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Abstract

Pathogen transmission depends on host density, mobility and contact. These 

components emerge from host and pathogen movements that themselves arise through 

interactions with the surrounding environment. The environment, the emergent host 

and pathogen movements, and the subsequent patterns of density, mobility and 

contact form an ‘epidemiological landscape’ connecting the environment to specific 

locations where transmissions occur. Conventionally, the epidemiological landscape 

has been described in terms of the geographical coordinates where hosts or pathogens 

are located. We advocate for an alternative approach that relates those locations to 

attributes of the local environment. Environmental descriptions can strengthen 

epidemiological forecasts by allowing for predictions even when local geographical 

data are not available. Environmental predictions are more accessible than ever thanks 

to new tools from movement ecology, and we introduce a ‘movement-pathogen pace 

of life’ heuristic to help identify aspects of movement that have the most influence on 

spatial epidemiology. By linking pathogen transmission directly to the environment, the 

epidemiological landscape offers an efficient path for using environmental information 

to inform models describing when and where transmission will occur.

K E Y W O R D S
canonical activity mode, epidemiological landscape, host contact, host mobility, mining-modelling 
approach, movement mechanisms, movement-pathogen pace-of-life hypothesis, multipartite 
networks, spatial disease dynamics, transmission hotspot
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INTRODUCTION

Environment—the spatially explicit biotic and abiotic 
context surrounding a host or pathogen at a particular 
point in time—shapes host movements and pathogen 
persistence, ultimately resulting in more transmission 
in some locations than others. The environment's role 
emerges through movements of the host and pathogen: 
wildlife pathogens are distributed according to environ-
mental attributes that impede or attract the movements 
of their hosts (Biek et al., 2007; Hill et al., 2016; Merkle 
et al.,  2018); livestock pathogens can jump between lo-
cations when hosts are transported from farm to feed-
lot (Kao et al.,  2007; Mannelli et al.,  2007) and human 
pathogens can follow spatial patterns tied to work or so-
cial engagements (Zhang et al., 2020). Environment and 
movement can also shape disease management (Manlove 
et al., 2019), especially if super-spreading events, invading 
epidemic ‘waves’, or local transmission rates are linked 
to particular environmental features (Cross et al.,  2015; 
Grenfell et al., 2001; Lloyd-Smith et al., 2005; respectively).

Movement informs spatially explicit models of 
transmission at multiple scales. At a broad scale, re-
source limitations and productivity gradients can 
shape general patterns of host density and mobility 
(Bischof et al., 2012; Teitelbaum & Mueller, 2019). At 
a fine scale, spatial dependence among transmission 
events suggests that transmission aligns with high-
resolution drivers of contact (Albery et al.,  2022). 
Despite these connections, tools from movement ecol-
ogy are rarely used to link environment and transmis-
sion mechanistically (Albery et al.,  2021; Dougherty 
et al.,  2018). This could be because (1) the tools' out-
puts do not directly match the parameters that govern 
pathogen transmission; and (2) potentially import-
ant processes like spatially explicit transmitting be-
haviours or variable pathogen decay rates are often 
overlooked. Leveraging movement information to un-
derstand how the environment influences spatial pat-
terns of transmission requires a stronger integration of 
movement and disease ecology.

Movement and disease ecology have historically 
centered around fundamentally different relation-
ships. Movement ecology has primarily investigated 
interactions between individual animals and their 
physical environments (Nathan et al.,  2008), whereas 
disease ecology has emphasised the temporal dynam-
ics of pathogen transmission across entire populations 
(Anderson & May,  1979; Kermack et al.,  1927; May & 
Anderson, 1979). Scaling individual-environment inter-
actions up to predict population- and landscape-scale 
transmission is a long-standing challenge symptomatic 
of a broader interdisciplinary divide: epidemiological 
models lack a systematic way to incorporate insights 
from movement ecology while retaining tractability and 
transferability beyond the focal environment. Although 

movement-disease links are being forged in silico (e.g. 
Faust et al., 2018; White et al., 2018), empirical integra-
tion remains limited, hindering our general understand-
ing about how the environment shapes spatial patterns 
of pathogen transmission.

Spatial transmission dynamics depend on three 
central components: host density, which describes 
where hosts are located across the landscape (Box 1); 
mobility, which describes residency times and site-to-
site movements (Box 1) and contact, which describes 
the frequency, duration and form of host–host and 
host–pathogen interactions and how those interac-
tions relate to pathogen transmission rates (Box 1). 
Together, environmentally informed host densities, 
mobilities and contacts combine with pathogen 
life history to form an epidemiological landscape 
(Box 1) containing the set of paths by which a patho-
gen could travel across a landscape infecting hosts 
(Figure 1).

Density, mobility and contact are already included 
in most spatially explicit models of transmission 
(Box 2). For example in disease metapopulation models 
(Finkenstädt & Grenfell, 1998; Grenfell & Bolker, 1998; 
Sattenspiel & Dietz, 1995), the per capita infection rate 
(ƛi) can be written as: �i =

�

∑

jYj

�

1

Ni
�

�

�ij

�

c, where j indexes 
neighbourhood sites including the focal site i and Yj is 
the number of infected individuals currently pres-
ent at site j. Local host densities are contained in Ni, 
site-to-site connectivities and mobilities are subsumed 
into ρij, transmission rates are related to local densities 
through θ and local rates of transmission-appropriate 
contacts are contained in c (parallel deconstructions 
of partial differential equations and other widely used 
spatially explicit disease models are outlined in Box 2). 
Modellers usually treat density, mobility and contact as 
constant user-specified inputs (e.g. Durrant et al., 2021; 
Ramiadantsoa et al., 2021; Swinton et al., 1998), but in 
reality, these entities update continuously according to 
environmental and social contexts. The epidemiologi-
cal landscape view differs from conventional spatially 
explicit disease models by acknowledging the dyna-
mism of real-world systems and linking spatial patterns 
of transmission directly to the environment through 
a lens of host and pathogen movements (Figure  1). A 
strong environmental grounding allows transmission 
predictions to shift when environmental or social con-
ditions change.

Here, we describe how to specify and use the epi-
demiological landscape in practice. We: (1) dissect the 
epidemiological landscape to identify the pathways by 
which environmentally motivated movements shape 
spatially explicit disease dynamics (Figure 1); (2) pro-
pose the movement-pathogen pace-of-life hypothesis 
to help prioritise spatially explicit transmission anal-
yses (Figure  2); (3) identify mechanisms that shape 
the epidemiological landscape (Figure  1; Table  1) and 



1762  |      MODELLING THE EPIDEMIOLOGICAL LANDSCAPE

match the epidemiological landscape's components 
and mechanisms to emerging tools from movement 
ecology (Table 2; Supplementary Text) and (4) outline 
three strategies for blending mechanistic insights with 
movement and transmission data to generate epidemio-
logical forecasts that are transferable across landscapes 
and populations (Figure 3). We end by identifying a few 
open challenges.

A REVISED VIEW OF SPATIALLY 
EXPLICIT PATHOGEN TRANSMISSION

Transmission occurs at intersections of host and 
pathogen movement trajectories

Pathogen transmission only occurs if an uninfected 
host crosses paths with an infected host or pathogen 

BOX 1  Glossary

Contact: Ephemeral interaction events between hosts and hosts or hosts and pathogens that lead to transmis-
sion. These could vary in frequency, duration and form; and can have a variety of relationships with host density.

Environment-driven K-selected pathogens: Pathogens with prolonged environmental persistence but limited 
infection time within a host, that have slow first passage times in the pure-environment PCAM.

Environmental metric: Movement description relating spatial locations to features of the local environment.
Epidemiological landscape: The ensemble of environmentally informed host densities, mobilities and con-

tacts that combine with pathogen life-history to form the set of paths by which a pathogen could travel across 
a landscape infecting hosts.

First passage time: The expected waiting time from arrival in one state (here, arrival of a pathogen in a 
new host or environmental reservoir) to arrival in another state. First passage time depends on both survival 
within the PCAM and transmission rate from the PCAM.

Geographical metric: Movement description based solely on locational information describing where an 
organism spends its time.

Host-as-environment PCAM: Pathogen movements in accordance with the movements of the primary host 
while infectious.

Host density: Concentration of hosts across the landscape.
Infection-and-environment-driven K-selected pathogens: Pathogens exhibiting long infections and prolonged 

environmental persistence that have slow first passage times in both the pure-environment and the host-as-
environment PCAMs.

Infection-driven K-selected pathogens: Pathogens generating long infections, but with limited survival out-
side the host, that have slow first passage times in the host-as-environment PCAM.

Mobility: Residency times and probability or rate of engagement in site-to-site movements by hosts or 
pathogens across an environment.

Movement-pathogen pace-of-life hypothesis: Expectation that the epidemiological landscape component (den-
sity, mobility or contact) most important for shaping spatial patterns of pathogen transmission is determined by 
the pathogen's first passage time in both the pure-environment and in the host-as-environment PCAM.

Movement trajectory: The spatiotemporally explicit path an organism takes across a landscape, often de-
scribed through step lengths and turning angles.

Pace-of-life syndrome hypothesis: Expectation that traits like growth rate, age of reproductive maturity and 
longevity should be correlated within a species, so that some species follow ‘slower’ K-selected lifestyles, while 
others follow r-selected ‘live fast, die young’ strategies.

Pathogen canonical activity mode (PCAM): Segments of pathogen movement trajectories corresponding to 
different facets of pathogen life history.

Pathogen fertility: The rate at which a pathogen produces new cases or colonies per unit time. In disease 
ecology fertility contributes, and is sometimes identical, to force of infection.

Pathogen reproductive window: The time over which the pathogen can generate cases before going locally ex-
tinct. In disease ecology, this is referred to as the pathogen's infectious period or the pathogen's environmental 
persistence period, depending on PCAM.

Pure-environment PCAM: Pathogen movements that occur in accordance with the external environment, 
vectors or intermediate hosts while outside the primary host.

r-selected pathogens: Pathogens engaging in a ‘live fast, die young’ strategy consisting of lower survival 
times, higher transition rates and higher first passage times among PCAMs.

Transferable models: Models that retain predictive accuracy when extrapolated to novel contexts.
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(Figure 1d; Manlove et al., 2018; Wilber et al., 2022). 
At coarse scales, transmission rates should be propor-
tional to the product of the susceptible host density 
and the pathogen intensity at the focal location (the 
‘S times I’ term governing transmission in conven-
tional susceptible-infected-recovered [SIR] disease 
models), appropriately rescaled by local host densities 
depending on whether transmission is frequency- or 

density-dependent. Host densities and pathogen in-
tensities depend on the cumulative movements of all 
local hosts and pathogens, however, and movements 
are informed by an ensemble of environmental and 
social processes (Figure  1a–c). Clarifying how envi-
ronment structures movement could inform models 
of host density, pathogen intensity and subsequent 
transmission.

F I G U R E  1   The epidemiological landscape can inform classic spatially explicit disease models. The epidemiological landscape (dark grey 
box; (a)–(d) with select mechanisms in white boxes defined and summarised in Table 1) consists of intrinsic attributes (a–c) and emergent 
interactions between the environment, hosts and pathogens that shape host and pathogen movements (decomposed into pathogen canonical 
activity modes, or PCAMs; (d) and locations of pathogen transmission. Information garnered from those movement trajectories can be used to 
inform inputs to classic spatially explicit disease models (light grey box). Conventionally, spatially explicit disease models relied on summary 
metrics that simply described host and pathogen locations, and did not link those locations to environmental attributes (white arrows in (e)). 
Movement ecologists are developing environmentally informed metrics (dark grey arrows in (e); Table 2) that could be used to adapt the classic 
modelling structures to changing environmental contexts, bringing the epidemiological landscape framework to full reality. ƛi is the per capita 
rate of infection at location i and Yj is the density of infected hosts at location j.
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Resource abundance and timing

Classic spatially explicit disease models

Host densities
Mobilities

Contacts

Epidemiological landscape
A. Environmental context

C. Innate properties of the 
pathogenB. Innate properties 
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Social a nities Mode and style of mobility
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An organism's movement trajectory is the temporally 
explicit route that it takes across a landscape (Box  1). 
Behavioural patterns within movement trajectories have 
been extensively studied in movement ecology (Abrahms 
et al.,  2017; Edelhoff et al.,  2016; Fleming et al.,  2014; 
Getz & Saltz, 2008), where distinct movement motifs—
for example foraging or resting—are referred to as ‘ca-
nonical activity modes’ or CAMs (Getz & Saltz, 2008). 
Pathogen movement trajectories have received less at-
tention, but the CAM concept (which we refer to as the 
Pathogen's Canonical Activity Mode, or ‘PCAM’; Box 1) 
still applies. Pathogens moving in accordance with the 
external environment while outside the primary host are 
in a ‘pure-environment’ PCAM (Box 1), and pathogens 
moving in accordance with the movements of the pri-
mary host while infectious are in a ‘host-as-environment’ 
PCAM (Box  1; Figure  1d). Vector-borne pathogens or 
pathogens with intermediate hosts may have additional 
PCAMs corresponding to each life-history phase, though 
for simplicity we emphasise the pure-environment and 

host-as-environment PCAMs here. The pathogen's 
movement and persistence are determined by the move-
ment patterns, duration and ordering of its PCAMs, 
and could be described using the same hidden Markov 
modelling approaches as in behavioural and movement 
ecology; Edelhoff et al., 2016). PCAM duration and or-
dering themselves depend on two pathogen life-history 
attributes within each PCAM: (1) the pathogen's ability 
to produce new cases or colonies per unit time (its ‘fertil-
ity’; Box 1); and (2) and the time over which the pathogen 
can generate cases before going locally extinct (its ‘repro-
ductive window’; Box 1).

A high-resolution movement trajectory view is not 
always necessary in spatial epidemiology, and simpler 
approaches can achieve many epidemiological aims 
(Figure 1e). For example Hendra virus spillover from fly-
ing foxes to horses is limited to locations where the virus 
and both hosts co-occur. Co-occurrence, and therefore 
spillover, is concentrated in horse paddocks with fruit 
trees where flying foxes roost (Plowright et al., 2015), so 

BOX 2  Spatially explicit models of pathogen transmission

Partial Differential Equations (PDEs) describe the size of the infected class over continuous space and 
time. Their host density models are continuous, and often homogeneous (but see Garlick et al., 2011; Hefley 
et al., 2017). The mobility model1 is a spatial diffusion rate and a corresponding functional form. Outputs in-
clude existence, structure and speed of travelling epidemic waves and spatially explicit times to epidemic peak. 
Assumptions: animals move according to the kernel, which is often isotropic and independent of environment; 
transmission occurs locally.

Semi-spatial and static network models allow pairwise interactions within local neighbourhoods. The host 
density model is implicit but relies on discrete units with corresponding disease states. The mobility model 
is defined through pairwise coupling coefficients between the ‘locations’, along with a specified ‘neighbour-
hood’ with which each location interacts. Outputs are usually derived from a master equation or simulation. 
Assumptions: known network structure and disease status; a priori definition of ‘neighbourhood’ (depending 
on analytical approach).

Metapopulation models track disease dynamics at physical locations coupled with one another across 
space. The host density and mobility models mirror those of semi-spatial models, but locations are spatially ex-
plicit, and mobility can include explicit functions of geographical distance. Outputs include spatial spreading 
rate, spatial synchrony among subunits and individual- and patch-level reproductive numbers. Assumptions: a 
priori knowledge of system connectivity.

IBMs allow movement and transmission to emerge organically from predefined rules applied to a set of 
actors. Inputs are individual-level attributes and parameters that govern them. The host density model can be 
continuous or discrete. The mobility model usually allows an individual's internal state and environment to 
interact through a set of movement rules. Outputs range from a simple wave front of disease spread to each 
individual's spatiotemporally explicit contribution to reproductive numbers. Assumptions: depend on model 
specifics.

Spatially embedded social networks describe disease dynamics across multipartite networks whose nodes 
correspond explicitly to locations in space. Inputs are bipartite networks linking individuals to different kinds 
of locations (households, peer groups, etc.), The host density model is a set of spatial centroids from each 
group, and mobility models can be distance-, gravity- or radiation-based. Outputs include estimates of R0, 
total epidemic size and spatial and temporal patterns of transmission. Assumptions: constant connectivities; 
central-place space use patterns.

1The contact process is often subsumed into a constant transmission rate or absorbed into the mobility 
model.
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reasonable spatially explicit spillover predictions can 
be built from locations of paddocks with roost trees; 
individual-level movement analyses may have little to 
offer. By contrast, transmission of chronic wasting dis-
ease (CWD) in mule deer does not have a known environ-
mental signature at coarse spatial scales (beyond higher 
risks associated with clay-heavy soils; Miller et al., 2004). 
However, there is a still a possibility that management 
could be applied at a finer scale if there are particular en-
vironmental signatures associated with precisely where 
mule deer shed prions, and how those shedding locations 
align with local soil types. Therefore, high-resolution 
movement analyses might be able to improve spatially ex-
plicit transmission forecasts in the CWD system (Box 1).

The Hendra virus and CWD examples highlight dif-
ferent spatial scales at which disease models can oper-
ate. At the individual movement trajectory level, host, 
environment and pathogen life-history mechanisms 
can inform when and where hosts and pathogens inter-
act (as in the CWD example above). At the population 
level, densities, mobilities and contacts derived from all 
local pathogens and hosts contribute to an aggregate 
force of infection that can sometimes be linked to the 

environment directly using coarse scale data (as in the 
Hendra example). Both scales can be used to predict spa-
tially explicit transmission patterns, and either may be 
reasonable depending on system dynamics.

An epidemiological landscape framework 
advances epidemiological modelling by 
mechanising the environment—movement—
transmission relationship

Movements can be described in terms of either location 
or environment (referred to as ‘geographic’ and ‘environ-
mental space’ in the movement ecology literature; Box 1 
[Matthiopoulos et al.,  2020; Moorcroft et al., 2006]). 
Metrics in geographical space are built from raw coor-
dinates (e.g. whether an individual occupies a specific 
point on the landscape or moves a particular distance; 
Box 1), while metrics in environmental space relate those 
coordinates to local environmental features (e.g. whether 
an individual selects for cliffy habitats or moves rapidly 
near topographical bottlenecks; Box 1). Environmental 
metrics are mechanistic in that they capture how 

F I G U R E  2   The movement-pathogen pace of life hypothesis and expectations about spatial patterns of transmission. (a) Which components 
of the epidemiological landscape dominate spatial patterns of pathogen transmission depends on the interface between movement and 
pathogen life history. Pathogen canonical activity movements (PCAMs) can be broken into pure-environment and host-as-environment modes, 
and the duration and ordering of these modes determines pathogen distribution across the landscape. Duration and ordering of PCAMs are 
in turn determined by two pathogen life-history traits: first passage times in the host and in the environment. Pathogen pace-of-life increases 
down the dashed diagonal line, with the fastest pathogens in the lower left-hand corner exhibiting rapid first passage times in both the host and 
the pathogen. Approximate locations of several pathogens are shown for orientation (M. ovi refers to Mycoplasma ovipneumoniae, an infectious 
pathogen of bighorn sheep). Spatial patterns of transmission for pathogens in the upper triangle will be dominated by the locations of host–
host interactions, while spatial patterns of transmission for pathogens in the lower triangle will be dominated by interactions between the host 
and environmental reservoirs. (b) Pathogen life-histories can be summarised through vectors defined by host and environment first-passage 
times. The further vectors point to the left, the more transmission is driven by direct contacts; vectors extending further to the right are driven 
by indirect contacts. Pathogens whose vectors extend further to the bottom are expected to show transmission patterns driven by short-term 
contacts (mass aggregations; mass blooms), while pathogens whose vectors extend further towards the top will be driven by long-term patterns 
of host space use and density.
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environmental attributes alter patterns of movement. 
Metrics in both categories cover temporal scales from 
fine and behaviorally relevant to coarse and occupancy-
relevant. Classic spatially explicit transmission mod-
els (Box 2) often rely on metrics in geographical space 
(e.g. subpopulations defined through overlapping home 
ranges [Craft et al., 2011; O'Brien et al., 2014]; Euclidean 
distance- or gravity-based descriptions of mobility or 
connectivity [Viboud et al., 2006]), and assume that the 
functional responses linking host density and per capita 
transmission rates are constant across environments.

Although some geographical metrics can be moved to 
new spatial domains (e.g. dispersal kernels), geographical 
metrics contain no information about the environment 
where the coordinates arose, so they cannot account 
for specific attributes of new environments. Therefore, 
applying geographical metrics in novel environments 
requires extrapolation in both geographical and envi-
ronmental space. Environmental metrics are sometimes 
less spatially resolved than geographical metrics, but ap-
plying environmental metrics in novel settings only re-
quires extrapolation in geographical space.

Transferable models are models that perform well 
when extrapolated to novel contexts (Box  1; Barbosa 
et al.,  2009; Matthiopoulos et al.,  2019). Transferable 
models are especially important for epidemiological 
systems where: (1) spillover could occur across a huge 
geographical range, making boundary controls infeasi-
ble (e.g. avian influenza spillovers from migratory wa-
terfowl could occur at many points along a flyway; Hill 
et al., 2016); (2) management actions shift depending on 
the local environment (e.g. epizootic hemorrhagic dis-
ease virus [EHDV] management might prioritise water 
point sources for vector control when water is scarce, 
and host vaccinations when water is plentiful; Noronha 
et al.,  2021); or (3) research is concentrated around 
pseudo-model systems but findings need to extend to a 
wider set of host-pathogen interactions (e.g. fine-scale 
but limited data describing life-history movement trade-
offs in flying foxes could be used to generate broader-
scale spatial predictions; Hayman et al.,  2018). Models 
that describe density, mobility and contact in terms of 
the local environment are transferable to new locations, 
while models based on geographical metrics are not. 
Therefore, the epidemiological landscape approach re-
lies on environmental metrics wherever possible.

Epidemiological landscape components can be 
prioritised according to the movement-pathogen 
pace-of-life hypothesis

Most methods for generating spatially explicit epidemio-
logical forecasts cover only one component of the epide-
miological landscape (densities or mobilities or contacts, 
but rarely all three). Which component has the most 
influence on spatial patterns of pathogen transmission 

depends on the interface between movement and patho-
gen life-history traits.

The pace-of-life syndrome hypothesis (Ricklefs & 
Wikelski, 2002; Box 1) proposes that traits like growth 
rate, age of reproductive maturity, and longevity should 
be correlated within a species, leading some species to 
follow ‘slower’ K-selected lifestyles, while others follow 
r-selected ‘live fast, die young’ strategies. For patho-
gens, pace-of-life reflects a trade-off between ability 
to colonise new hosts (i.e. to infect) and ability to sur-
vive. Traits associated with r- and K-selection have been 
extensively studied (e.g. Oli & Dobson,  2003; Thrall 
& Burdon,  1997), particularly in plant pathogens and 
sometimes with an explicit eye towards spatial spread 
(Eshelman et al.,  2010; Susi & Laine,  2013; van Dijk 
et al., 2022). Assigning ‘pace-of-life’ to pathogens is com-
plicated, however, because pathogens spend their lives 
switching among environments (the pure-environment 
while outside the host and the host-as-environment while 
infecting; i.e. the PCAMs from Section ‘Transmission 
occurs at intersections of host and pathogen movement 
trajectories’). Pathogen longevity (here considered at the 
scale of an infecting colony) is determined by survival 
within each environment, along with transition rates 
among environments.

r-selected pathogens have high fertility rates (they are 
able to produce many new cases per unit time; Box 1) and 
short reproductive windows (they have limited time to 
produce new cases before dying out in the local host or 
environment; Box 1). These two attributes produce short 
first passage times (i.e. expected waiting time from ar-
rival in one state to arrival in the next; Box 1) through 
both hosts and environments: r-selected pathogens move 
quickly from host-as-environment to pure-environment 
and back.

K-selected pathogens have low fertility rates (they 
are limited in how many cases they can generate per 
unit time) and long reproductive windows (they have 
more time over which to generate those cases). Long re-
productive windows and lower fertilities correspond to 
longer first passage times, which can occur in the pure 
environment, the host-as-environment or both. Which 
environment has the longest first passage time has im-
plications for how the pathogen distributes over space. 
Therefore, for clarity, we partition K-selected patho-
gens into three groups: infection-driven K-selected 
pathogens (Box  1); environment-driven K-selected 
pathogens (Box  1) and infection-and-environment-
driven K-selected pathogens (Box  1). Four example 
systems—canine distemper virus, devil facial-tumour 
disease, chronic wasting disease and Bacillus 
anthracis—illustrate how these life-history strategies 
interact with movement to generate pathogen intensity 
patterns over space.

Canine distemper virus (CDV; a close relative of 
measles that infects carnivores; Terio & Craft, 2013), 
is an r-selected pathogen with high reproductive 
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potential, a short reproductive window in the host-
as-environment, and an even-shorter reproductive 
window in the pure-environment. CDV's infectious 
periods are longer than its environmental persistence, 
thus CDV predominantly occupies the host-as-
environment PCAM. As a consequence, its densi-
ties and mobilities closely match those of its hosts 
(Almberg et al., 2010; Craft et al., 2011). These traits 
make CDV most successful (able to produce large 
outbreaks) when hosts are plentiful, contacts are fre-
quent and host turnover is high (e.g. in ephemeral ag-
gregations of susceptible hosts; Table 1; Supplemental 
Text S2.1.1).

Devil facial tumour disease (DFTD; a transmis-
sible cancer of Tasmanian devils) exemplifies the 
infection-driven K-selected pathogen group (Pearse 
& Swift,  2006). DFTD generates long infections (it 
transitions slowly from host-as-environment to pure-
environment), but like CDV, its survival outside the host 
is brief: cancerous cells must transition quickly from 
pure-environment to host-as-environment or risk fading 
out. As a consequence, DFTD spends most of its time in 

the host-as-environment PCAM, and its density and mo-
bility should be well-approximated by those of its host. 
However, because DFTD is transmitted through bites 
(Hamede et al.,  2013), it is less equipped than CDV to 
capitalise on large but short-lived host aggregations for 
transmission. Instead, DFTD transmission maps to areas 
where hosts engage in appropriate contact (for DFTD, at 
locations where hosts mate or fight; Supplemental Text 
S1.1.2 and S2.1.2), regardless of local host densities. This 
could be a risky strategy—DFTD's transmission is vul-
nerable to disruptions in host metapopulation structure 
(Durrant et al., 2021)—but because DFTD's transmitting 
behaviours are tied to its host's mating system, trans-
mission opportunities arise at pseudo-regular intervals, 
limiting dead-end infections and reducing variance in 
reproductive output.

The prions causing chronic wasting disease (CWD; 
a prion-driven encephalopathy primarily affecting cer-
vids) exemplify the infection-and-environment-driven 
K-selected pathogen group: CWD's transitions are slow 
from both host-as-environment to pure-environment 
and pure-environment to host-as-environment (Miller 

F I G U R E  3   Hypothetical workflows using the epidemiological landscape. Each workflow uses animal movement trajectories to forecast 
movements from environmental covariates, adjusts movement forecasts according to time lags imposed by pathogen life-history, and integrates 
with disease models (Box 2) to predict spatiotemporal transmission dynamics. Auxiliary data can enter the workflows (examples indicated by 
steps flagged with dark green arrows), but could limit model transportability. Many of the methods already exist (checkmarks), although it is 
not always clear how they should be connected. Other methods have been proposed and prototyped, but are as-yet untested on real-word data 
(blue triangles). A third group remains strictly hypothetical (red stars). ‘RSF’ = resource selection function; ‘SSF’ = step selection function; 
‘CTMM’ = continuous time movement model; ‘UD’ = utilisation distribution; ‘CTMC’ = continuous time Markov chain. ‘MoveSTIR’ accounts 
for temporal lags between pathogen deposition and acquisition (Wilber et al., 2022). Method details are in Table 2.
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et al., 2004; Miller & Conner, 2005). Because CWD can 
survive for long periods of time in both PCAMs, its den-
sity over space should be a convolution of both envi-
ronment types (its intensities should be elevated around 
environmental reservoirs, but also around areas of high 
host densities; Almberg et al., 2011). CWD's mobility is 
also a mixture of its mobility in the pure-environment 
and the host-as-environment, but since its movement 
capacity in the pure-environment is limited, host mobil-
ity patterns are the most important determinants of its 
spread.

Bacillus anthracis (Anthrax) exemplifies the 
environment-driven K-selected pathogen groups: it 
transitions slowly from pure-environment to host-as-
environment, but quickly from host-as-environment 
to pure-environment. Bacillus anthracis concentrates 
at environmental reservoirs (Weiss & Dishon, 1971), its 
movements are determined by its mobility in the pure-
environment (Turner et al.,  2014; Supplemental Text 
S1.1.3), and its ability to contact hosts depends on host 
encounters with reservoir environments.

The movement-pathogen pace-of-life hypothesis 
(Box 1) unifies these examples by proposing that the 
epidemiological landscape component (density, mo-
bility or contact) with the strongest inf luence on spa-
tial patterns of pathogen transmission is determined 
by the pathogen's first passage time through both 
the environment and the host (Lloyd & May,  2001; 
Figure  2). Classifying pathogens according to their 
first passage times clarifies expectations about how 
each epidemiological landscape component inf lu-
ences when and where the pathogen is transmitted. 
When first passage time in the host is longer than 
first passage time in the environment (i.e. the patho-
gen's life-history places it above the dashed diagonal 
line in Figure  2a), transmission is primarily direct, 
and concentrates at locations where hosts encoun-
ter one another. When first passage time in the en-
vironment exceeds first passage time in the host, 
transmission concentrates at locations where hosts 
encounter environmental reservoirs. Transmission 
of ‘fast’ r-selected pathogens concentrates at loca-
tions where hosts form large groups (near the bot-
tom and left-hand side of Figure 2a). Transmission of 
K-selected pathogens concentrates at locations with 
the highest time-averaged densities (for infection-
driven K-selected pathogens) or reservoir contact 
rates (for environment-driven K-selected patho-
gens; Figure  2b). The hypothesis assumes that first 
passage times through both the host and the envi-
ronment are constant, so environmentally variable 
pathogen persistence or spatially explicit transmit-
ting behaviours can lead patterns to depart from 
movement-pathogen pace-of-life expectations. When 
this occurs, movement-based analyses can be refined 
and the movement-pathogen pace-of-life hypothesis 
can operate as a contrasting null.

MOVEM ENT M ECH A N ISMS 
CON N ECT HOSTS, PATHOGENS 
A N D EN VIRON M ENTS

Specific mechanisms shape how the host, pathogen 
and environment interact. For example resource selec-
tion shapes patterns of host density (Supplemental Text 
S1.1), thus resource selection functions could be used to 
predict host densities; and landscape resistance shapes 
patterns of host mobility, thus modelled resistance sur-
faces could be used to predict host mobility patterns 
(McRae et al., 2008). Movement mechanisms could also 
inform spatially explicit multipartite networks (Manlove 
et al.,  2018; Silk et al.,  2018) or models from machine 
learning (Han et al., 2020; Wijeyakulasuriya et al., 2019) 
aiming to predict the epidemiological landscape. Metrics 
like the number of individuals within some neighbour-
hood of a focal animal or the turning angle required for 
the host to orient towards a particular environmental 
feature are commonly used in movement ecology and 
could also inform spatially explicit models of pathogen 
transmission.

Some mechanisms can lead systems to depart from 
movement-pathogen pace-of-life expectations, and sev-
eral of these mechanisms are already well-understood. 
Mass aggregations (Cross et al.,  2005; Lloyd-Smith 
et al., 2005) and stable social bonds (Sah et al., 2017) af-
fect patterns of contacts, as do the pathogen's mode of 
transmission and environmental persistence (Table 1; 
Supplemental Text S2.1). Synchronous host life-history 
events (like birth pulses) can produce seasonally pulsed 
transmission after an influx of new susceptible hosts 
(Peel et al.,  2014). Density, mobility and contact can 
also vary according to feedbacks between the patho-
gen and the host (Supplemental Text S1.1.4 and S2.1.4) 
that arise through either physiological pathways or 
behavioural shifts. Physiologically, fighting infection 
might lead to fatigue, causing hosts to move less or self-
isolate; and immune functions could change resource 
requirements (e.g. by increasing water requirements 
during febrile responses). Behaviorally, neurotropic 
pathogens like rabies or toxoplasmosis can directly 
alter host conduct (Hughes et al.,  2011; Stockmaier 
et al., 2021; Weinstein et al., 2018).

Other mechanisms are implicitly embedded in existing 
frameworks for modelling spatially explicit transmission 
for humans, livestock and wildlife. In spatially explicit 
transmission models for humans and livestock patho-
gens, locations where individuals interact (e.g. houses, 
transit centers, feedlots) are often assumed to be dis-
crete and fixed through time (Haw et al.,  2020; Keeling 
et al., 2001; Riley & Ferguson, 2006). Site-to-site mobilities 
depend on intervening distances and local and surround-
ing host densities (Simini et al., 2012; Tizzoni et al., 2014; 
Viboud et al.,  2006). Once site-to-site movements occur, 
transmission-appropriate contacts are modelled according 
to local host density (following a functional form usually 
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based on a priori knowledge about mode of transmission), 
and infection rates ultimately depend on the probability of 
transmission given contact.

These assumptions reflect attributes of human move-
ment ecology that might not hold for other species. 
Most humans regularly return to home sites (but see 
Bharti et al.,  2011), so assigning humans to fixed loca-
tions and movement patterns might not affect spatially 
explicit transmission predictions. Humans spend little 
time on random walks (Meekan et al.,  2017); instead, 
they make directed moves from starting points to pre-
ordained destinations, with mobilities rarely slowed by 
environmental barriers (e.g. mountains, rivers; Table 1). 
Place-of-residence for non-human hosts might be better 
described through intensity surfaces that shift through 
time. Non-human host densities and mobilities are often 
tied to the abundance, quality, timing and spatial dis-
tribution of resources, along with the structure of the 
intervening landscape (Table 1). However, what consti-
tutes a ‘resource’ depends on the host's ecology (Miller 
et al.,  2019) and its internal state (Nathan et al.,  2008; 
Supplemental Text S1.1.1), and understanding host ecol-
ogy and physiology are important for generating accu-
rate space use predictions.

In reality, the a priori directed movements of hu-
mans might occupy one extreme in host movement 
decision-making, while movement patterns derived 
from resource-driven random walks occupy the other. 
Movement dynamics for most host species probably fall 
somewhere in-between. Fleshing out these movement 
continua (Carbone et al.,  2005; Han et al.,  2015) could 
inform general expectations about how particular host 
taxa move, improving spatially explicit transmission pre-
dictions especially for understudied species. Biological 
underpinnings and current integrations between move-
ment and disease ecology, especially with regards to how 
environment and host social ecology inform patterns 
of host and pathogen movements, are included in the 
Supplementary Text.

Next steps

In the immediate-term, disease ecology would benefit 
from incorporating the following considerations into 
movement analyses destined for epidemiological frame-
works. First, we need to account for spatial and tempo-
ral lags between pathogen shedding and acquisition in 
order to weight pathogen transmission potentials from 
the pure-environment to the host-as-environment (e.g. 
Richardson & Gorochowski, 2015; Wilber et al., 2022; 
Supplemental Text S1.3.1). Second, we need a clearer 
understanding of how to link the timescales of move-
ment and movement data to the timescales of patho-
gen transmission (Supplemental Text S1.3.2). Third, 
we need better frameworks to guide data collection 
and spatial allocation of tracking devices, especially 

for studies prioritising contact (Supplemental Text 
S1.3.3). Fourth, we need to consider whether and how 
to update movement forecasts dynamically in response 
to changing epidemiological contexts (Supplemental 
Text S1.3.4). Fifth, spatial epidemiology might some-
times require entirely new epidemiological theory 
and methods, which we need to identify and develop 
(Supplemental Text S1.3.5).

To better incorporate the social environment and 
quantify socially driven aspects of contact and mobil-
ity, we first need methods that can scale up from subsets 
of tracked individuals to draw inference across entire 
populations (Supplemental Text S2.3.1). Second, we 
need to directly incorporate social covariates into mod-
els of movement to measure the influence of social fac-
tors on animal movements (Supplemental Text S2.3.2). 
Third, we need to explore the ability of multi-layer net-
work modelling approaches to capture environmental 
drivers (Supplemental Text S2.3.3). Finally, we need to 
formalise connections between fission-fusion dynamics 
and contact network structures to more precisely incor-
porate environmental and social drivers of movement 
(Supplemental Text S2.3.4).

Each of these tasks will require (and add to) integra-
tion of movement and disease ecology, to benefit of both 
domains.

MODERN WOR K FLOWS 
FOR CON N ECTING 
EN VIRON M ENTA L DRIVERS 
W ITH EPIDEM IOLOGICA L 
MODEL IN PUTS

Predicting pathogen transmission locations is a meth-
odologically diverse objective. Approaches range from 
mechanistic tactics reliant upon fundamental attributes 
of the system to phenomenological tactics reliant upon 
geographical metrics. Emerging methods for Eulerian 
data (which describe spatio-temporally varying densities 
without tracking specific individuals) can connect trans-
mission kernels to the environment (Garlick et al., 2011; 
Hefley et al.,  2017; Box  2), but Eulerian methods per-
form best with patterns that change over both space 
and time. Eulerian approaches might prove most use-
ful for understanding novel pathogen spread, especially 
for K-selected pathogens, but they might be less-useful 
for managing endemic transmission or transmission of 
r-selected agents. Here, we focus instead on workflows 
for Lagrangian data that explicitly track movements 
of known animals (e.g. through GPS collars or other 
animal-borne sensors), which are better-equipped to 
investigate high-resolution environment–movement 
interactions.

Conventionally, researchers used Lagrangian data to 
identify drivers of spatial transmission by: (1) correlat-
ing transmission with aspects of the environment; (2) 
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building forward from those correlations to separately 
investigate each component of the epidemiological land-
scape and (3) re-combining component-specific estimates 
to generate overall predictions. These steps are usually 
ad hoc, and disease ecologists lack clear guidance about 
which covariates to explore, which components to prior-
itise, or how to appropriately propagate error. Modern 
workflows offer new opportunities to overcome each of 
these challenges (Figure 3).

All workflows (Figure  3) start with a preliminary 
correlative inquiry relating pathogen prevalence to en-
vironmental attributes (preferably using datasets that 
track changes in relevant environmental covariates). 
Researchers should then consider how host movement 
interacts with pathogen pace-of-life, and identify plau-
sible mechanisms relating movement and pathogen per-
sistence to the environment (Table 1). After this point, 
the workflows diverge.

In the mechanistic workflow, researchers separately 
model density, mobility and contact as functions of the 
physical environment, using different datasets and meth-
ods for each component (biological processes and inte-
grations with movement described in the Supplementary 
text; methods summarised in Table 2). Density and mo-
bility can be estimated separately or together depending 
on data availability, but contact estimates often require 
distinct datasets (e.g. from proximity loggers or direct 
observations). The epidemiological landscape can be 
constructed by predicting densities and mobilities from 
environmental covariates, and assigning each site spe-
cific contact rates depending on local environmental 
conditions and host densities. Predictions should be val-
idated with pathogen surveillance data whenever pos-
sible, but mobility and density models can be validated 
using movement data alone if necessary. The strength of 
the mechanistic workflow lies in its ability to draw causal 
inference from underlying drivers to emergent move-
ments and transmission, which should improve resulting 
model transferability (but see Section ‘Connecting the 
epidemiological landscape's central components’). Its 
main weakness is that it can easily overlook host social 
ecology, so this workflow might work best in systems 
where host movements can be regarded as independent.

The network-based workflow places social and spa-
tial drivers on common footing from the start. This 
approach requires defining a spatiotemporal contact 
function (e.g. a cut-off distance and time) describing the 
intensity of individuals ‘associations’, extracting associ-
ation strengths or events from tracking data, mapping 
contacts to geographical locations, identifying environ-
mental correlates of those locations, projecting other 
contact locations across the landscape using the iden-
tified environmental correlates, and finally simulating 
pathogen transmission across the network to estimate 
site-specific transmission potentials. For example to 
identify hotspots of Mycoplasma ovipneumoniae trans-
mission in bighorn sheep, we might define a ‘contact’ 

to be concurrent locations within 50 m of one another 
within a 2-h time interval. We could then extract all con-
tacts from a set of bighorn sheep telemetry data, per-
haps using a continuous-time movement model for times 
between fixes (Wilber et al., 2022). Next, we could map 
the contact events back onto the landscape, and match 
contact locations to environmental covariates (e.g. by 
fitting a resource selection function directly to the con-
tact events). We could then connect individual animals 
to contact locations to build a bipartite network, and 
scale the network up by increasing the number of indi-
vidual and spatial nodes to reflect the population's size 
and spatial extent (achieving a model of density and mo-
bility within the system; Figure 3). Uncertainty in edges 
could be reduced by applying marginal information 
about group sizes and individual-level habitat selection 
to assign deer to locations (Cross et al., 2019; Manlove 
et al., 2018; Silk et al., 2018). Finally, we could simulate 
transmission on either a static or a dynamic representa-
tion of the network and extract cell-specific transmission 
potentials (similar to White et al., 2018). Whether fore-
casted hotspots actually harbour more host aggregations 
can be validated using local movement data, and whether 
those aggregations lead to transmission can be validated 
using pathogen data when those data exist. The strength 
of the network-based workflow is that it balances spatial 
and social forces. Its main weaknesses are its dependence 
on tracking intensities high-enough to capture contacts 
and its currently limited application in real-world set-
tings. How to best discretise space and adjust for spatial 
autocorrelation are areas of open inquiry.

The final workflow builds from mining-modelling 
approaches for disease dynamics (Han et al., 2020). Data 
mining can be applied to a specific process within the 
epidemiological landscape (Example Strategies 1 and 2 
in Figure 3), or to entire animal movement trajectories 
(Example Strategy 3 in Figure 3). The crux of this work-
flow is in translating hypothesised mechanistic drivers 
into quantifiable ‘features’ that can be measured along 
individual movement trajectories. For example if our 
goal was to model movement trajectories of wild pigs, 
we might include features describing environmental 
context at several scales (e.g. percent cover, distance to 
water, etc.). Other features might capture the pig's move-
ment trajectory, including its step lengths and turning 
angles at various timelags, as well as the angle it would 
need to turn to orient towards nearby resources (e.g. the 
angle it would need to turn from its current heading to 
orient towards water). On the social front, we could in-
clude features like distance to all other collared pigs, as 
well as the turning angles required to re-orient towards 
them. The set of features would then be used to train a 
machine learning algorithm, which would be validated 
against a subset of withheld movement trajectories and 
then used to forecast movements across all individu-
als. Pathogen pace-of-life attributes could be overlaid 
on the predicted movements to simulate transmission, 
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again resulting in predicted site-specific transmission 
potentials. Feature importance measurements could be 
extracted to inform future research isolating and test-
ing specific mechanisms. The strengths of the mining-
modelling workflow are its ability to weight social and 
spatial factors in tandem, and its ability to scale up 
across individuals to infer density, contact and mobility 
across entire landscapes. Its weaknesses lie in its depen-
dence on researcher-identified features, its inability to 
identify causal mechanisms, and its abbreviated track 
record of application in movement ecology and spatial 
epidemiology.

Accurate prediction does not ensure effective interven-
tion if the system's mechanistic drivers remain unknown. 
Mechanistically defining the epidemiological landscape 
can add insights that purely phenomenological multipar-
tite network or mining-modelling approaches cannot. 
Ideally, the phenomenological workflows would be used 
in iteration with mechanistic inquiries.

OPEN CH A LLENGES

Connecting the epidemiological landscape's 
central components

Methods to integrate the epidemiological landscape 
components (density, mobility and contact) and cor-
rectly propagate error remain in short supply (Jerde & 
Visscher,  2005; Ruckelshaus et al.,  1997). Propagating 
uncertainty is an important challenge for any work-
flow that moves information across scales or processes 
to generate predictions. Bayesian integrated modelling 
(and to a lesser extent, mixed modelling) methods can 
handle this challenge (e.g. Muff et al.,  2020; Schaub & 
Abadi, 2011), but posing a robust model in the presence 
of a tower of uncertainties can be difficult. A broad 
spectrum of ecologists and statisticians are confronting 
these problems (e.g. Tredennick et al., 2021), and the op-
portunities from Bayesian approaches are improving as 
tailored sampler designs become more accessible (e.g. 
through platforms like NIMBLE; de Valpine et al., 2017). 
We encourage disease ecologists to collaborate with ex-
perts in error propagation and model validation when 
constructing spatially explicit models of transmission. 
Appropriate integration, first of means and then of er-
rors, is an urgent need in spatial epidemiological inquiry.

Identifying the correct level of detail

Which biological details to include depends on data 
resolution and project objectives. Mechanisms should be 
included if they are central to the overarching question 
or change resulting predictions. Decisions about which 
biological details to include should precede decisions 
about model construction, since some methods cannot 

capture certain mechanisms. The relative timescales of 
host movements, environmental fluxes and pathogen 
pace-of-life are also informative: processes that change 
slowly relative to system epidemiology could be treated 
as constant; but processes that change quickly might 
need to be dynamic (Funk et al., 2015).

Validating spatial patterns of transmission requires 
the well-designed collection of pathogen surveillance 
data. The best way to gather surveillance data depends 
on the focal system's diagnostic methods. Sampling de-
signs for transmission have been reviewed elsewhere 
(e.g. Plowright et al., 2019), so we focus more narrowly 
on considerations for movement data. Movement data's 
temporal resolution is often under researcher control, 
though resolution trades off against device longev-
ity through battery and memory capacities (Kays 
et al., 2015). Background knowledge about the timescales 
of relevant host movements and pathogen life-history 
traits (i.e. infectious periods and periods of environ-
mental persistence) can inform temporal resolution 
(Benhamou,  2014; McClintock et al.,  2014). Since rare, 
longer-distance moves drive pathogen invasion speeds, 
optimal disease invasion tracking might rely on slower 
fix rates and longer tracking periods. On the other hand, 
extracting direct contacts from continuous time move-
ment models might require much higher-resolution data, 
typically with fix rates faster than one point per hour. 
As a consequence, different tracking rates might be ap-
propriate for developing (faster fix rate) and validating 
(slower fix rate) models of transmission.

The spatial resolution of movement data is often 
determined by the technology employed, but research-
ers often control the geographical and environmental 
contexts in which devices are deployed. Estimating en-
vironmental effects will be most efficient when the en-
vironment varies substantially across the study's spatial 
domain, but if direct contact data are required, tracking 
densities should remain high in some areas. Ideally, one 
should know the ratio of tracked animals to total hosts 
across the study area. Habitat attributes that are con-
sistent across the study area can be excluded from local 
predictions, but should be considered if the model is used 
to predict dynamics elsewhere.

Finally, constructing reliable density, mobility and 
contact estimates often takes substantial effort (e.g. 
through improved descriptions of important covariates, 
increased performance of disease diagnostic tests or 
refinements to statistical methods). This burden might 
diminish over time, but shortcutting variable develop-
ment can be costly, and investing in some form of data 
improvement is often necessary.

Extending outside the measured context

The relation between density, mobility or contact and 
environmental attributes may depend on the attribute's 
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local availability (similar to a functional response; 
Mysterud & Ims, 1998). Availability-dependence is the 
rule, not the exception, in animal movement (Avgar 
et al.,  2020), and while availability-dependent relation-
ships between movement and the environment do not 
preclude extrapolation, their presence should be consid-
ered when predicting transmission in unsampled geog-
raphies or environments. Meta-analyses of how habitat 
selection, step selection or other attributes of movement 
vary across environments could offer baseline expecta-
tions about how availability affects density and move-
ment, especially for hosts of common interest.

Disease feedbacks can also produce nonlinear func-
tional responses. A low-density population recovering 
from disease could have different rates of long-distance 
movement than nearby populations where densities are 
high; and age-specific mortality burdens can influence 
social structure, especially if mortalities concentrate 
among older and more knowledgeable individuals. 
The relationship between time since pathogen depo-
sition and instantaneous rate of transmission could 
also be nonlinear (Almberg et al.,  2011; Richardson & 
Gorochowski, 2015), but guidance about how to weight 
the force of infection arising from different modes of 
transmission is limited (Breban, 2013).

Finally, predictions can fail in environments contain-
ing spatial or social features that never arose in the train-
ing data. Host populations with seasonal birth pulses 
could have different habitat selection patterns than pop-
ulations where birth pulses are diffuse, and habitats that 
are seasonally abandoned at some latitudes might be oc-
cupied year-round at others. In these cases, researchers 
could fall back to mechanistic approaches drawn from 
first principles of system biology.

CONCLUSION

The interface between movement and disease ecology 
offers exciting opportunities to improve spatially ex-
plicit models of pathogen transmission and motivate 
research into mechanisms shaping animal movement 
more generally. Rapid advances and new workflows 
in movement and disease ecology give the interface a 
strong foundation, and synergistic developments could 
benefit both fields. However, improving spatially ex-
plicit epidemiological forecasts might also require shifts 
in emphasis. The epidemiological landscape, consisting 
of environmental processes shaping host and pathogen 
movements, along with emergent patterns of density, 
mobility and contact, provides a conceptual bridge con-
necting environmental mechanisms to spatially explicit 
patterns of pathogen transmission. Focused inquiry 
into the mechanisms that underpin the epidemiological 
landscape and the phenomena that emerge from it could 
reveal overlooked opportunities for targeted data collec-
tion, new applications of tools from movement ecology, 

and avenues for future method and theory develop-
ment. We hope that this synthesis sparks conversations 
that advance perspectives in spatial epidemiology and 
strengthen the conceptual bridge connecting environ-
ment, movement and transmission.
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