a three exposure pattern. Here, the optimal

linear combination produces Uρ/Cρ > 10−8 at some points in the

output image: these can be seen as red squares. It can also be seen

that output noise variance for this reconstruction is significantly

greater than was the case for four input exposures.

As for the four exposure case, a total of 30 realizations of the

three exposure scenario were investigated. The average Uρ/Cρ in

the reconstructed output pixels across this ensemble was 1.0583 ×
10−8, slightly larger than the desired maximum for reconstruction,

and the average �ρρ was 1.4405 (in units of the input variance).

The results from a single realization shown in Fig. 1 are typical

of these tests, but the variation in reconstruction quality between

realizations was noticeably greater than in the four exposure case.

In Fig. 2, we plot histograms showing the distribution of Uρ/Cρ

and �ρρ output pixel values for the full ensemble of 30 realizations

of the three exposure random dither pattern. As each output region

of the type shown in Fig. 1 consists of 36 × 36 output pixels, there

are 38 880 total output pixel locations making up the full sample

for each of these histograms. We also provide some statistics of

the distributions, showing that in the three exposure case, only

≃18 per cent of the reconstructed output had Uρ/Cρ > 10−8, but

nowhere did this quantity exceed 3 × 10−8. Nearly two thirds of the

output pixels have a noise variance smaller than the noise variance

on input pixels, and for less than 10 per cent of the output is the

variance greater than a factor of 3 times the input.

Because both Uρ/Cρ and �ρρ are squared metrics of the quality

of reconstruction (Rowe et al. 2011), these results suggest that

while the three exposure case does not meet stated requirements in

this 0.688 Nyquist-sampled case, it comes close. Fig. 1 shows that

this failure to meet the tolerance is spread regularly over the survey

regions. It is not clear to what extent this regularity, and the failure to

meet Uρ/Cρ will effect weak lensing measurements for this 800 nm

PSF. We also note that for shorter wavelengths within the bandpass

the Nyquist frequency is correspondingly increased, exacerbating

the situation. On the other hand, the analysis in Section 4.3 (where

the three exposure case including CTI is propagated into the shear

power spectrum) indicates that such a variation has a limited impact

on the dark energy FoM.

4.2.2 Construction of the PSF

Because the PSF will be derived from the stars in the field of view

surrounding each galaxy, a fundamental limit on the fidelity of this

model is set by the photon statistical error in each pixel containing

the PSF. If there are sufficient bright stars in the field, then the form

of the PSFs in each exposure can be modelled to the necessary

level of fidelity, exposure by exposure: in their analysis, Paulin-

Henriksson et al. (2008, 2009) found that ∼50 stellar PSFs at a

signal-to-noise ratio of 500 were sufficient to determine the PSF to

the accuracy required for the particular PSF that they were using.

The surface density of stars which both are not nearly saturated

(i � 18.3) and which would have signal-to-noise ratio greater than

500 is expected to be about 950 deg−2 in a survey such as Euclid, for

fields with Galactic latitude b ∼ 30◦ near the North Ecliptic Pole.

If the system is stable between slews, then measurements of stars

from successive fields may be combined appropriately to improve

the PSF model. This approach is shown in Fig. 3. However, this

stability is not strictly necessary, if the modelling can take into

account the variation of the PSF with time, capturing all of the

possible states of the system. The PSF can then be reconstructed

for a particular position on the field of view, and for a particular

instrument state.

The instrument state is defined through a (large) number of pa-

rameters, for example mirror separations and alignments in the

Figure 3. The PSF is expected to vary as a function of spatial position in

the field of view and with time, resulting from changes in the instrument

state. The instrument state may be that, for example, characterized by the

primary–secondary mirror separation, or the temperature difference between

certain optical elements. These individual contributions may substituted for

the ‘time’ column. An additional parameter will be the effective wavelength

of the light producing the PSF.
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Figure 4. Components (left) and residuals (right) depending on number of components used for modelling a PSF (top). The intensity scales are logarithmic,

with a colour table which enhances lower image levels.

optical train. Hence, the ‘time’ dimension in Fig. 3 can be replaced

with a separate dimension for each parameter. Some of these (such

as the primary–secondary mirror separation in the telescope, lead-

ing to focus changes, examined by Ma et al. 2008) will, however, be

dominant, and not all physical changes will induce ellipticity, so in

practice the additional dimensionality should be constrained. The

additional dimensionality beyond the two dimensions of the focal

plane reduces the accuracy with which the PSF can be constructed,

but with typically >109 suitable stars in a long survey duration,

even a large number of additional dimensions can be accommo-

dated. Then in principle all of the exposures in the survey can be

used, and a multitude of PSFs will be available to construct the PSF

for any galaxy.

4.2.3 Principal component analysis of the PSF

Any PSF can be modelled through a combination of functional

forms. Which functional forms are optimal will depend on the cri-

teria by which this is assessed. One simple criterion may be that

each of the components making up the PSF should be orthogonal;

another may be that a minimal set should be used, requiring that the

series of components should converge rapidly.

Principal component analysis (PCA) is a general statistical

method that enables variation in data to be identified in a way

that makes minimal assumptions about the nature of the underlying

variation. More formally, the PCA methodology is a mathemati-

cal procedure that uses orthogonal transformations to convert a set

of correlated variables into a set of uncorrelated variables called

principal components. PCA also determines the coefficients which

describe how much of each component should be used.

PCA makes the assumption that modes of variation are additive.

This may be restrictive when changes in PSF result from, for ex-

ample, focus variation, so other, more physically described models,

such as those directly coupled to the optical modes (e.g. Schechter

& Sobel Levinson 2011), may be more efficient.

In applying PCA, we may consider the input data to be the PSFs

provided by stars, and the input (correlated) variables to be the

position of the PSF in the field of view, the SED of the photons

in the bandpass and the parameters describing the instrument state

(such as the focus). Each component of the PCA basis set derived

from the PSF is an image, and the components together generate

an orthogonal set of two-dimensional images. This is illustrated in

Fig. 4. As there is a coefficient for each component to instruct how

much of that coefficient should be used in the construction of a PSF,

the coefficients are vector functions, with length corresponding to

the numbers of PCA components. The dependences in the derived

component functions are the positions in the focal plane, the SED

and the instrument state.

PCA PSF reconstruction has been successfully implemented on

space-based weak lensing data from the HST (Jee et al. 2007) (see

also Rhodes et al. 2007 and Schrabback et al. 2007, 2010 who used

PCA to characterize the variation of the two-component ellipticity,

rather than the PSF pixel values). We could use the stellar (noisy,

pixellized) images themselves to generate the PCA components and

coefficients. As described in Section 4.2.1, the problem with under-

sampled data is that Fourier modes above the Nyquist sampling

limit are not only lost, but are aliased to lower frequencies, result-

ing in corruption of all Fourier modes. The apparent shape of the

PSF depends on the subpixel location with respect to the detector

pixel grid, and no linear interpolation scheme can allow us to pre-

dict the PSF at one location, given its form at another. The effect

of undersampling is to corrupt the PCA component calculation to

make them no longer orthogonal, and the presence of noise results

in spuriously high coefficients, particularly at higher order eigen-

modes. While this may be mitigated by the use of multiple, dithered

exposures, in the presence of noise, it may not be possible to make a

unique, method-independent reconstruction of a fully sampled PSF.
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Figure 5. Procedure for using simulated PSFs to generate the basis set of

two-dimensional images which are fitted to the simulated image data. In our

simulations, one of the optical PSFs not used for the basis-set construction is

used to generate 144 realizations of realistic stars, including realistic levels

of noise, AOCS and detector response.

One approach to estimating the high-frequency modes, beyond

the sampling limit of an individual observation, is to create a super-

resolution model of the PSF, fitted to the data. We illustrate this

approach here by creating basis-set models based on simulated

supersampled PSFs as a function of focal plane position and SED for

each state of the instrument. PSF variation is created using a Monte

Carlo approach to vary the instrument’s optical characteristics. The

eigenmodes of those PSF variations are found, and the coefficients

for this basis set are calculated by fitting to simulated observations.

This process is illustrated schematically in Fig. 5. In this way,

we can test the accuracy to which a super-resolution PSF may be

reconstructed provided we have accurate PSF models: such a test

investigates the information limit of the data, but does not probe our

ability to generate accurate models.

In Miller et al. (in preparation), the fitting procedure is treated

as a Bayesian estimation problem, in which we use our prior in-

formation about the statistical distribution of the eigenmodes from

the simulations, together with measurements of the likelihood of

the models fitted to the data, to obtain the statistically most-likely

PSF reconstructions. Such a procedure has significant advantages:

it makes full use of the available information about the system;

it places the problem in a rigorous statistical framework; being a

forward-modelling process, we may include all effects that we be-

lieve are present in the real system; the Bayesian approach prevents

overfitting of noise. In the case that the model PSFs are too far from

the actual ones in orbit, we expect that the model basis set may be

updated in-orbit as more information becomes available from star

measurements.

4.2.4 Characteristics of the basis set

Before we perform the Bayesian fitting to the noisy pixellated data,

we first examine the characteristics of the eigenmode basis set, and

investigate how many components may be required to adequately

model the PSF. In detail, the results of this analysis will depend on

the nature of the optical system, the pointing performance and the

detector characteristics, but the procedure would be similar for any

realistic system.

To test this, we first generate end-to-end simulations as described

in Section 3 above, using the Euclid case. In summary, we first deter-

mined the optical system behaviour from simulations of the optics,

with variations imposed on the optical system over agreed ranges,

and then with the simulated system being perturbed as expected in

orbit by convolving the optics PSF with the charge spread within

the detector and with a kernel arising from guiding errors. The PSFs

are oversampled by a factor of 12 compared with the Euclid visible

detector sampling. There are no noise sources in this test.

After this, we measure the ellipticity of the PSF using equation

(10) with a wide Gaussian weighting function with σ (w) = 4 times

the FWHM. We first examine the required number of components

needed to model the spatial variations of the PSF accurately over

the full field of view for a monochromatic PSF at 800 nm (Fig. 6).

For the Euclid case, we find that ∼18 components are enough to

describe the PSF spatial variations with sufficient accuracy. This will

be similar for other systems in practice. We now examine the number

of components to encompass the variations in the optomechanical

system post-launch and in the space environment, for a single field

point (derived from a Monte Carlo tolerancing analysis) and again

find that ∼20 components are adequate. If we combine both, the

number of components required to model correctly both spatial

variations of the PSF and variations corresponding to the instrument

state rises to ∼38.

4.2.5 PSF wavelength dependence

So far the PSF we have been modelling is monochromatic. In re-

ality, the PSF will be different, depending on the spectrum of the

star generating that PSF multiplied by the instrument end-to-end

throughput as a function of wavelength. The largest contributor to

this effect is the diffraction in the optical system, which increases

linearly with wavelength. This is generally counteracted slightly

by the inverse wavelength dependence of the charge spread in the

CCDs because photons of redder wavelengths travel deeper into the

pixel and closer to the electrode structure before they are absorbed.

The other contributions (the attitude control system pointing varia-

tion and the radiation damage effects) do not have any wavelength

dependence.

We have examined the number of principal components that will

be required to model a multiwavelength PSF. In a new analysis,

we have added the wavelength dependence effect by considering a

set of monochromatic PSFs at 550 and 800 nm. Because the size

of the core of the PSF changes approximately linearly with the

wavelength, this affects significantly the ability of the eigenmodes

to represent the wavelength dependence. To reduce the number of

components, a spatial rescaling by a factor of 800/550 of the PSFs

at 550 nm has been applied. With this simple measure the number

of components required to model the PSF correctly including the

wavelength dependence effect, the spatial variations and the tele-

scope stability, rises to ∼70. This result is shown in the right-hand

panel of Fig. 6.

This analysis suggests that the eigenmode approach indeed en-

ables the full range of PSF to be modelled in a representative fashion,

albeit at the price of potentially needing a large number of eigen-

modes in the analysis. However, this analysis does not take into

account the relative importance of the modes at 550 and 800 nm in

actual data: for realistic spectra, the long-wavelength parts of the

spectrum dominate the PSF, and thus the actual modes needed in

practice may be fewer than would be implied by Fig. 6.
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Figure 6. Left: the difference between the known ellipticity and the modelled one as a function of the number of principal components used for the modelling.

The diamonds represent the standard deviation of the residual error considering the spatial variations of the PSF over the field of view, the triangles represent

the standard deviation of the residual error considering the variations of the PSF arising from variations in the instrumental state and the squares represent the

standard deviation of the residual error considering both together. Right: as, for the left-hand panel, but with the diamonds representing the standard deviation

of the residual error considering simultaneously the wavelength dependence together with all of the variations of the PSF over the field of view and the stability

of the telescope. The dashed line indicates the value assigned in Table 1.

4.2.6 Bayesian model fitting

Having explored the approximate number of eigenmodes that

may be required to construct the PSF, we now examine whether

the Bayesian approach discussed above can provide sufficient

information on the coefficients of this component set for re-

constructing the PSF in realistic simulations, to meet the al-

locations in Table 1. For this purpose, a conservative assump-

tion is to limit the amount of temporal stability required and

hence to analyse each set of exposures of a region of sky in-

dependently of any other field. The aim is to investigate the

extent to which the underlying, fully sampled PSF may be re-

constructed from noisy data in a single field. We do, however,

assume that each field is observed with three dithered exposures,

and that the PSF is invariant during those dithered exposures.

The first step of this reconstruction is to define the set of basis

model components that characterize the system using normal mode

decomposition as described in earlier sections. We then fit these

components to noisy realizations of stars. The star profiles are taken

in turn from the set of model PSFs, but excluding that profile from

the determination of the components of the models above. As before,

the PSF used in this analysis is the Euclid system PSF taking into

account the optomechanical, detector and attitude control system

pointing variation contributions. Provided the information on the

pointing variation is telemetered by the spacecraft, the effect of

this uncertainty on the PSF may be corrected, to a certain level

of accuracy. On the other hand, we could proceed without this

information, and then the guiding errors would need to be included

as additional fit parameters. For this test, it is assumed that the CTI

has been fully corrected in prior data processing (e.g. Massey et al.

2010): the efficacy of this is described in Section 4.3.

The simulation uses the Besançon model of the Milky Way

(Robin et al. 2003) to predict the number–magnitude relation of

stars at the North Ecliptic Pole in the Canada-France-Hawaii Tele-

scope system i band.5 There are 3.5 stars arcmin−2 in the range

5 http://model.obs-besancon.fr/

18 < i < 23, and 6300 stars in a half square degree, corresponding

to the Euclid full field of view. The Besançon model also allows

the creation of a simulated catalogue of stars with magnitude and

spectral type, and to create the simulated Euclid observations, stars

were randomly selected from that catalogue. As the stellar PSFs

used in the PSF modelling are all moderate or high signal-to-noise

ratio, their colours will often be known from catalogues, such as

that which ESA’s Gaia mission will produce. Here, we assume that

their optical and near-infrared magnitudes can be measured from

the Euclid mission data alone. To model the PSF in the presence of

the varying colours of stars, a simple model was assumed for the

PSF wavelength dependence, in which the optics component alone

was assumed to scale in angular scale linearly with wavelength,

with respect to simulated PSFs calculated for wavelength 800 nm.

While this model is an oversimplification of the true wavelength

dependence, it serves to capture the basic effect and allows us to

test whether, in principle, the PSF could be reconstructed at the

required level of accuracy. Simulated stars were created by dividing

the Euclid visible instrument passband into small wavelength in-

tervals, evaluating the expected number of detected photoelectrons

in each wavelength interval, given the SED of each simulated star,

and coadding the wavelength-stretched PSFs across the bandpass

with wavelength-dependent weight given by that number of photo-

electrons. Star SEDs were obtain from the ‘UVK’ library of Pickles

(1998).6 In the measurement/fitting test, stars were assumed to have

noisy photometric measurements, from which an estimated SED

was evaluated using the same stellar library (i.e. assuming that star

SEDs may be obtained from broad-band photometry without sys-

tematic error), and PSF eigenmodes were adapted to the SED of

each star using the same SED-weighting procedure that was used to

create the simulated observations. The model PSFs and simulated

stars are not expected to match exactly because of the introduction

of photon shot noise in the simulated stars. It was further assumed

6 http://www.ifa.hawaii.edu/users/pickles/AJP/hilib.html
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Figure 7. Variation in the residuals in the knowledge of the PSF in terms of size σ [R2
C

] (left-hand panel) and a single component of the convolutive ellipticity

σ 2[εiC ] (right-hand panel) as a function of a range in PSF size and ellipticity, derived using the normal mode modelling of 4400 stars. The square and diamond

symbols correspond to the two ellipticity components. The dotted line in the right-hand panel is the level in Table 1 below which the ellipticity requirements for

a single ellipticity component allocated to this contribution is met. The equivalent level for the size in the left-hand panel is above the top of the plot, indicating

that the knowledge uncertainties for this contribution are easily met.

that 30 per cent of stars might not be measurable owing to the effects

of confusion with faint galaxies and image artefacts.

In this test, some account was taken also of the variation in PSF

across the Euclid field. The field was divided into five zones of equal

area, and PSF models were calculated at five locations (the four

corners and the centre of the field). When the PSF eigenmodes were

created, pixels were included from all five PSF models, so that the

normal mode analysis generated position-dependent modes, albeit

sampled only at five locations. The PSF was assumed to be spatially

invariant within each zone: a more advanced method should allow

interpolation as a function of position in the field.

Information from three dithered simulated exposures was used

by jointly fitting the PSF models to all three exposures. In this test,

the absolute positions of stars were assumed to be unknown, and

were marginalized over in the fitting, but the relative positions of

stars on each of the three exposures was assumed to be fixed and

known. In practice, the relative registration of multiple exposures

should be determinable to very high accuracy from joint analysis

of all the stars in the field. By assuming the star positions to be

unknown, we are discarding potentially useful information on the

field distortion, which also provides information on the optical path.

In practice, accurate absolute star positions may be available from

the Gaia mission data, which could also be included in the analysis.

Further description and evaluation of the above procedure will

be provided by Miller et al. (in preparation). In this initial eval-

uation, 40 modes were found to capture the PSF variation at an

adequate level. This number is fewer than expected from Fig. 6

because of the weighting of the contributions from differing wave-

lengths by the SED photon counts. In line with the formalism estab-

lished above, the PSF reconstruction is evaluated by the statistics

σ [R2
C
]/R2

C
and σ 2[ε

C
] of the differences between the input PSF

image and the reconstructed PSF, both quantities being measured

from the image-weighted second moments. The results are shown

in Fig. 7. In this preliminary evaluation, a systematic offset was

found in the value of ellipticity in some parts of the field, which

does not appear in the rms statistics shown in Fig. 7. While, in a

full PSF modelling system, such a systematic would need to be

eliminated, the exercise presented here nonetheless shows that, in

principle, sufficient information exists in simulated observations of

realistic stars fields to allow accurate PSF reconstruction to the lev-

els assigned in Table 1. For the full-field simulation of 4400 used

stars, the uncertainty σ [R2
C
]/R2

C
in size is <1.5 × 10−4 and that

in ellipticity, σ 2[|εiC |] < 1.0 × 10−4 per ellipticity component. The

allocations aggregated from several contributions in Table 1 are

σ [R2
C
]/R2

C
< 4.8 × 10−4 and σ 2[|εiC |] < 1.5 × 10−4 per ellipticity

component.

The results presented here show that it is possible in principle to

reconstruct the PSF to sufficient accuracy to meet the science re-

quirements set by equation (31) and organized in Table 1 by normal

mode model fitting to observations of stars in single fields with a

small number (three) of dithered exposures, even if no longer-time-

scale temporal information is used. The requirements and values in

Table 1 will be different for different experiments, so this will need

to be evaluated on a case-by-case basis. Should additional margin

be required, the temporal information could be exploited.

4.2.7 Flat fields

Because of manufacturing tolerances, all CCDs are subject to slight

variations in their pixel-to-pixel sensitivity. This is called photore-

sponse non-uniformity (PRNU). This is at least partially caused by

differences in pixel size in the photolithographic mask sets used to

manufacture the CCD, but the PRNU can also show colour depen-

dence, which indicates that other effects also contribute.

At low signal levels the pixel–pixel variations on typical CCD

exposures are dominated by the readout noise. At higher signal

levels, the Poisson noise, increasing as
√

N (where N is the number

of counts in the pixel) dominates. At even higher levels, the PRNU,

increasing as N, starts to dominate, even though the intrinsic PRNU

is typically only 2 per cent. Generally, stars (which fall on several

CCD pixels) will be used to calibrate the PSF and many of these

stars will be close to the saturation level, where PRNU dominates.

Typically, an onboard flat-field calibration source is used to pro-

vide an even illumination over the CCDs in order to measure this

PRNU. By accumulating several flat-field exposures, a high signal-

to-noise ratio normalized PRNU map can be accumulated. Dividing

science exposures by this map – flat fielding – can almost eliminate

the PRNU degradation. It is essential, however, to achieve accura-

cies in the accumulated flat-field which are sufficient, or else the

flat-fielding can instead add noise to the image. An approximate way

to minimize the effect of the flat-field calibration on A′ and M′ is

to ensure that it is smaller by a factor ζ compared to the Poission

noise, the effect of which has been calculated by Paulin-Henriksson
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et al. (2008). If a number nPSF of bright stellar PSFs are used, and

we assume the brightest pixels in these PSFs are filled to the same

level as that provided by the flat-field illumination, then the number

of flat-field exposures nf = ζ
√

nPSF (here we have used the fact that

the flat-field under each stellar PSF is different). For ζ = 3, nPSF =
50 (Paulin-Henriksson et al. 2008) then nf ∼ 20 flat-field exposures

are required to be combined in order to meet the levels in Table 1. In

practice, the frequency of flat-field exposures in order to achieve this

number (with consequential operational overheads) will be driven

by the time-scale of the temporal changes in the PRNU, which is

still unknown at this level.

4.2.8 Pointing accuracy issues

The imperfect operation of the satellite’s attitude control system

contributes to the PSF of an exposure because the telescope axis

is not perfectly stable, and the combination of pitch, yaw and roll

leads to field-dependent displacement of the images. In the analysis

in Section 4.2.6, we assumed that these pointing displacements are

provided by the spacecraft. These will not be noise free, but provided

prior information for the normal mode analysis which was used in

the forward modelling.

Even in the absence of this information, Ma et al. (2008) have

shown that when the pointing variation is much smaller than the

width of the Airy disc of the optics PSF, its effect on the observed

PSF is described by the mean displacement and the covariance ma-

trix of the displacements. In this case, the detailed pointing variation

history is not important, and in principle only two stars are needed

to describe this contribution anywhere in the field of view. In the

presence of noise more stars are needed, but in the typical case as dis-

cussed above, all ∼4000 stars in the field of view can be used in the

normal mode analysis to determine the pointing variation contribu-

tion for each exposure, requiring only a few additional components.

If the pointing variation amplitudes are comparable or larger than

the optics PSF, the mean and covariance of the displacements are

not sufficient and the pointing history is required.

4.3 Residuals in the correction for radiation damage

Having established the major convolutive effects, we now consider

the extent to which the non-linear CTI effects caused by radia-

tion damage can be corrected in the data processing described in

Section 3.5.

Fig. 8 shows the residual ellipticity in the galaxy images after the

image post-processing. This is plotted as a function of the readout

noise of the detection chain on the abscissa, because readout noise

is an important limiting factor, as discussed in Section 3.5. The

actual value on the ordinate will depend on a number of parameters,

for example the CCD characteristics, the fluence received by the

CCD, background levels, signal-to-noise ratios, etc. These will all

be inputs to the simulations discussed in Section 3.2. Here, we

assume a five year mission in a deep orbit, four of which are at solar

maximum. At the end of mission, taking account of a nominal focal

plane shielding and some margin, this accumulates to a fluence of

6 × 109 protons cm−2 (scaled to the effects of protons of energy

10 MeV) a typical value for such a mission. The example uses

small (minimally sampled) galaxies with a signal-to-noise ratio of

10, located far from the readout node (requiring ∼2000 transfers).

A readout noise <5 electrons (which is generally reachable with

careful design in a CCD detector matrix, as long as the readout

speed is not too high) enables a residual ellipticity knowledge of

Figure 8. The end-of-mission residual ellipticity |εNC| in a single compo-

nent induced by CTI effects in the detector system after correction during

image processing for the worse case configuration: faintest and smallest

galaxies located furthest from the readout node. The degree of correction is

limited by readout noise and the required level is met for a readout noise

of <4.8e−. The correction assumes a correct model of the CCD charge

transfer from pixel-to-pixel during read out.

σ [|ǫ
NC

|] < 10−4. Because this analysis addresses the performance

for the faintest galaxies in the worst position for CTI effects, this

knowledge error will be smaller if the population ensemble of all

galaxies that will be studied for the weak lensing is substituted and

if they are placed randomly with respect to the readout node, and,

further, if the average value of the radiation damage is used, rather

than the end-of-mission level.

In this case, the CTI has been generated by a model in the simu-

lations, and corrected using the same model: hence, this conclusion

is reached using a perfect CTI model. Currently, the best that has

been achieved in practice is a factor 20 reduction by Massey et al.

(2010). In addition to the readout noise, the efficacy of image-level

CTI mitigation will therefore rely on the accuracy of the CTI model

compared to the solid-state physics taking place in the real instru-

ment, both in terms of the fidelity of the model and the accuracy of

the parameters used within it: these necessitate a substantial char-

acterization programme for the CCDs. The parameters include the

trap density and the release times of each trap species. This is ex-

plored more fully in Massey et al. (in preparation). In orbit, the

parameters could be determined from fits to injected charge lines

(during calibration exposures), to cosmic ray events, by the use of

pocket pumping and perhaps by direct analysis of stellar PSFs. The

algorithms to do this, used at the data processing stage, require

careful development.

While the requirements on the modelling and the determination

of the parameters for it turn out to be challenging with respect to

the allowed values of A′ and M′ in equation (31), any residual

shear effects in the detector coordinate system which are related to

position with respect to the readout nodes (as opposed to those in the

sky coordinate system) will be identified as inadequacies in the CTI

model, and can potentially be iteratively nulled to negligible levels.

The readout noise floor in Fig. 8 is therefore an important parameter.

While any final small residual errors in the CTI correction will not

be fully convolutive, in that they are magnitude and background

dependent, the contributions to the error that are linear could be

incorporated with the standard PSF modelling discussed above, and

modelled out.

Moreover, the CTI residuals will not contribute to errors in the

derived power spectrum on all spatial scales, but will be limited to
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Figure 9. Left: the effect of imperfect CTI correction on the power spectrum Cij(ℓ), multiplied by ℓ2 to show equal power for different spatial scales l. Here,

we use the autocorrelation power spectrum (i = j) and a mean redshift of the tomographic bin of zi = 1. We limit the power to ℓ < 5000 as described in Laureijs

et al. (2011). The lines indicate progressive levels of CTI correction where δeCTI = xδCTI, uncorrected and we show 10 values of x logarithmically spaced between

1 and 100. The impact is reduced as the correction is improved and the effect is limited to spatial scales of the CCD and smaller (corresponding to l > 2000

in the Euclid case). Right: the absolute difference (the difference changes sign at ℓ ≃ 1200) in the C(ℓ) power spectrum when the dark energy parameter is

changed from w0 = −1.0 to w0 = −0.95 (blue): this represents the cosmological sensitivity of the C(ℓ). The dotted lines show the absolute difference between

an unaffected C(ℓ), with no CTI and w0 = −1.0 and a power spectrum affected by CTI with various levels of correction (dotted lines).

Figure 10. The reduction in FoM with respect to perfect correction for the

progressive levels of correction. The blue vertical line with δεCTI = 0.0005

indicates the impact on the FoM achieved with HST data.

scales of the CCD and smaller (if the CCD is divided into sectors

with separate readouts). We have quantified this by analysing the ef-

fect on the power spectrum, and on the FoM. This analysis includes

the radiation damage effects assumed in the modelling above, in-

cluding a fluence of 6 × 109 protons cm−2, but with the galaxies

(all again small and minimally sampled and with a signal-to-noise

ratio of 10) now placed randomly with respect to the readout nodes.

We use three slightly displaced exposures as in the Euclid pattern

of ∼100 arcsec (1000 pixels) in the parallel direction, one of which

also has a 50 arcsec displacement (500 pixels) in the serial direc-

tion. The effect of a progressively improved correction on the power

spectrum is shown in Fig. 9. We also show in Fig. 10 the change in

the lensing-only FoM using the same parameters as those used in

MHK13 for the systematic evaluations (and the same as those used

in Laureijs et al. 2011). At all scales, the difference between the

corrected power and the unaffected power is less than the difference

in the power induced by a change in the dark energy parameter w0 =
−1.0 to w0 = −0.95 (start of Section 2.2). This encouragingly in-

dicates that a CTI-corrected power spectrum at this level will have

limited effect on the dark energy measurements.

4.4 Model transfer-to-object and model bias knowledge errors

4.4.1 Linearity

The PSF model is inferred from the images of stars that are much

brighter than the faint galaxies used in the weak lensing analysis. If

the response of the detector is independent of flux then the model

can be applied directly. Real detectors, and their associated external

electronics, however, will have a non-linear response. This will lead

to systematic errors resulting from changes in the shape of the PSF,

which will either be more or less peaked than it should be. Note that

this concern regarding the non-linearity is particular to the field of

weak lensing measurements. The more usual concern with its effect

on the overall photometric accuracy of the measurement may also

be important, for example, in determining the SED of the star being

used for modelling the PSF.

There are two main effects which lead to the non-linearity. The

first is the classic effect of non-linearity and saturation in the detector

and external electronics. This is typically limited to approximately

a few per cent. It can be addressed by calibrating the detector using

multiple exposures of the same field with different exposure times.

In practice, this may place tight constraints on the repeatability

of any shutter or readout mechanism. The main difficulty of these

measurements is to obtain sufficient faint stars in order to calibrate

the linearity at lower signal levels. After calibration, residual non-

linearities from these effects can be constrained to extremely low

levels, especially as they are expected to vary only slowly with time,

depending on operating voltage levels within the electronics.

The second effect arises from the CTI in the detectors caused

by radiation damage. Those traps with long release times remove

photoelectrons from the PSF entirely. If the population density of

traps encountered by the charge cloud as it is transferred through

the CCD does not increase linearly with signal level, this effect

can induce non-linearities in the relationship between the optical

flux level and the charge arriving at the readout node of the CCD.
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Figure 11. The relative change in R2
C

(top panels) and ǫ
C

(bottom panels) as

a function of the level of out-of-band transmission for a flat-spectrum source

for the Euclid reference. The left-hand panels show the impact without any

off-band information, while the right-hand panels show the impact if the

off-band information is used in the PSF modelling.

The effect also depends on the level of background light, mostly

Zodiacal, which has ameliorating effects particularly for these slow

traps, and on the prior history of PSFs read out ahead of the PSF

of interest. The effect can be corrected using the same model and

technique used to correct for the faster traps (Section 3.5), and again

the residuals will be identified from their amplitude in the detector

reference frames. This will be a monotonically increasing effect as

the mission progresses.

The residual of the linearity correction is included in different

categories in Table 1, mostly in the PSF modelling and in the trans-

fer of model to object (because of the use of bright star PSFs to

calibrate faint galaxy PSFs). These residuals are assumed to be

quasi-linear. CTI-induced non-linearity can be incorporated within

the non-convolutive category.

4.4.2 Bandpass and out-of-band transmission

The wavelength dependence of the PSF can be determined from the

data by comparing to stars that cover a range in colour for wave-

lengths where the transmission is high. Outside the nominal band,

where the transmission is low, no information can be recovered.

The flux that is transmitted out of band contributes to the galaxy

PSF, which is a concern. Ideally, in equations (13) and (14), T(λ) =
1 in-band and T(λ) = 0 out of band. The transition has a finite

width, and the level of out-of-band transmission is f out > 0. As a

result, the width of the transition region and the allowed (average)

level of out-of-band transmission need to be determined. Under the

assumption that the bias is small, the relative errors in the PSF size

and shape can be determined by taking the ratio of the in- and out-

of-band contributions to the integrals in equations (13) and (14), so

that this is an upper limit to the impact of the out-of-band leakage.

The most conservative approach is to assume no knowledge about

the out-of-band PSF. The left-hand panels in Fig. 11 shows how

the PSF size and shape change for a flat spectrum source (f (λ) =
constant) as a function of f out where we assumed R2

C
∝ λ0.55. This

is the case for the Euclid mission, but the results are relatively

insensitive to the assumed slope of the spectral dependence. In

practice, however, it is possible to extrapolate the observed PSF to

other wavelengths using a model to correct for the leakage more

accurately. The top panels of Fig. 12 show the out-of-band 400 nm

PSF size and ellipticity as a function of the in-band 800 nm values

for the Euclid mission for different parts of the field of view and for

different optical alignments. The residuals to linear fits are given

in the lower panels, which indicates that biases in the 400 nm

size and ellipticity (per component) as predicted from the 800 nm

values are (in this case) smaller than |δR2| = 0.015 and |δei| =
7.5 × 10−3, respectively (dashed lines in Fig. 12). With such an

analysis, a more relaxed out-of-band transmission requirement can

be permitted. This is evident in the different x-axis scale for the

Figure 12. The correlation between the PSF sizes at 400 and 800 nm (top left) and PSF ellipticity components (top right) as inferred from the Euclid

model PSFs. The drawn lines are linear fits to the measurements, with the results shown in the lower panels. The dashed lines indicate reasonable maximum

uncertainties. These can then be used to derive constraints on the out-of-band flux, and hence on the effect of the out-of-band transmission levels as shown in

the right-hand panel of Fig. 11.
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right-hand panels of Fig. 11 (calculated for these |δR2| = 0.015 and

|δei| = 7.5 × 10−3 values). The relaxation in the requirement is

particularly true for the PSF size.

4.4.3 Galaxy colours

In Sections 4.2 and 4.3, we described how the PSF can be con-

structed with high accuracy using observations of stars in the field

of view for any position in the focal plane and for any colour of star.

The PSF entries in equations (6) and (8) refer to the PSF with which

each galaxy has been convolved by the instrument. This requires an

estimate of the galaxy SED. A good estimate of the galaxy SED can

be inferred from broad-band data, which are typically available in

any case because of the need to determine photometric redshifts for

the source galaxies. The actual SED, however, depends on the star

formation history of the galaxy, its metallicity, redshift, etc. Hence,

it cannot be known perfectly, which inevitably leads to an error in

the estimate of the PSF to be used for the galaxy PSF.

The impact of uncertainties in the SED on the PSF size has

been studied by Cypriano et al. (2010). Within the assumptions of

Gaussian PSFs with fully sampled data, they find that the PSF size

can be recovered with a relative uncertainty of less than ∼2 × 10−4.

Spatially varying SEDs (spatial colour gradients within the galaxy)

resulting from a broad bandpass have been shown to cause M-like

biases at the level of �5 × 10−4 (see Voigt et al. 2012; Semboloni

et al. 2013). This is comparable to the allocation in Table 1.

5 SU M M A RY

We have set out with this paper to extend in a practical scheme

the more general treatments of weak lensing measurements in the

literature, and particularly that of MHK13. This can be used as a

framework to define a next-generation space-based weak lensing

experiment.

We have started with the main requirements. It is necessary to ob-

serve a large enough number of galaxies through a wide-area survey

with sufficient photometric sensitivity, range of redshift and spatial

resolution to ensure that the parameters in different cosmological

models can be tightly constrained (these parameters may be those

in the standard Concordance Model, or from alternative models).

The size of the next-generations survey must be very large, some

15 000 square degrees, observed to mAB > 24.5, in order to make

available more than 109 galaxies. With such a survey, the large

intrinsic variation within the galaxy population can be averaged to

produce very precise measurements of the cosmological parameters.

However, with such precision, systematic effects in the measure-

ments potentially become the limiting factor. This leads to the other

main requirement that the parameters used in the derivation of the

shear information, principally the shape of the PSF, are known with

sufficient accuracy. These, together with the biases introduced by

imperfect shear measurement methodologies, are constrained to be

less than a small factor (a bias-over-error ratio of ≤0.31; MHK13)

of the uncertainties arising from the finite size of the survey, thus

ensuring that the cosmological parameters will be derived with the

required accuracy.

The main requirements are therefore survey size, depth, spatial

resolution, the knowledge of the instrument characteristics and the

extent to which the biases can be corrected. The first three are

relatively conventional, although demanding: they drive the size

of the telescope, the field of view, the detector pixel scale and

noise levels, the survey duration and so on. The remaining two

constitute the different and particularly challenging aspect of a weak

lensing experiment. This requires a detailed cataloguing of all of the

potential effects which affect our knowledge of the instrument, and

particularly the PSF, the classification of these effects into different

categories, and the appreciation of how and to what extent each will

impact this knowledge.

We have therefore examined these effects, first following MHK13

in considering additive and multiplicative biases A′ and M′ in sep-

arating out the linear and non-linear contributions to each, together

with the biases introduced by the weight function in the modelling

(α2 and μ terms in equations 6 and 8). Linear contributions have

been represented by convolutions, while non-linear effects (which

generally arise in the detectors and electronics) are non-convolutive.

We then examined the different scale of the contributions in each,

and with the consequent weighting, combine them with a permitted

error in our knowledge of the ellipticity and size of the system PSF

to calculate the impact on the total A′ and M′. These knowledge

errors can be adjusted and balanced, based on feasibility consider-

ations, to arrive at a set of permitted values. Then, we marshalled

all of the individual contributing factors to these convolutive and

non-convolutive effects into categories, such as those arising from

imperfectly known source characteristics, satellite pointing errors,

calibration residuals, PSF modelling errors, detector imperfections

(especially arising from radiation damage), and calculated their

impact with example numerical values, again weighting these ap-

propriately. We noted that their aggregate contributions must equal

or be less than those allocated at the highest level, and again some

adjustment and re-balancing may be required. An example of these

factors was provided in Table 1.

We then know what is required to achieve the scientific goals

of the weak lensing survey. In order to have made the allocations

in the contributions to the overall PSF knowledge budget, we have

evaluated what is or may be feasible. We described briefly in Sec-

tion 3 the ingredients incorporated into the simulations. Because

the systematic effects we are controlling have to be known very

accurately, a deep understanding of the instrumental effects is re-

quired, from the range of variations of the telescope PSF, to the

pointing characteristics of the satellite and to subtle detector effects

of various types. Having made the simulations, we then explained

the main steps in the processing of the simulated data. We find that

standard processing will be adequate in the flat-fielding and linear-

ity corrections, while most of the other standard data processing

procedures (bias subtraction, etc.) contribute second-order effects

which do not feed directly into the ellipticity in most cases. The

correction for the CCD CTI caused by radiation damage is the prin-

cipal matter to be addressed at this stage. We noted the algorithm

in table 1 of Massey et al. (2010) by which the trailing in the image

can be largely corrected by linear combinations of the observed (or,

at this stage, simulated) data with copies of these same data passed

through a radiation damage model. At the end of this process, the

best image data which can be generated using the calibrations and

the radiation modelling is available for further analysis.

We then examined whether the performance we can obtain for

each constituent contribution remains reasonable. We check on the

effect of the sampling, and conclude that with only three slightly

displaced exposures, the slight undersampling at 0.688 Nyquist does

not meet the stringent sampling requirement criteria, but not by a

large amount. While it is not yet quantified how much these sam-

pling criteria can be relaxed without more noticeably impacting the

survey’s weak lensing systematic error budget, and further work is

needed, we found in Section 4.3 (where the three exposure case

including CTI is propagated into the shear power spectrum) that
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such variation appears to have a limited impact on the dark energy

FoM. We continued with the investigation of the level of knowl-

edge that can be reached in the PSF model. The aim here was not to

identify the ultimate PSF model to be used, but to show that with an

analysis of the modes of PSF variation combined with the Bayesian

model fitting, the performance allocated in equation (31) can be

achieved. Further modelling advances will provide additional mar-

gin. We generated the eigenmode basis set for the Euclid case, over

the full field of view, and over a range of optical system characteris-

tics, arising from misalignments and manufacturing errors, finding

that the number of modes required is in the range 20−70. We finally

examined how many stars would be required in order to retrieve the

PSF from the Bayesian model fitting of the normal modes to the

simulated data to the accuracy allocated in Table 1, given a basis

set with 40 components, and the actual pixellized, noisy PSFs. We

found that for a reasonable field of view the PSF can be recovered

on each field independently, without any reliance on the stability

of the optical system from field to field. If such variations can be

tracked, additional performance could be achieved.

We finally examined the residuals in the data caused by the im-

perfect correction of the CTI caused by radiation damage. We found

that the ultimate accuracy of the process is limited by the readout

noise of the CCD and detection chain, as this adds uncertainties

to the measurement of the charge trails. The lack of fidelity of the

radiation model, and limited knowledge of the parameters within

it contribute to the residuals, but because these are in the frame of

the detector, with particular orientations, they can be minimized by

iteration of the model. In addition, we found that the effect of the

imperfect CTI correction is limited to certain angular scales, of the

order of those subtended on the sky by the CCD.

We ended with a brief reference to factors affecting the galaxy

modelling itself, in particular the effects of imperfections in the lin-

earity correction, of spectral leakage outside of the defined bandpass

and of the spatially variable SEDs within the galaxies.
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Paulin-Henriksson S., Réfrégier A., Amara A., 2009, A&A, 500, 647

Peacock J. A., Schneider P., Efstathiou G., Ellis J. R., Leibundgut B.,

Lilly S. J., Mellier Y., 2006, in Peacock J. A. et al., eds, ESA-ESO

Working Group on “Fundamental Cosmology”. Preprint (arXiv:astro-

ph/0610906)

Perlmutter S. et al., 1999, ApJ, 517, 565

Pickles A. J., 1998, PASP, 110, 863

 at C
alifo

rn
ia In

stitu
te o

f T
ech

n
o
lo

g
y
 o

n
 Ju

ly
 8

, 2
0
1
3

h
ttp

://m
n
ras.o

x
fo

rd
jo

u
rn

als.o
rg

/
D

o
w

n
lo

ad
ed

 fro
m

 

http://arxiv.org/abs/0609591
http://arxiv.org/abs/1206.1225
http://arxiv.org/abs/0008248
http://arxiv.org/abs/0008248
http://www.skads-eu.org/p/svt/svt2007.php
http://www.astronet-eu.org
http://arxiv.org/abs/0211652v1
http://arxiv.org/abs/1208.4012
http://arxiv.org/abs/0003338
http://arxiv.org/abs/1009.0779
http://arxiv.org/abs/1110.3193
http://arxiv.org/abs/0010008v1
http://arxiv.org/abs/0010008v1
http://arxiv.org/abs/0610906
http://arxiv.org/abs/0610906
http://mnras.oxfordjournals.org/


3126 M. Cropper et al.

Prod’Homme T., Brown A. G. A., Lindegren L., Short A. D. T., Brown

S. W., 2011, MNRAS, 414, 2215

Rhodes J. et al., 2007, ApJS, 172, 203

Rhodes J., Leauthaud A., Stoughton C., Massey R., Dawson K., Kolbe W.,

Roe N., 2010, PASP, 122, 439

Riess A. et al., 1998, AJ, 116, 1009

Robin A. C., Reyl C., Derrire S., Picaud S., 2003, A&A, 409, 523

Rolland G., Pinheiro da Silva L., Inguimbert C., David J. P., Ecoffet R.,

Auvergne M., 2007, RADECS 2007: Proc. IEEE 9th Eur. Conf. on

Radiation and Its Effects on Components and Systems, IEEE Conference

Publications

Rowe B., Hirata C., Rhodes J., 2011, ApJ, 741, 46

Schechter P. L., Sobel Levinson R., 2011, PASP, 123, 812

Schlegel D., White M., Eisenstein D., 2009, Astro2010: The Astronomy and

Astrophysics Decadal Survey, Science White Papers, no. 314, preprint

(arXiv:0902.4680)

Schlegel D. A. et al., 2011, arXiv:1106.1706

Schrabback T. et al., 2007, A&A, 468, 823

Schrabback T. et al., 2010, A&A, 516, 63

Seabroke G. M., Holland A. D., Cropper M. S., 2008, Proc. SPIE, 7021, 49

Seitz C., Schneider P., 1995, A&A, 297, 287

Semboloni E., 2013, MNRAS, submitted (arXiv:astro-ph/1211.5025)

Short A. D. T., Prod’Homme T., Weiler M., Brown S., Brown A. D. T., 2010,

Proc. SPIE, 7742, 28

Smith R. E. et al., 2003, MNRAS, 341, 1311

Stabenau H. F., Jain B., Bernstein G., Lampton M., 2007, arXiv:0710.3355v1

The Dark Energy Survey Collaboration 2005, arXiv:astro-ph/0510346

Tyson J. A., Wittman D. M., Hennawi J. F., Spergel D. N., 2003, Nucl. Phys.

B: Proc. Suppl., 124, 21

Vale C., Hoekstra H., van Waerbeke L., White M., 2004, ApJ, 613, L1

Van Waerbeke L. et al., 2000, A&A, 358, 30

Voigt L. M., Bridle S. L., Amara A., Cropper M., Kitching T. D., Massey

R., Rhodes J., Schrabback T., 2012, MNRAS, 421, 1385

Wittman D. M., Tyson J. A., Kirkman D., Dell’Antonio I., Bernstein G.,

2000, Nat, 405, 143

This paper has been typeset from a TEX/LATEX file prepared by the author.

 at C
alifo

rn
ia In

stitu
te o

f T
ech

n
o
lo

g
y
 o

n
 Ju

ly
 8

, 2
0
1
3

h
ttp

://m
n
ras.o

x
fo

rd
jo

u
rn

als.o
rg

/
D

o
w

n
lo

ad
ed

 fro
m

 

http://arxiv.org/abs/0902.4680
http://arxiv.org/abs/1106.1706
http://arxiv.org/abs/1211.5025
http://arxiv.org/abs/0710.3355
http://arxiv.org/abs/0510346
http://mnras.oxfordjournals.org/

