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Abstract

Pathogen transmission depends on host density, mobility and contact. These
components emerge from host and pathogen movements that themselves arise through
interactions with the surrounding environment. The environment, the emergent host
and pathogen movements, and the subsequent patterns of density, mobility and
contact form an ‘epidemiological landscape’ connecting the environment to specific
locations where transmissions occur. Conventionally, the epidemiological landscape
has been described in terms of the geographical coordinates where hosts or pathogens
are located. We advocate for an alternative approach that relates those locations to
attributes of the local environment. Environmental descriptions can strengthen
epidemiological forecasts by allowing for predictions even when local geographical
data are not available. Environmental predictions are more accessible than ever thanks
to new tools from movement ecology, and we introduce a ‘movement-pathogen pace
of life’ heuristic to help identify aspects of movement that have the most influence on
spatial epidemiology. By linking pathogen transmission directly to the environment, the
epidemiological landscape offers an efficient path for using environmental information
to inform models describing when and where transmission will occur.

KEYWORDS

canonical activity mode, epidemiological landscape, host contact, host mobility, mining-modelling
approach, movement mechanisms, movement-pathogen pace-of-life hypothesis, multipartite
networks, spatial disease dynamics, transmission hotspot
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INTRODUCTION

Environment—the spatially explicit biotic and abiotic
context surrounding a host or pathogen at a particular
point in time—shapes host movements and pathogen
persistence, ultimately resulting in more transmission
in some locations than others. The environment's role
emerges through movements of the host and pathogen:
wildlife pathogens are distributed according to environ-
mental attributes that impede or attract the movements
of their hosts (Biek et al., 2007; Hill et al., 2016; Merkle
et al., 2018); livestock pathogens can jump between lo-
cations when hosts are transported from farm to feed-
lot (Kao et al., 2007, Mannelli et al., 2007) and human
pathogens can follow spatial patterns tied to work or so-
cial engagements (Zhang et al., 2020). Environment and
movement can also shape disease management (Manlove
et al., 2019), especially if super-spreading events, invading
epidemic ‘waves’, or local transmission rates are linked
to particular environmental features (Cross et al., 2015;
Grenfell et al., 2001; Lloyd-Smith et al., 2005; respectively).

Movement informs spatially explicit models of
transmission at multiple scales. At a broad scale, re-
source limitations and productivity gradients can
shape general patterns of host density and mobility
(Bischof et al., 2012; Teitelbaum & Mueller, 2019). At
a fine scale, spatial dependence among transmission
events suggests that transmission aligns with high-
resolution drivers of contact (Albery et al., 2022).
Despite these connections, tools from movement ecol-
ogy are rarely used to link environment and transmis-
sion mechanistically (Albery et al., 2021; Dougherty
et al., 2018). This could be because (1) the tools' out-
puts do not directly match the parameters that govern
pathogen transmission; and (2) potentially import-
ant processes like spatially explicit transmitting be-
haviours or variable pathogen decay rates are often
overlooked. Leveraging movement information to un-
derstand how the environment influences spatial pat-
terns of transmission requires a stronger integration of
movement and disease ecology.

Movement and disease ecology have historically
centered around fundamentally different relation-
ships. Movement ecology has primarily investigated
interactions between individual animals and their
physical environments (Nathan et al., 2008), whereas
disease ecology has emphasised the temporal dynam-
ics of pathogen transmission across entire populations
(Anderson & May, 1979; Kermack et al., 1927; May &
Anderson, 1979). Scaling individual-environment inter-
actions up to predict population- and landscape-scale
transmission is a long-standing challenge symptomatic
of a broader interdisciplinary divide: epidemiological
models lack a systematic way to incorporate insights
from movement ecology while retaining tractability and
transferability beyond the focal environment. Although

movement-disease links are being forged in silico (e.g.
Faust et al., 2018; White et al., 2018), empirical integra-
tion remains limited, hindering our general understand-
ing about how the environment shapes spatial patterns
of pathogen transmission.

Spatial transmission dynamics depend on three
central components: host density, which describes
where hosts are located across the landscape (Box 1);
mobility, which describes residency times and site-to-
site movements (Box 1) and contact, which describes
the frequency, duration and form of host-host and
host-pathogen interactions and how those interac-
tions relate to pathogen transmission rates (Box 1).
Together, environmentally informed host densities,
mobilities and contacts combine with pathogen
life history to form an epidemiological landscape
(Box 1) containing the set of paths by which a patho-
gen could travel across a landscape infecting hosts
(Figure 1).

Density, mobility and contact are already included
in most spatially explicit models of transmission
(Box 2). For example in disease metapopulation models
(Finkenstadt & Grenfell, 1998; Grenfell & Bolker, 1998;
Sattenspiel & Dietz, 1995), the per capita infection rate
(4) can be written as: 4= (Zij(NL’”)p,,)c, where j indexes
neighbourhood sites including the focal site i and Y; is
the number of infected individuals currently pres-
ent at site j. Local host densities are contained in N,
site-to-site connectivities and mobilities are subsumed
into p,, transmission rates are related to local densities
through 0 and local rates of transmission-appropriate
contacts are contained in ¢ (parallel deconstructions
of partial differential equations and other widely used
spatially explicit disease models are outlined in Box 2).
Modellers usually treat density, mobility and contact as
constant user-specified inputs (e.g. Durrant et al., 2021;
Ramiadantsoa et al., 2021; Swinton et al., 1998), but in
reality, these entities update continuously according to
environmental and social contexts. The epidemiologi-
cal landscape view differs from conventional spatially
explicit disease models by acknowledging the dyna-
mism of real-world systems and linking spatial patterns
of transmission directly to the environment through
a lens of host and pathogen movements (Figure 1). A
strong environmental grounding allows transmission
predictions to shift when environmental or social con-
ditions change.

Here, we describe how to specify and use the epi-
demiological landscape in practice. We: (1) dissect the
epidemiological landscape to identify the pathways by
which environmentally motivated movements shape
spatially explicit disease dynamics (Figure 1); (2) pro-
pose the movement-pathogen pace-of-life hypothesis
to help prioritise spatially explicit transmission anal-
yses (Figure 2); (3) identify mechanisms that shape
the epidemiological landscape (Figure 1; Table 1) and



1762 | MODELLING THE EPIDEMIOLOGICAL LANDSCAPE

BOX 1 Glossary

Contact: Ephemeral interaction events between hosts and hosts or hosts and pathogens that lead to transmis-
sion. These could vary in frequency, duration and form; and can have a variety of relationships with host density.

Environment-driven K-selected pathogens: Pathogens with prolonged environmental persistence but limited
infection time within a host, that have slow first passage times in the pure-environment PCAM.

Environmental metric: Movement description relating spatial locations to features of the local environment.

Epidemiological landscape: The ensemble of environmentally informed host densities, mobilities and con-
tacts that combine with pathogen life-history to form the set of paths by which a pathogen could travel across
a landscape infecting hosts.

First passage time: The expected waiting time from arrival in one state (here, arrival of a pathogen in a
new host or environmental reservoir) to arrival in another state. First passage time depends on both survival
within the PCAM and transmission rate from the PCAM.

Geographical metric: Movement description based solely on locational information describing where an
organism spends its time.

Host-as-environment PCAM: Pathogen movements in accordance with the movements of the primary host
while infectious.

Host density: Concentration of hosts across the landscape.

Infection-and-environment-driven K-selected pathogens: Pathogens exhibiting long infections and prolonged
environmental persistence that have slow first passage times in both the pure-environment and the host-as-
environment PCAMs.

Infection-driven K-selected pathogens: Pathogens generating long infections, but with limited survival out-
side the host, that have slow first passage times in the host-as-environment PCAM.

Mobility: Residency times and probability or rate of engagement in site-to-site movements by hosts or
pathogens across an environment.

Movement-pathogen pace-of-life hypothesis: Expectation that the epidemiological landscape component (den-
sity, mobility or contact) most important for shaping spatial patterns of pathogen transmission is determined by
the pathogen's first passage time in both the pure-environment and in the host-as-environment PCAM.

Movement trajectory: The spatiotemporally explicit path an organism takes across a landscape, often de-
scribed through step lengths and turning angles.

Pace-of-life syndrome hypothesis: Expectation that traits like growth rate, age of reproductive maturity and
longevity should be correlated within a species, so that some species follow ‘slower’ K-selected lifestyles, while
others follow r-selected ‘live fast, die young’ strategies.

Pathogen canonical activity mode (PCAM): Segments of pathogen movement trajectories corresponding to
different facets of pathogen life history.

Pathogen fertility: The rate at which a pathogen produces new cases or colonies per unit time. In disease
ecology fertility contributes, and is sometimes identical, to force of infection.

Pathogen reproductive window: The time over which the pathogen can generate cases before going locally ex-
tinct. In disease ecology, this is referred to as the pathogen's infectious period or the pathogen's environmental
persistence period, depending on PCAM.

Pure-environment PCAM: Pathogen movements that occur in accordance with the external environment,
vectors or intermediate hosts while outside the primary host.

r-selected pathogens: Pathogens engaging in a ‘live fast, die young’ strategy consisting of lower survival
times, higher transition rates and higher first passage times among PCAMs.

Transferable models: Models that retain predictive accuracy when extrapolated to novel contexts.

A REVISED VIEW OF SPATIALLY

match the epidemiological landscape's components

and mechanisms to emerging tools from movement
ecology (Table 2; Supplementary Text) and (4) outline
three strategies for blending mechanistic insights with
movement and transmission data to generate epidemio-
logical forecasts that are transferable across landscapes
and populations (Figure 3). We end by identifying a few
open challenges.

EXPLICIT PATHOGEN TRANSMISSION

Transmission occurs at intersections of host and
pathogen movement trajectories

Pathogen transmission only occurs if an uninfected
host crosses paths with an infected host or pathogen
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FIGURE 1

The epidemiological landscape can inform classic spatially explicit disease models. The epidemiological landscape (dark grey

box; (a)—(d) with select mechanisms in white boxes defined and summarised in Table 1) consists of intrinsic attributes (a—c) and emergent
interactions between the environment, hosts and pathogens that shape host and pathogen movements (decomposed into pathogen canonical
activity modes, or PCAMs; (d) and locations of pathogen transmission. Information garnered from those movement trajectories can be used to
inform inputs to classic spatially explicit disease models (light grey box). Conventionally, spatially explicit disease models relied on summary
metrics that simply described host and pathogen locations, and did not link those locations to environmental attributes (white arrows in (e)).
Movement ecologists are developing environmentally informed metrics (dark grey arrows in (e); Table 2) that could be used to adapt the classic
modelling structures to changing environmental contexts, bringing the epidemiological landscape framework to full reality. %, is the per capita
rate of infection at location 7 and ); is the density of infected hosts at location j.

(Figure 1d; Manlove et al., 2018; Wilber et al., 2022).
At coarse scales, transmission rates should be propor-
tional to the product of the susceptible host density
and the pathogen intensity at the focal location (the
‘S times I’ term governing transmission in conven-
tional susceptible-infected-recovered [SIR] disease
models), appropriately rescaled by local host densities
depending on whether transmission is frequency- or

density-dependent. Host densities and pathogen in-
tensities depend on the cumulative movements of all
local hosts and pathogens, however, and movements
are informed by an ensemble of environmental and
social processes (Figure la—c). Clarifying how envi-
ronment structures movement could inform models
of host density, pathogen intensity and subsequent
transmission.
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BOX 2 Spatially explicit models of pathogen transmission

Partial Differential Equations (PDEs) describe the size of the infected class over continuous space and
time. Their host density models are continuous, and often homogeneous (but see Garlick et al., 2011; Hefley
et al., 2017). The mobility model' is a spatial diffusion rate and a corresponding functional form. Qutputs in-
clude existence, structure and speed of travelling epidemic waves and spatially explicit times to epidemic peak.
Assumptions: animals move according to the kernel, which is often isotropic and independent of environment;
transmission occurs locally.

Semi-spatial and static network models allow pairwise interactions within local neighbourhoods. The host
density model is implicit but relies on discrete units with corresponding disease states. The mobility model
is defined through pairwise coupling coefficients between the ‘locations’, along with a specified ‘neighbour-
hood’ with which each location interacts. Qutputs are usually derived from a master equation or simulation.
Assumptions: known network structure and disease status; a priori definition of ‘neighbourhood’ (depending
on analytical approach).

Metapopulation models track disease dynamics at physical locations coupled with one another across
space. The host density and mobility models mirror those of semi-spatial models, but locations are spatially ex-
plicit, and mobility can include explicit functions of geographical distance. Outputs include spatial spreading
rate, spatial synchrony among subunits and individual- and patch-level reproductive numbers. Assumptions: a
priori knowledge of system connectivity.

IBMs allow movement and transmission to emerge organically from predefined rules applied to a set of
actors. Inputs are individual-level attributes and parameters that govern them. The host density model can be
continuous or discrete. The mobility model usually allows an individual's internal state and environment to
interact through a set of movement rules. Qutputs range from a simple wave front of disease spread to each
individual's spatiotemporally explicit contribution to reproductive numbers. Assumptions: depend on model
specifics.

Spatially embedded social networks describe disease dynamics across multipartite networks whose nodes
correspond explicitly to locations in space. Inputs are bipartite networks linking individuals to different kinds
of locations (households, peer groups, etc.), The host density model is a set of spatial centroids from each
group, and mobility models can be distance-, gravity- or radiation-based. Quiputs include estimates of R,
total epidemic size and spatial and temporal patterns of transmission. Assumptions: constant connectivities;
central-place space use patterns.

"The contact process is often subsumed into a constant transmission rate or absorbed into the mobility
model.

An organism's movement trajectory is the temporally ~ host-as-environment PCAMs here. The pathogen's

explicit route that it takes across a landscape (Box 1).
Behavioural patterns within movement trajectories have
been extensively studied in movement ecology (Abrahms
et al., 2017; Edelhoff et al., 2016; Fleming et al., 2014;
Getz & Saltz, 2008), where distinct movement motifs—
for example foraging or resting—are referred to as ‘ca-
nonical activity modes’ or CAMs (Getz & Saltz, 2008).
Pathogen movement trajectories have received less at-
tention, but the CAM concept (which we refer to as the
Pathogen's Canonical Activity Mode, or ‘PCAM’; Box 1)
still applies. Pathogens moving in accordance with the
external environment while outside the primary host are
in a ‘pure-environment’ PCAM (Box 1), and pathogens
moving in accordance with the movements of the pri-
mary host while infectious are in a ‘host-as-environment’
PCAM (Box 1; Figure 1d). Vector-borne pathogens or
pathogens with intermediate hosts may have additional
PCAMs corresponding to each life-history phase, though
for simplicity we emphasise the pure-environment and

movement and persistence are determined by the move-
ment patterns, duration and ordering of its PCAMs,
and could be described using the same hidden Markov
modelling approaches as in behavioural and movement
ecology; Edelhoff et al., 2016). PCAM duration and or-
dering themselves depend on two pathogen life-history
attributes within each PCAM: (1) the pathogen's ability
to produce new cases or colonies per unit time (its ‘fertil-
ity’; Box 1); and (2) and the time over which the pathogen
can generate cases before going locally extinct (its ‘repro-
ductive window’; Box 1).

A high-resolution movement trajectory view is not
always necessary in spatial epidemiology, and simpler
approaches can achieve many epidemiological aims
(Figure le). For example Hendra virus spillover from fly-
ing foxes to horses is limited to locations where the virus
and both hosts co-occur. Co-occurrence, and therefore
spillover, is concentrated in horse paddocks with fruit
trees where flying foxes roost (Plowright et al., 2015), so
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The movement-pathogen pace of life hypothesis and expectations about spatial patterns of transmission. (a) Which components

of the epidemiological landscape dominate spatial patterns of pathogen transmission depends on the interface between movement and
pathogen life history. Pathogen canonical activity movements (PCAMs) can be broken into pure-environment and host-as-environment modes,
and the duration and ordering of these modes determines pathogen distribution across the landscape. Duration and ordering of PCAMs are

in turn determined by two pathogen life-history traits: first passage times in the host and in the environment. Pathogen pace-of-life increases
down the dashed diagonal line, with the fastest pathogens in the lower left-hand corner exhibiting rapid first passage times in both the host and
the pathogen. Approximate locations of several pathogens are shown for orientation (M. ovi refers to Mycoplasma ovipneumoniae, an infectious
pathogen of bighorn sheep). Spatial patterns of transmission for pathogens in the upper triangle will be dominated by the locations of host—
host interactions, while spatial patterns of transmission for pathogens in the lower triangle will be dominated by interactions between the host
and environmental reservoirs. (b) Pathogen life-histories can be summarised through vectors defined by host and environment first-passage
times. The further vectors point to the left, the more transmission is driven by direct contacts; vectors extending further to the right are driven
by indirect contacts. Pathogens whose vectors extend further to the bottom are expected to show transmission patterns driven by short-term
contacts (mass aggregations; mass blooms), while pathogens whose vectors extend further towards the top will be driven by long-term patterns

of host space use and density.

reasonable spatially explicit spillover predictions can
be built from locations of paddocks with roost trees;
individual-level movement analyses may have little to
offer. By contrast, transmission of chronic wasting dis-
ease (CWD) in mule deer does not have a known environ-
mental signature at coarse spatial scales (beyond higher
risks associated with clay-heavy soils; Miller et al., 2004).
However, there is a still a possibility that management
could be applied at a finer scale if there are particular en-
vironmental signatures associated with precisely where
mule deer shed prions, and how those shedding locations
align with local soil types. Therefore, high-resolution
movement analyses might be able to improve spatially ex-
plicit transmission forecasts in the CWD system (Box 1).
The Hendra virus and CWD examples highlight dif-
ferent spatial scales at which disease models can oper-
ate. At the individual movement trajectory level, host,
environment and pathogen life-history mechanisms
can inform when and where hosts and pathogens inter-
act (as in the CWD example above). At the population
level, densities, mobilities and contacts derived from all
local pathogens and hosts contribute to an aggregate
force of infection that can sometimes be linked to the

environment directly using coarse scale data (as in the
Hendra example). Both scales can be used to predict spa-
tially explicit transmission patterns, and either may be
reasonable depending on system dynamics.

An epidemiological landscape framework
advances epidemiological modelling by
mechanising the environment—movement—
transmission relationship

Movements can be described in terms of either location
or environment (referred to as ‘geographic’ and ‘environ-
mental space’ in the movement ecology literature; Box 1
[Matthiopoulos et al., 2020; Moorcroft et al., 2006]).
Metrics in geographical space are built from raw coor-
dinates (e.g. whether an individual occupies a specific
point on the landscape or moves a particular distance;
Box 1), while metrics in environmental space relate those
coordinates to local environmental features (e.g. whether
an individual selects for cliffy habitats or moves rapidly
near topographical bottlenecks; Box 1). Environmental
metrics are mechanistic in that they capture how
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environmental attributes alter patterns of movement.
Metrics in both categories cover temporal scales from
fine and behaviorally relevant to coarse and occupancy-
relevant. Classic spatially explicit transmission mod-
els (Box 2) often rely on metrics in geographical space
(e.g. subpopulations defined through overlapping home
ranges [Craft et al., 2011; O'Brien et al., 2014]; Euclidean
distance- or gravity-based descriptions of mobility or
connectivity [Viboud et al., 2006]), and assume that the
functional responses linking host density and per capita
transmission rates are constant across environments.

Although some geographical metrics can be moved to
new spatial domains (e.g. dispersal kernels), geographical
metrics contain no information about the environment
where the coordinates arose, so they cannot account
for specific attributes of new environments. Therefore,
applying geographical metrics in novel environments
requires extrapolation in both geographical and envi-
ronmental space. Environmental metrics are sometimes
less spatially resolved than geographical metrics, but ap-
plying environmental metrics in novel settings only re-
quires extrapolation in geographical space.

Transferable models are models that perform well
when extrapolated to novel contexts (Box 1; Barbosa
et al., 2009; Matthiopoulos et al., 2019). Transferable
models are especially important for epidemiological
systems where: (1) spillover could occur across a huge
geographical range, making boundary controls infeasi-
ble (e.g. avian influenza spillovers from migratory wa-
terfowl could occur at many points along a flyway; Hill
et al., 2016); (2) management actions shift depending on
the local environment (e.g. epizootic hemorrhagic dis-
ease virus [EHDV] management might prioritise water
point sources for vector control when water is scarce,
and host vaccinations when water is plentiful; Noronha
et al., 2021); or (3) research is concentrated around
pseudo-model systems but findings need to extend to a
wider set of host-pathogen interactions (e.g. fine-scale
but limited data describing life-history movement trade-
offs in flying foxes could be used to generate broader-
scale spatial predictions; Hayman et al., 2018). Models
that describe density, mobility and contact in terms of
the local environment are transferable to new locations,
while models based on geographical metrics are not.
Therefore, the epidemiological landscape approach re-
lies on environmental metrics wherever possible.

Epidemiological landscape components can be
prioritised according to the movement-pathogen
pace-of-life hypothesis

Most methods for generating spatially explicit epidemio-
logical forecasts cover only one component of the epide-
miological landscape (densities or mobilities or contacts,
but rarely all three). Which component has the most
influence on spatial patterns of pathogen transmission

depends on the interface between movement and patho-
gen life-history traits.

The pace-of-life syndrome hypothesis (Ricklefs &
Wikelski, 2002; Box 1) proposes that traits like growth
rate, age of reproductive maturity, and longevity should
be correlated within a species, leading some species to
follow ‘slower’ K-selected lifestyles, while others follow
r-selected ‘live fast, die young’ strategies. For patho-
gens, pace-of-life reflects a trade-off between ability
to colonise new hosts (i.e. to infect) and ability to sur-
vive. Traits associated with r- and K-selection have been
extensively studied (e.g. Oli & Dobson, 2003; Thrall
& Burdon, 1997), particularly in plant pathogens and
sometimes with an explicit eye towards spatial spread
(Eshelman et al., 2010; Susi & Laine, 2013; van Dijk
etal., 2022). Assigning ‘pace-of-life’ to pathogens is com-
plicated, however, because pathogens spend their lives
switching among environments (the pure-environment
while outside the host and the host-as-environment while
infecting; i.e. the PCAMs from Section ‘Transmission
occurs at intersections of host and pathogen movement
trajectories’). Pathogen longevity (here considered at the
scale of an infecting colony) is determined by survival
within each environment, along with transition rates
among environments.

r-selected pathogens have high fertility rates (they are
able to produce many new cases per unit time; Box 1) and
short reproductive windows (they have limited time to
produce new cases before dying out in the local host or
environment; Box 1). These two attributes produce short
first passage times (i.e. expected waiting time from ar-
rival in one state to arrival in the next; Box 1) through
both hosts and environments: r-selected pathogens move
quickly from host-as-environment to pure-environment
and back.

K-selected pathogens have low fertility rates (they
are limited in how many cases they can generate per
unit time) and long reproductive windows (they have
more time over which to generate those cases). Long re-
productive windows and lower fertilities correspond to
longer first passage times, which can occur in the pure
environment, the host-as-environment or both. Which
environment has the longest first passage time has im-
plications for how the pathogen distributes over space.
Therefore, for clarity, we partition K-selected patho-
gens into three groups: infection-driven K-selected
pathogens (Box 1); environment-driven K-selected
pathogens (Box 1) and infection-and-environment-
driven K-selected pathogens (Box 1). Four example
systems—canine distemper virus, devil facial-tumour
disease, chronic wasting disease and Bacillus
anthracis—illustrate how these life-history strategies
interact with movement to generate pathogen intensity
patterns over space.

Canine distemper virus (CDV; a close relative of
measles that infects carnivores; Terio & Craft, 2013),
is an r-selected pathogen with high reproductive
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FIGURE 3 Hypothetical workflows using the epidemiological landscape. Each workflow uses animal movement trajectories to forecast
movements from environmental covariates, adjusts movement forecasts according to time lags imposed by pathogen life-history, and integrates
with disease models (Box 2) to predict spatiotemporal transmission dynamics. Auxiliary data can enter the workflows (examples indicated by
steps flagged with dark green arrows), but could limit model transportability. Many of the methods already exist (checkmarks), although it is
not always clear how they should be connected. Other methods have been proposed and prototyped, but are as-yet untested on real-word data
(blue triangles). A third group remains strictly hypothetical (red stars). ‘RSF’ = resource selection function; ‘SSF’ = step selection function;
‘CTMM’ = continuous time movement model; “‘UD’ = utilisation distribution; ‘CTMC’ = continuous time Markov chain. ‘MoveSTIR’ accounts
for temporal lags between pathogen deposition and acquisition (Wilber et al., 2022). Method details are in Table 2.

potential, a short reproductive window in the host-
as-environment, and an even-shorter reproductive
window in the pure-environment. CDV's infectious
periods are longer than its environmental persistence,
thus CDV predominantly occupies the host-as-
environment PCAM. As a consequence, its densi-
ties and mobilities closely match those of its hosts
(Almberg et al., 2010; Craft et al., 2011). These traits
make CDV most successful (able to produce large
outbreaks) when hosts are plentiful, contacts are fre-
quent and host turnover is high (e.g. in ephemeral ag-
gregations of susceptible hosts; Table 1; Supplemental
Text S2.1.1).

Devil facial tumour disease (DFTD; a transmis-
sible cancer of Tasmanian devils) exemplifies the
infection-driven K-selected pathogen group (Pearse
& Swift, 2006). DFTD generates long infections (it
transitions slowly from host-as-environment to pure-
environment), but like CDV, its survival outside the host
is brief: cancerous cells must transition quickly from
pure-environment to host-as-environment or risk fading
out. As a consequence, DFTD spends most of its time in

the host-as-environment PCAM, and its density and mo-
bility should be well-approximated by those of its host.
However, because DFTD is transmitted through bites
(Hamede et al., 2013), it is less equipped than CDV to
capitalise on large but short-lived host aggregations for
transmission. Instead, DFTD transmission maps to areas
where hosts engage in appropriate contact (for DFTD, at
locations where hosts mate or fight; Supplemental Text
S1.1.2 and S2.1.2), regardless of local host densities. This
could be a risky strategy—DFTD's transmission is vul-
nerable to disruptions in host metapopulation structure
(Durrantetal., 2021)—but because DFTD's transmitting
behaviours are tied to its host's mating system, trans-
mission opportunities arise at pseudo-regular intervals,
limiting dead-end infections and reducing variance in
reproductive output.

The prions causing chronic wasting disease (CWD;
a prion-driven encephalopathy primarily affecting cer-
vids) exemplify the infection-and-environment-driven
K-selected pathogen group: CWD's transitions are slow
from both host-as-environment to pure-environment
and pure-environment to host-as-environment (Miller



MANLOVE ET AL.

| 1773

et al., 2004; Miller & Conner, 2005). Because CWD can
survive for long periods of time in both PCAMs, its den-
sity over space should be a convolution of both envi-
ronment types (its intensities should be elevated around
environmental reservoirs, but also around areas of high
host densities; Almberg et al., 2011). CWD's mobility is
also a mixture of its mobility in the pure-environment
and the host-as-environment, but since its movement
capacity in the pure-environment is limited, host mobil-
ity patterns are the most important determinants of its
spread.

Bacillus  anthracis  (Anthrax) exemplifies the
environment-driven K-selected pathogen groups: it
transitions slowly from pure-environment to host-as-
environment, but quickly from host-as-environment
to pure-environment. Bacillus anthracis concentrates
at environmental reservoirs (Weiss & Dishon, 1971), its
movements are determined by its mobility in the pure-
environment (Turner et al., 2014; Supplemental Text
S1.1.3), and its ability to contact hosts depends on host
encounters with reservoir environments.

The movement-pathogen pace-of-life hypothesis
(Box 1) unifies these examples by proposing that the
epidemiological landscape component (density, mo-
bility or contact) with the strongest influence on spa-
tial patterns of pathogen transmission is determined
by the pathogen's first passage time through both
the environment and the host (Lloyd & May, 2001;
Figure 2). Classifying pathogens according to their
first passage times clarifies expectations about how
each epidemiological landscape component influ-
ences when and where the pathogen is transmitted.
When first passage time in the host is longer than
first passage time in the environment (i.e. the patho-
gen's life-history places it above the dashed diagonal
line in Figure 2a), transmission is primarily direct,
and concentrates at locations where hosts encoun-
ter one another. When first passage time in the en-
vironment exceeds first passage time in the host,
transmission concentrates at locations where hosts
encounter environmental reservoirs. Transmission
of ‘fast’ r-selected pathogens concentrates at loca-
tions where hosts form large groups (near the bot-
tom and left-hand side of Figure 2a). Transmission of
K-selected pathogens concentrates at locations with
the highest time-averaged densities (for infection-
driven K-selected pathogens) or reservoir contact
rates (for environment-driven K-selected patho-
gens; Figure 2b). The hypothesis assumes that first
passage times through both the host and the envi-
ronment are constant, so environmentally variable
pathogen persistence or spatially explicit transmit-
ting behaviours can lead patterns to depart from
movement-pathogen pace-of-life expectations. When
this occurs, movement-based analyses can be refined
and the movement-pathogen pace-of-life hypothesis
can operate as a contrasting null.

MOVEMENT MECHANISMS
CONNECT HOSTS, PATHOGENS
AND ENVIRONMENTS

Specific mechanisms shape how the host, pathogen
and environment interact. For example resource selec-
tion shapes patterns of host density (Supplemental Text
S1.1), thus resource selection functions could be used to
predict host densities; and landscape resistance shapes
patterns of host mobility, thus modelled resistance sur-
faces could be used to predict host mobility patterns
(McRae et al., 2008). Movement mechanisms could also
inform spatially explicit multipartite networks (Manlove
et al., 2018; Silk et al., 2018) or models from machine
learning (Han et al., 2020; Wijeyakulasuriya et al., 2019)
aiming to predict the epidemiological landscape. Metrics
like the number of individuals within some neighbour-
hood of a focal animal or the turning angle required for
the host to orient towards a particular environmental
feature are commonly used in movement ecology and
could also inform spatially explicit models of pathogen
transmission.

Some mechanisms can lead systems to depart from
movement-pathogen pace-of-life expectations, and sev-
eral of these mechanisms are already well-understood.
Mass aggregations (Cross et al., 2005; Lloyd-Smith
et al., 2005) and stable social bonds (Sah et al., 2017) af-
fect patterns of contacts, as do the pathogen's mode of
transmission and environmental persistence (Table 1;
Supplemental Text S2.1). Synchronous host life-history
events (like birth pulses) can produce seasonally pulsed
transmission after an influx of new susceptible hosts
(Peel et al., 2014). Density, mobility and contact can
also vary according to feedbacks between the patho-
gen and the host (Supplemental Text S1.1.4 and S2.1.4)
that arise through either physiological pathways or
behavioural shifts. Physiologically, fighting infection
might lead to fatigue, causing hosts to move less or self-
isolate; and immune functions could change resource
requirements (e.g. by increasing water requirements
during febrile responses). Behaviorally, neurotropic
pathogens like rabies or toxoplasmosis can directly
alter host conduct (Hughes et al., 2011; Stockmaier
et al., 2021; Weinstein et al., 2018).

Other mechanisms are implicitly embedded in existing
frameworks for modelling spatially explicit transmission
for humans, livestock and wildlife. In spatially explicit
transmission models for humans and livestock patho-
gens, locations where individuals interact (e.g. houses,
transit centers, feedlots) are often assumed to be dis-
crete and fixed through time (Haw et al., 2020; Keeling
et al., 2001; Riley & Ferguson, 2006). Site-to-site mobilities
depend on intervening distances and local and surround-
ing host densities (Simini et al., 2012; Tizzoni et al., 2014;
Viboud et al., 2006). Once site-to-site movements occur,
transmission-appropriate contacts are modelled according
to local host density (following a functional form usually
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based on a priori knowledge about mode of transmission),
and infection rates ultimately depend on the probability of
transmission given contact.

These assumptions reflect attributes of human move-
ment ecology that might not hold for other species.
Most humans regularly return to home sites (but see
Bharti et al., 2011), so assigning humans to fixed loca-
tions and movement patterns might not affect spatially
explicit transmission predictions. Humans spend little
time on random walks (Meekan et al., 2017); instead,
they make directed moves from starting points to pre-
ordained destinations, with mobilities rarely slowed by
environmental barriers (e.g. mountains, rivers; Table 1).
Place-of-residence for non-human hosts might be better
described through intensity surfaces that shift through
time. Non-human host densities and mobilities are often
tied to the abundance, quality, timing and spatial dis-
tribution of resources, along with the structure of the
intervening landscape (Table 1). However, what consti-
tutes a ‘resource’ depends on the host's ecology (Miller
et al., 2019) and its internal state (Nathan et al., 2008;
Supplemental Text S1.1.1), and understanding host ecol-
ogy and physiology are important for generating accu-
rate space use predictions.

In reality, the a priori directed movements of hu-
mans might occupy one extreme in host movement
decision-making, while movement patterns derived
from resource-driven random walks occupy the other.
Movement dynamics for most host species probably fall
somewhere in-between. Fleshing out these movement
continua (Carbone et al., 2005; Han et al., 2015) could
inform general expectations about how particular host
taxa move, improving spatially explicit transmission pre-
dictions especially for understudied species. Biological
underpinnings and current integrations between move-
ment and disease ecology, especially with regards to how
environment and host social ecology inform patterns
of host and pathogen movements, are included in the
Supplementary Text.

Next steps

In the immediate-term, disease ecology would benefit
from incorporating the following considerations into
movement analyses destined for epidemiological frame-
works. First, we need to account for spatial and tempo-
ral lags between pathogen shedding and acquisition in
order to weight pathogen transmission potentials from
the pure-environment to the host-as-environment (e.g.
Richardson & Gorochowski, 2015; Wilber et al., 2022;
Supplemental Text S1.3.1). Second, we need a clearer
understanding of how to link the timescales of move-
ment and movement data to the timescales of patho-
gen transmission (Supplemental Text S1.3.2). Third,
we need better frameworks to guide data collection
and spatial allocation of tracking devices, especially

for studies prioritising contact (Supplemental Text
S1.3.3). Fourth, we need to consider whether and how
to update movement forecasts dynamically in response
to changing epidemiological contexts (Supplemental
Text S1.3.4). Fifth, spatial epidemiology might some-
times require entirely new epidemiological theory
and methods, which we need to identify and develop
(Supplemental Text S1.3.5).

To better incorporate the social environment and
quantify socially driven aspects of contact and mobil-
ity, we first need methods that can scale up from subsets
of tracked individuals to draw inference across entire
populations (Supplemental Text S2.3.1). Second, we
need to directly incorporate social covariates into mod-
els of movement to measure the influence of social fac-
tors on animal movements (Supplemental Text S2.3.2).
Third, we need to explore the ability of multi-layer net-
work modelling approaches to capture environmental
drivers (Supplemental Text S2.3.3). Finally, we need to
formalise connections between fission-fusion dynamics
and contact network structures to more precisely incor-
porate environmental and social drivers of movement
(Supplemental Text S2.3.4).

Each of these tasks will require (and add to) integra-
tion of movement and disease ecology, to benefit of both
domains.

MODERN WORKFLOWS

FOR CONNECTING
ENVIRONMENTAL DRIVERS
WITH EPIDEMIOLOGICAL
MODEL INPUTS

Predicting pathogen transmission locations is a meth-
odologically diverse objective. Approaches range from
mechanistic tactics reliant upon fundamental attributes
of the system to phenomenological tactics reliant upon
geographical metrics. Emerging methods for Eulerian
data (which describe spatio-temporally varying densities
without tracking specific individuals) can connect trans-
mission kernels to the environment (Garlick et al., 2011;
Hefley et al., 2017; Box 2), but Eulerian methods per-
form best with patterns that change over both space
and time. Eulerian approaches might prove most use-
ful for understanding novel pathogen spread, especially
for K-selected pathogens, but they might be less-useful
for managing endemic transmission or transmission of
r-selected agents. Here, we focus instead on workflows
for Lagrangian data that explicitly track movements
of known animals (e.g. through GPS collars or other
animal-borne sensors), which are better-equipped to
investigate  high-resolution environment—-movement
interactions.

Conventionally, researchers used Lagrangian data to
identify drivers of spatial transmission by: (1) correlat-
ing transmission with aspects of the environment; (2)
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building forward from those correlations to separately
investigate each component of the epidemiological land-
scape and (3) re-combining component-specific estimates
to generate overall predictions. These steps are usually
ad hoc, and disease ecologists lack clear guidance about
which covariates to explore, which components to prior-
itise, or how to appropriately propagate error. Modern
workflows offer new opportunities to overcome each of
these challenges (Figure 3).

All workflows (Figure 3) start with a preliminary
correlative inquiry relating pathogen prevalence to en-
vironmental attributes (preferably using datasets that
track changes in relevant environmental covariates).
Researchers should then consider how host movement
interacts with pathogen pace-of-life, and identify plau-
sible mechanisms relating movement and pathogen per-
sistence to the environment (Table 1). After this point,
the workflows diverge.

In the mechanistic workflow, researchers separately
model density, mobility and contact as functions of the
physical environment, using different datasets and meth-
ods for each component (biological processes and inte-
grations with movement described in the Supplementary
text; methods summarised in Table 2). Density and mo-
bility can be estimated separately or together depending
on data availability, but contact estimates often require
distinct datasets (e.g. from proximity loggers or direct
observations). The epidemiological landscape can be
constructed by predicting densities and mobilities from
environmental covariates, and assigning each site spe-
cific contact rates depending on local environmental
conditions and host densities. Predictions should be val-
idated with pathogen surveillance data whenever pos-
sible, but mobility and density models can be validated
using movement data alone if necessary. The strength of
the mechanistic workflow lies in its ability to draw causal
inference from underlying drivers to emergent move-
ments and transmission, which should improve resulting
model transferability (but see Section ‘Connecting the
epidemiological landscape's central components’). Its
main weakness is that it can easily overlook host social
ecology, so this workflow might work best in systems
where host movements can be regarded as independent.

The network-based workflow places social and spa-
tial drivers on common footing from the start. This
approach requires defining a spatiotemporal contact
function (e.g. a cut-off distance and time) describing the
intensity of individuals ‘associations’, extracting associ-
ation strengths or events from tracking data, mapping
contacts to geographical locations, identifying environ-
mental correlates of those locations, projecting other
contact locations across the landscape using the iden-
tified environmental correlates, and finally simulating
pathogen transmission across the network to estimate
site-specific transmission potentials. For example to
identify hotspots of Mycoplasma ovipneumoniae trans-
mission in bighorn sheep, we might define a ‘contact’

to be concurrent locations within 50m of one another
within a 2-h time interval. We could then extract all con-
tacts from a set of bighorn sheep telemetry data, per-
haps using a continuous-time movement model for times
between fixes (Wilber et al., 2022). Next, we could map
the contact events back onto the landscape, and match
contact locations to environmental covariates (e.g. by
fitting a resource selection function directly to the con-
tact events). We could then connect individual animals
to contact locations to build a bipartite network, and
scale the network up by increasing the number of indi-
vidual and spatial nodes to reflect the population's size
and spatial extent (achieving a model of density and mo-
bility within the system; Figure 3). Uncertainty in edges
could be reduced by applying marginal information
about group sizes and individual-level habitat selection
to assign deer to locations (Cross et al., 2019; Manlove
et al., 2018; Silk et al., 2018). Finally, we could simulate
transmission on either a static or a dynamic representa-
tion of the network and extract cell-specific transmission
potentials (similar to White et al., 2018). Whether fore-
casted hotspots actually harbour more host aggregations
can be validated using local movement data, and whether
those aggregations lead to transmission can be validated
using pathogen data when those data exist. The strength
of the network-based workflow is that it balances spatial
and social forces. Its main weaknesses are its dependence
on tracking intensities high-enough to capture contacts
and its currently limited application in real-world set-
tings. How to best discretise space and adjust for spatial
autocorrelation are areas of open inquiry.

The final workflow builds from mining-modelling
approaches for disease dynamics (Han et al., 2020). Data
mining can be applied to a specific process within the
epidemiological landscape (Example Strategies 1 and 2
in Figure 3), or to entire animal movement trajectories
(Example Strategy 3 in Figure 3). The crux of this work-
flow is in translating hypothesised mechanistic drivers
into quantifiable ‘features’ that can be measured along
individual movement trajectories. For example if our
goal was to model movement trajectories of wild pigs,
we might include features describing environmental
context at several scales (e.g. percent cover, distance to
water, etc.). Other features might capture the pig's move-
ment trajectory, including its step lengths and turning
angles at various timelags, as well as the angle it would
need to turn to orient towards nearby resources (e.g. the
angle it would need to turn from its current heading to
orient towards water). On the social front, we could in-
clude features like distance to all other collared pigs, as
well as the turning angles required to re-orient towards
them. The set of features would then be used to train a
machine learning algorithm, which would be validated
against a subset of withheld movement trajectories and
then used to forecast movements across all individu-
als. Pathogen pace-of-life attributes could be overlaid
on the predicted movements to simulate transmission,
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again resulting in predicted site-specific transmission
potentials. Feature importance measurements could be
extracted to inform future research isolating and test-
ing specific mechanisms. The strengths of the mining-
modelling workflow are its ability to weight social and
spatial factors in tandem, and its ability to scale up
across individuals to infer density, contact and mobility
across entire landscapes. Its weaknesses lie in its depen-
dence on researcher-identified features, its inability to
identify causal mechanisms, and its abbreviated track
record of application in movement ecology and spatial
epidemiology.

Accurate prediction does not ensure effective interven-
tion if the system's mechanistic drivers remain unknown.
Mechanistically defining the epidemiological landscape
can add insights that purely phenomenological multipar-
tite network or mining-modelling approaches cannot.
Ideally, the phenomenological workflows would be used
in iteration with mechanistic inquiries.

OPEN CHALLENGES

Connecting the epidemiological landscape's
central components

Methods to integrate the epidemiological landscape
components (density, mobility and contact) and cor-
rectly propagate error remain in short supply (Jerde &
Visscher, 2005; Ruckelshaus et al., 1997). Propagating
uncertainty is an important challenge for any work-
flow that moves information across scales or processes
to generate predictions. Bayesian integrated modelling
(and to a lesser extent, mixed modelling) methods can
handle this challenge (e.g. Muff et al., 2020; Schaub &
Abadi, 2011), but posing a robust model in the presence
of a tower of uncertainties can be difficult. A broad
spectrum of ecologists and statisticians are confronting
these problems (e.g. Tredennick et al., 2021), and the op-
portunities from Bayesian approaches are improving as
tailored sampler designs become more accessible (e.g.
through platforms like NIMBLE; de Valpine et al., 2017).
We encourage disease ecologists to collaborate with ex-
perts in error propagation and model validation when
constructing spatially explicit models of transmission.
Appropriate integration, first of means and then of er-
rors, is an urgent need in spatial epidemiological inquiry.

Identifying the correct level of detail

Which biological details to include depends on data
resolution and project objectives. Mechanisms should be
included if they are central to the overarching question
or change resulting predictions. Decisions about which
biological details to include should precede decisions
about model construction, since some methods cannot

capture certain mechanisms. The relative timescales of
host movements, environmental fluxes and pathogen
pace-of-life are also informative: processes that change
slowly relative to system epidemiology could be treated
as constant; but processes that change quickly might
need to be dynamic (Funk et al., 2015).

Validating spatial patterns of transmission requires
the well-designed collection of pathogen surveillance
data. The best way to gather surveillance data depends
on the focal system's diagnostic methods. Sampling de-
signs for transmission have been reviewed elsewhere
(e.g. Plowright et al., 2019), so we focus more narrowly
on considerations for movement data. Movement data's
temporal resolution is often under researcher control,
though resolution trades off against device longev-
ity through battery and memory capacities (Kays
etal., 2015). Background knowledge about the timescales
of relevant host movements and pathogen life-history
traits (i.e. infectious periods and periods of environ-
mental persistence) can inform temporal resolution
(Benhamou, 2014; McClintock et al., 2014). Since rare,
longer-distance moves drive pathogen invasion speeds,
optimal disease invasion tracking might rely on slower
fix rates and longer tracking periods. On the other hand,
extracting direct contacts from continuous time move-
ment models might require much higher-resolution data,
typically with fix rates faster than one point per hour.
As a consequence, different tracking rates might be ap-
propriate for developing (faster fix rate) and validating
(slower fix rate) models of transmission.

The spatial resolution of movement data is often
determined by the technology employed, but research-
ers often control the geographical and environmental
contexts in which devices are deployed. Estimating en-
vironmental effects will be most efficient when the en-
vironment varies substantially across the study's spatial
domain, but if direct contact data are required, tracking
densities should remain high in some areas. Ideally, one
should know the ratio of tracked animals to total hosts
across the study area. Habitat attributes that are con-
sistent across the study area can be excluded from local
predictions, but should be considered if the model is used
to predict dynamics elsewhere.

Finally, constructing reliable density, mobility and
contact estimates often takes substantial effort (e.g.
through improved descriptions of important covariates,
increased performance of disease diagnostic tests or
refinements to statistical methods). This burden might
diminish over time, but shortcutting variable develop-
ment can be costly, and investing in some form of data
improvement is often necessary.

Extending outside the measured context

The relation between density, mobility or contact and
environmental attributes may depend on the attribute's
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local availability (similar to a functional response;
Mysterud & Ims, 1998). Availability-dependence is the
rule, not the exception, in animal movement (Avgar
et al., 2020), and while availability-dependent relation-
ships between movement and the environment do not
preclude extrapolation, their presence should be consid-
ered when predicting transmission in unsampled geog-
raphies or environments. Meta-analyses of how habitat
selection, step selection or other attributes of movement
vary across environments could offer baseline expecta-
tions about how availability affects density and move-
ment, especially for hosts of common interest.

Disease feedbacks can also produce nonlinear func-
tional responses. A low-density population recovering
from disease could have different rates of long-distance
movement than nearby populations where densities are
high; and age-specific mortality burdens can influence
social structure, especially if mortalities concentrate
among older and more knowledgeable individuals.
The relationship between time since pathogen depo-
sition and instantaneous rate of transmission could
also be nonlinear (Almberg et al., 2011; Richardson &
Gorochowski, 2015), but guidance about how to weight
the force of infection arising from different modes of
transmission is limited (Breban, 2013).

Finally, predictions can fail in environments contain-
ing spatial or social features that never arose in the train-
ing data. Host populations with seasonal birth pulses
could have different habitat selection patterns than pop-
ulations where birth pulses are diffuse, and habitats that
are seasonally abandoned at some latitudes might be oc-
cupied year-round at others. In these cases, researchers
could fall back to mechanistic approaches drawn from
first principles of system biology.

CONCLUSION

The interface between movement and disease ecology
offers exciting opportunities to improve spatially ex-
plicit models of pathogen transmission and motivate
research into mechanisms shaping animal movement
more generally. Rapid advances and new workflows
in movement and disease ecology give the interface a
strong foundation, and synergistic developments could
benefit both fields. However, improving spatially ex-
plicit epidemiological forecasts might also require shifts
in emphasis. The epidemiological landscape, consisting
of environmental processes shaping host and pathogen
movements, along with emergent patterns of density,
mobility and contact, provides a conceptual bridge con-
necting environmental mechanisms to spatially explicit
patterns of pathogen transmission. Focused inquiry
into the mechanisms that underpin the epidemiological
landscape and the phenomena that emerge from it could
reveal overlooked opportunities for targeted data collec-
tion, new applications of tools from movement ecology,

and avenues for future method and theory develop-
ment. We hope that this synthesis sparks conversations
that advance perspectives in spatial epidemiology and
strengthen the conceptual bridge connecting environ-
ment, movement and transmission.
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