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According to the well-known distinction attributed to Knight (1921), there are two kinds
of uncertainty. The first, called “risk,” corresponds to situations in which all events relevant
to decision making are associated with obvious probability assignments (which every decision
maker agrees to). The second, called “(Knightian) uncertainty” or (following Ellsberg (1961))
“ambiguity,” corresponds to situations in which some events do not have an obvious, unani-
mously agreeable, probability assignment. As Chapter 1 makes clear, this collection focuses on
the issues related to decision making under ambiguity. In this Chapter, I briefly discuss the
issue of the formal definition of ambiguity and ambiguity attitude.

In his seminal paper on the CEU model (1989), Schmeidler proposed a behavioral definition
of ambiguity aversion, showing that it is represented mathematically by the convexity of the
decision maker’s capacity v. The property he proposed can be understood by means of the
example of the two coins used in Chapter 1. Assume that the decision maker places bets that
depend on the result of two coin flips, the first of a coin that she is very familiar with, the
second of a coin provided by somebody else. Given that she is not familiar with the second
coin, it is possible that she would consider“ambiguous” all the bets whose payoff depends on
the result of the second flip. (For instance, a bet that pays $1 if the second coin lands with
heads up, or equivalently if the event {HH, TH} obtains.) If she is averse to ambiguity, she
may therefore see such bets as somewhat less desirable that bets that are “unambiguous,” i.e.,
only depend on the result of the first flip. (For instance, a bet that pays $1 if the first coin
lands with heads up, or equivalently if the event {HH, HT} obtains.)

However, suppose that we give the decision maker the possibility of buying shares of each
bet. Then, if she is offered a bet that pays $0.50 on {HH} and $0.50 on {HT}, she may prefer
it to either of the two ambiguous bets. In fact, such a bet has the same contingent payoffs
as a bet which pays $0.50 if the first coin lands with heads up, which is unambiguous. That
is, a decision maker who is averse to ambiguity may prefer the equal-probability “mixture” of
two ambiguous acts to either of the acts. In contrast, a decision maker who is attracted to
ambiguity may prefer to choose one of the ambiguous acts.

Formally, Schmeidler called ambiguity averse a decision maker who prefers the even mixture1

(1/2)f +(1/2)g of two acts that she finds indifferent to either of the two acts. That is, (1/2)f +
∗Dipartimento di Matematica Applicata and ICER, Università di Torino.
1Recall that Schmeidler used the Anscombe-Aumann setting, in which mixtures of acts can be defined state-

by-state. Also, he used the term “uncertainty” averse rather than ambiguity averse.
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(1/2)g < f for all f and g such that f ∼ g. As recalled earlier, if the decision maker has CEU
preferences, this property implies that her capacity v is convex. If, instead, she has MMEU
preferences, then she satisifies this property automatically (indeed, it is one of the axioms that
characterize the model).

While this is certainly a compelling definition, it does not seem to be fully satisfactory as a
definition of ambiguity aversion. First of all, it explicitly relies on the availability of mixtures of
acts, and thus apparently on the existence of objective randomizing devices. This is not a serious
problem, for it has been shown by Ghirardato, Maccheroni, Marinacci, and Siniscalchi (2001)
that mixtures can be defined without invoking randomizing devices, provided the set of prizes is
rich and preferences satisfy some mild restrictions. (Moreover, Casadesus-Masanell, Klibanoff,
and Ozdenoren (2000) show that Schmeidler’s definition can be formulated in a Savage setting
which does not explicitly involve mixtures.) Second —and more important— Schmeidler’s defi-
nition is not satisfied by preferences that do seem to embody ambiguity aversion, as illustrated
by the following example.

Example 1 Consider again the decision maker facing the set S ={HH,HT,TH,TT} of results
of flips of a familiar and an unfamiliar coin. Suppose that she has CEU preferences represented
by a capacity v on S which:

• assigns 1/8 to each singleton state, i.e.,

v({HH}) = v({HT}) = v({TH}) = v({TT}) = 1/8;

• assigns 1/2 to the results of the familiar coin flip, i.e.,

v({HH,HT}) = v({TH,TT) = 1/2;

• assigns 9/16 to any 3-state event (like {HH,HT,TH}) and 1 to the whole state space;

• assigns the sum of the weights of its (singleton) elements to each other event.

Such a preference embodies a dislike of ambiguity: The decision maker prefers to bet on the
familiar coin rather than on the unfamiliar one (notice that v({HH,TH}) = 1/4 < 1/2 =
v({HH,HT})). However, the capacity v is not convex,2 so that she is not ambiguity averse
according to Schmeidler’s definition. �

Comparative Foundations to Ambiguity Aversion

Motivated by these problems with Schmeidler’s definition, Epstein (1999) tried a different ap-
proach to defining aversion to ambiguity, inspired by Yaari’s (1969) general definition of risk
aversion for non-expected utility preferences. He suggested using a two-stage approach, first
defining a notion of comparative ambiguity aversion, and then calling averse to ambiguity any

2For instance, we have that v({HH,HT,TH}) = 9/16 < 10/16 = v({HH,HT}) + v({TH}).
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preference which is more averse than (what we establish to be) an ambiguity neutral preference.
Ghirardato and Marinacci (2002, GM) followed his example, employing a different comparative
notion and a different definition of ambiguity neutrality. For reasons that will become clear
presently, I shall discuss these contributions in inverse chronological order.

GM depart from the observation that preferences that obey the classical EUT are intuitively
ambiguity neutral, and propose using such preferences as the benchmark to measure ambiguity
aversion. As to the comparative ambiguity aversion notion, they suggest calling a preference
<2 more ambiguity averse than a preference <1 if both preferences are represented by the same
utility function3 and given any constant act x and any act f , we have that whenever the first
preference favors the (certainly unambiguous) constant x to the (possibly ambiguous) f , the
second does the same; that is,

x <1 (�1) f =⇒ x <2 (�2) f. (1)

Thus, a preference is ambiguity averse if it is more averse to ambiguity than some EUT pref-
erence. GM show that every MMEU preference is averse to ambiguity in this sense (while
“maximax EU” preferences are ambiguity seeking). In contrast, a CEU preference is ambigu-
ity averse if and only if its capacity v has a non-empty core, a strictly weaker property than
convexity. Therefore, GM conclude that Schmeidler’s definition captures strictly more than
aversion to ambiguity. (Notice that the capacity v in Example 1 does have a non-empty core;
the uniform probability on S is in Core(v).)

This definition is simple and it has intuitive characterizations,4 but it can be criticized in
an important respect. It does not distinguish between those departures from EUT which are
unrelated to ambiguity (like the celebrated “Allais paradox”) —in the terminology of Chapter
1, the violations of the third tenet of Bayesianism— and those which are. Every departure
from the EUT benchmark is attributed to the presence of ambiguity. To see why this may be
an issue, consider the following example.

Example 2 Using again the two-coin example, consider a decision maker with CEU (in-
deed, RDEU) preferences and the capacity v′ defined by : v′(S) = 1 and v′(A) = P (A)/2
for A 6= S, where P is the uniform probability on the state space S. At first blush, we may
invoke aversion to ambiguity (recall that the second coin is the unfamiliar one) to explain the
fact that v′({TH,HH}) = v′({TT,HT}) = 1/4. However, we also see that v′({HH,HT}) =
v′({TH,TT}) = 1/4; that is, the decision maker is similarly unwilling to bet on the familiar,
unambiguous, coin. What we are observing is a dislike of uncertainty which is more general
than just aversion to ambiguity: The decision maker treats even events with “known” proba-
bility 1/2 as if they really had probability 1/4. This is a trait usually called probabilistic risk

3The preferences considered in GM, called “biseparable preferences,” induce state-independent and cardinally

unique utilities. They include CEU and MMEU preferences (and other models as well) as special cases.
4The idea that non-emptiness of the core could be a more appropriate formalization of ambiguity aversion for

CEU preferences had already been suggested by Montesano and Giovannoni (1996).
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aversion; the decision maker appears in fact to be neutral to the ambiguity in this problem.
Moreover, observe that the capacity v′ is convex, casting some doubt on the relation between
convexity and ambiguity aversion. �

Epstein (1999) offers a definition that avoids this problem, carefully distinguishing between
“risk-based” behavioral traits and “ambiguity-based” ones. The key idea is to use a set A of
events which are exogenously known to be considered unambiguous by every decision maker,
like the results of the flips of the familiar coin in the example above. Acts which only depend
on the events in A are called unambiguous. The comparative definition is then modified as
follows: Say that preference <2 is more ambiguity averse than preference <1 if for any act f

and any unambiguous act h, we have

h <1 (�1) f =⇒ h <2 (�2) f. (2)

Notice that this definition is strictly stronger than GM’s, as constant acts are unambiguous,
while in general (i.e., for nontrivial A) there will be unambiguous acts which are not constant.
As long as the set A (and hence the set of unambiguous acts) is sufficiently rich, this implies that
the two preferences have identical utility functions as well as identical probabilistic risk aversion.
For instance, the CEU decision maker with capacity v in Example 1 cannot be compared to the
one with capacity v′ in Example 2; their willingness to bet on the unambiguous results of the
flips of the second coin are different. A CEU preference comparable to that capacity v′ must
also “transform” an objective probability of 1/2 into a 1/4.

The choice of the benchmark with respect to which ambiguity aversion has to be measured
is made consistently with this modified comparative notion. EUT preferences are probabilistic
risk neutral, and do not “transform” the probabilities of unambiguous events, so they cannot
be compared to preferences like the CEU preference with capacity v′. Epstein uses preferences
which satisfy Machina and Schmeidler’s (1992) probabilistic sophistication model, which allows
non-expected utility preferences as long as their ranking of bets on events can be represented
by a probability.5 He calls a decision maker ambiguity averse if his preference is more averse
to ambiguity than a probabilistically sophisticated preference. His characterization results are
not as clear-cut as those in GM: While basically every MMEU preference is ambiguity averse,
the characterization of CEU preferences is less straightforward. Epstein does provide a full
characterization for those CEU preferences that satisfy a certain smoothness condition, which
he calls “eventwise differentiability.” I refer the reader to his paper for details.

Epstein’s definition of ambiguity aversion is limited by the requirement of a rich set A of
exogenously unambiguous events. Suppose that we observe a decision maker who has CEU
preferences with capacity v′ as in Example 2, but we do not know what the decision maker
knows about these two coins. Can we conclude that he is ambiguity neutral and probabilistic
risk averse? If both coins were unfamiliar, his capacity would instead reflect ambiguity aversion

5For instance, a CEU preference is probabilistically sophisticated if its capacity v is ordinally equivalent to a

probability; i.e., if it is RDEU. Such is the case of the preference with capacity v′ in Example 2.
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—for all we know, he may even have EUT preferences (i.e., be probabilistic risk neutral) when
betting on familiar coins. The problem is that in this case the set A is just the trivial {∅, S},
too poor to enable us to distinguish between “pure” ambiguity aversion and probabilistic risk
aversion. (As a consequence, the observation that the capacity v′ is convex yet induces behavior
that is not intuitively ambiguity averse, may be in need of reconsideration.)

We reach the conclusion that a theory of “pure” ambiguity aversion (as opposed to what
is measured by GM) must be founded on an endogenous theory of ambiguity, if it is to be
generally valid. This is what Epstein next turned his attention to; it is discussed in the next
subsection.

Before closing this discussion on the comparative foundation to ambiguity aversion, I remark
that, while Epstein (1999) is the earliest paper to use a comparative approach to provide an
absolute notion of ambiguity aversion, there are earlier papers that discuss comparative ambigu-
ity aversion. Tversky and Wakker (1995) present and characterize some different comparative
notions related to ambiguity and probabilistic risk aversion. Kelsey and Nandeibam (1996)
propose a comparative notion similar to GM’s, implicitly assuming the equality of utility, and
show its characterization for CEU and MMEU preferences.

What Is Ambiguity?

As observed earlier, the quest for the distinction of ambiguity aversion and behavioral traits
unrelated to the presence of ambiguity was a driving force behind the more recent attempts
(like Epstein and Zhang (2001)) at understanding the behavioral consequences of the presence of
ambiguity. However, there have been earlier papers that addressed the definition of ambiguity.

Fishburn (1993) considers a primitive ambiguity relation over events, and discusses its prop-
erties and representation by an ambiguity measure. Nehring (1999) defines an event A unam-
biguous for a MMEU preference with set of priors C if P (A) = P ′(A) for every P, P ′ ∈ C. As to
CEU preferences, Nehring recalls that any capacity v on a finite state space S = {s1, s2, . . . , sn}
can be canonically associated with the set Cv of the probabilities Pσ defined as follows. Let σ

denote a permutation of the indices {1, . . . , n}, and define6

Pσ(sσ(i)) = v({sσ(1), sσ(2), . . . , sσ(i)})− v({sσ(1), sσ(2), . . . , sσ(i−1)}).

Using this fact allows him to define ambiguity of events analogously to the MMEU case, with
Cv in place of C. In both cases, an event is unambiguous if it is given identical weight in the
evaluation of any act. Nehring shows that while for MMEU preferences the set of unambiguous
events is a λ-system (a class closed with respect to complements and disjoint unions), for CEU
preferences it is an algebra (i.e., it is also closed with respect to intersections). As there are
situations in which the set of unambiguous events is not an algebra, this suggests that CEU

6Given utility u and an act f , it can be seen from the definition of Choquet integral that if σ is such that

u(f(sσ(1))) ≥ u(f(sσ(2))) ≥ · · · ≥ u(f(sσ(n))), then
R

u(f) dv =
R

u(f) dPσ.
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preferences cannot be used to model all decision problems under ambiguity.7

A notion of ambiguity for events that holds for a wider class of preferences was introduced in
Zhang (2002). Loosely put, Zhang calls unambiguous an event A such that Savage’s sure-thing
principle holds for acts separated on the partition {A,Ac}. He then shows that the set of such
events is a λ-system, and that for a subset of CEU preferences (those which induce an exact v;
details are found in GM) it has a simple representation in terms of the capacity v: It is the set
of the A’s such that v(A) + v(Ac) = 1.

Zhang’s definition of unambiguous event was later modified in Epstein and Zhang (2001,
EZ), the announced attempt to endogenize the class of unambiguous events used in Epstein’s
definition of ambiguity aversion. The idea of EZ’s definition is similar to Zhang’s (2002), though
it yields a larger collection of unambiguous events. Axioms on the decision maker’s preferences
are introduced which guarantee that the resulting collection of events is a λ-system and that
the preferences over the sets of unambiguous acts (those which are measurable with respect to
unambiguous events) are probabilistically sophisticated in the sense of Machina and Schmeidler
(1992). This yields an interesting extension of Machina and Schmeidler’s and Savage’s models,
wherein the set of events on which the decision maker satisfies the first and second tenet
of Bayesianism is determined endogenously.8 However, it does not fully solve the problem of
screening “risk-based” behavioral traits. In fact, if a preference is probabilistically sophisticated
then every event is unambiguous in the EZ sense. It follows that the decision maker with
CEU preferences and capacity v′ in Example 2 (who, recall, is probabilistically sophisticated)
considers every event unambiguous and is probabilistic risk averse. This is regardless of the
information that is available to him; it does not matter whether he is betting on familiar or
unfamiliar coins. The problem is that EZ’s definition does not distinguish between the really
unambiguous events and those which appear to be. It seems likely that such distinction could
only be assessed by enriching the decision framework; i.e., allowing the theorist to observe more
than just the decision maker’s preferences over acts.

Going back to the two-coins flip example, regardless of what a decision maker thinks about
the unfamiliar coin she may believe that the event that it lands heads up on a single flip is
more likely than the event that it lands heads up twice in a row. That is, she may hold that a
bet on one head in two flips is “unambiguously better than” a bet on two heads in two flips.
All the notions of ambiguity introduced thus far cannot formally capture this possibility. In an
unpublished 1996 conference talk, Nehring suggested doing so using the largest subrelation of
< that satisfies independence, that I shall label <I . He argued that if S is finite, for a class
of preferences9 the results in Bewley (2002) can be used to show that <I has a multiple priors

7The fact that unambiguous events should form λ-systems and not algebras was observed earlier in Zhang

(2002), whose first version predates Nehring’s.
8Further extensions in this spirit are found in Kopylov (2002). In that paper it is also shown that in general

the sets of unambiguous events of Zhang and EZ are not λ-systems, but less structured families called “mosaics.”
9Those that have linear utility among the preferences that satisfy all the axioms in Gilboa and Schmei-

dler (1989) but their “uncertainty aversion” axiom. The latter are called invariant biseparable preferences by

Ghirardato, Maccheroni, and Marinacci (2002).
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with unanimity representation, with a set of priors D. In particular, when the decision maker
satisfies MMEU with set of priors C we have C = D, while D = Cv when she satisfies CEU
with capacity v.

Although the relation <I thus obtained can in principle be constructed using only behavioral
data, its derivation is not simple. Independently, Nehring (2001) and Ghirardato, Maccheroni,
and Marinacci (2002) proposed to derive from the decision maker’s preference an unambiguous
preference relation as follows: Say that act f is unambiguously preferred to act g, which is
denoted f <∗ g, if αf + (1− α)h < αg + (1− α)h for every α and every h. That is, f <∗ g if
the preference of f over g cannot be overturned by mixing them with another act h, regardless
of whether the latter allows to hedge (or speculate on) ambiguity. It turns out that <∗=<I ,
providing a more immediate behavioral foundation to the approach proposed by Nehring in his
1996 talk. The set of priors D representing <∗ by unanimity is naturally interpreted as the
ambiguity that the decision maker perceives —better, appears to perceive— in her problem.
The events on which all probabilities in D agree (which can simply characterized in terms of
the primitive <; see Ghirardato et al. (2002, Prop. 24)) are natural candidates for being called
unambiguous, and the collection of unambiguous events forms a λ-system.

Unlike his 1996 talk, Nehring (2001) considers a countably infinite S and preferences whose
induced <∗ is represented by a D satisfying a “range convexity” condition. Among various
consequences of such range convexity, he shows the characterization of two intuitive notions of
absolute ambiguity aversion. In particular, say that a preference relation is weakly ambiguity
averse if for every pair of partitions of S, {A1, A2, . . . , An} and {T1, T2, . . . , Tn}, such that each
Ti is unambiguous, we cannot have that the decision maker prefers betting on Ai over betting
on Ti for every i. Under Nehring’s assumptions, a decision maker is weakly ambiguity averse
iff her ranking of bets can be represented by a capacity v with a non-empty core. A stronger
property, which Nehring calls “ambiguity aversion,” is shown instead to be equivalent to the
fact that the decision maker’s ranking of bets is represented by the lower envelope of D.

Ghirardato et al. (2002) consider an arbitrary S and a different class of preferences.10 They
show that the set D representing <∗ can be also obtained as an (appropriately defined) “deriva-
tive” of the functional that represents the preferences. In particular, when the state S is finite
this characterization implies that D is the (closed convex hull of the) set of all the Gateaux
derivatives of the preference functional, where they exist. This result generalizes the (EUT)
intuition that a decision maker’s subjective probability of state s is the shadow price for changes
in the utility received in state s, by allowing a multiplicity of shadow prices. A consequence
is the extension to preferences with nonlinear utility of Nehring’s 1996 result that D corre-
sponds to C (resp. Cv) in the MMEU (resp. CEU) case —which in turn implies that the set of
unambiguous events coincides with that defined for such preferences in Nehring (1999).

10Invariant biseparable preferences (see footnote 9). Such preferences do not yield specific restrictions on D

(beyond convexity, nonemptiness and closedness), but they embody a mild restriction that Nehring (2001) calls

“utility sophistication.” Nehring shows that under range convexity, it is possible to define an unambiguous

likelihood relation on events even without utility sophistication. See that paper for details.
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Ghirardato et al. also prove that the preferences they study can in general be given a
representation which is a generalization of the MMEU representation. More precisely, an act f

is evaluated via

a(f) min
P∈D

∫
u(f(s)) dP (s) + (1− a(f))max

P∈D

∫
u(f(s)) dP (s),

where a(·) is a function taking values in [0,1] which represents the decision maker’s aversion
to perceived ambiguity in the sense of GM. They also axiomatize the so-called α-maxmin EU
model, in which a(·) ≡ α.11 The interesting aspect of this representation is its clear separation
of ambiguity (represented by D) and ambiguity attitude (represented by a(·)), and it is en-
couraging that the model does not impose cross-restrictions between these two aspects of the
representation.

As can be seen from the foregoing discussion, the “relation-based” approach to modelling
ambiguity is, at least in terms of its consequences, a significant improvement over the previous
“event-based” approaches. It has also yielded some interesting new perspectives on the char-
acterization of ambiguity aversion and love. On the other hand, it is important to stress that
this approach suffers of the same shortcoming as GM’s theory of ambiguity aversion: It does
not really describe “pure” ambiguity aversion, rather the conjunction of all those behavioral
features that induce departures from the independence axiom of EUT. In the terminology of
Chapter 1 it does not distinguish between the violations of the first and the third tenets of
Bayesianism. As observed earlier, it is not obvious that a solution to this identification prob-
lem can be reached without departing from a purely behavioral approach. Besides, a difficulty
with such a departure is that it would require some prejudgment as to what really constitutes
ambiguity, which is the very question that we set to answer.

Another limitation of the “relation-based” approach due to its purely behavioral nature is
the identification of ambiguity neutrality with lack of ambiguity. If a decision maker’s preference
satisfy EUT, she is deemed to perceive no ambiguity, while it may be the case that she perceives
ambiguity and is neutral with respect to it. Clearly, distinctions could be drawn if we considered
ancillary information about the ambiguity present in the problem, at the mentioned cost of
prejudging the nature of ambiguity. On the other hand, this is not as serious a concern as the
one mentioned above, for ultimately our interest is modelling ambiguity as it affects decision
makers’ behavior, and not otherwise.
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